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Folk definition

What do people mean when they talk about “virtualization” w.r.t.
computers?

Anything you do on computers/Internet

it cannot be touched =⇒ it is not real

“fake” vs “real” experience

A fake V behaves like some real T w.r.t. some observer O.
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Computer Science definition

S S

T V

H

O

Typically (but not necessarily):

real T (Target): some hardware

Virtual V : made in software (running on hardware H, Host)

Observer O: someone using software (S) originally made for T
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Virtualization

Computer Science definition

So, we have some software S that works on T . We want to replace the
real T with the virtual V and make S work like before (to the
satisfaction of some observer O).
Why do we say “Typically (but not necessarily)”?

• T may be software itself, e.g., Windows emulated by Wine on Linux

• V may make use of some hardware designed specifically for the
virtualization (we will see several examples of this), or may be
entirely in hardware (e.g., old PC peripherals emulated by modern
I/O chip-sets)

It is sometimes useful to regard the software S as the observer, since O’s

interaction with T is often limited to the software she can run. For a

software to “observe” something we mean that it changes behavior (e.g.,

it prints different outputs) depending on something.



Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S
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Virtualization

Why virtualization?

Why don’t we just change S? It’s software, isn’t it?
Unfortunately, software may come in forms that are very hard to change:

• huge blobs of machine language;

• very large set of interacting applications and libraries;

Anyways, sometimes we do change S : this is called paravirtualization and

we will examine it later.
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Virtualization

Why virtualization?

The T hardware may not be available because:

• it no longer exists (historical emulation);

• it does not exist yet (e.g., simulation of new hardware done
internally by hardware producers, so that they can start writing and
debugging the software while the hardware is still being assembled)

• it never existed at all (where is the Java Real Machine?)

• we are already using it for something else (e.g., we have installed
Linux on our PC and we want to run some Windows application at
the same time).



Why virtualization?
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and one or more of:
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Virtualization

Why virtualization?

Even if T is in principle available, V may be a cost-effective solution: less
expensive, but still offering sufficiently good performance.
In these scenarios we run the software using less hardware resources than
in the original, intended or possible deployment (e.g., less physical
memory than actually addressable, less physical machines than number of
services).

The idea is that the software is not going to need all the resources at the

same time, so we can multiplex the available resources among the active

users with (hopefully) little impact on performance.
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Virtualization

Why virtualization?

Independently from considerations of availability and cost, the fact that
virtualization replaces some hardware with some equivalent software
offers more flexibility in the management of the resources and opens the
possibility for new functionality:

• live migration: migrating an entire running system from on physical
machine to another

• checkpointing the state of a system for fault tolerance

• using applications running on different OSes on the same desktop.
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Virtualization

Why virtualization?

In the last scenario we are not necessarily concerned with availability, cost
or flexibility: we want to run several applications on the same hardware
and we want to be able to precisely control the way they are allowed (or
disallowed) to interact.
Hardware usually gives a clear and well defined interface between
separate modules. Two different machines can only communicate
through the network that interconnects them, for example, and each
machine can access the network only through a network adapter, which
has a well defined interface made of registers and shared memory.
Since virtualization typically has to reproduce these interfaces, we can
leverage them to implement the isolation we need.

Note that there is an overlap here with what OSes traditionally are

already meant to provide. Indeed, OS-based solutions alternative to

virtualization are pushed forward in this area (containers, jails).



Why virtualization? (2)

Useful also when T = H:

S S

V

T T

V adds a layer of indirection between S and T .
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Virtualization

Why virtualization? (2)

The motivations involving cost, flexibility and protection can be
summarized by noting that they make use of the new layer of indirection
that V interposes between the software S and the hardware T .

This is the reason why it may make perfect sense to introduce V , even

when T and H are exactly the same.



How to virtualize?

We are going to examine several techniques:

emulation (Bochs, original JVM)

binary translation (QEMU, recent JVMs)

hardware-assisted (KVM, Virtualbox)

paravirtualization (original Xen)
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The Small Scale Experimental Machine (1948)

Figure : A modern replica of the SSEM, aka “Baby”, at the Museum of
Science and Industry, Manchester. (credit: Wikipedia)
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Virtualization

The Small Scale Experimental Machine (1948)

We will write an emulator for the SSEM or Baby machine in Manchester.
This is the very first Stored Program computer, completed the 21 June
1948 at the University of Manchester under the direction of F.C.
Williams and Tom Kilburn.
Stored Program means that the program is input and stored in an
internal memory, and only then obeyed. Once in memory, it can be read
at high speed and it can also modify itself (a feature often used in early
times). The Stored Program concept originated in the USA within the
ENIAC group, lead by J.P. Eckert and J. Mauchly. It was then
disseminated in a draft paper by J. von Neumann and during the very
first computer course, in the summer of 1946.

The main obstacle to the actual implementation the stored program idea

was to build a device which could store a sufficiently large number of

digits and operate at electronic speed. The ENIAC group was working on

mercury delay lines, invented by Eckert. Williams and Kilburn came up

with a different idea.



The SSEM CRT output

Figure : The CRT output showing the memory contents as a matrix of
32×32 big/small dots (credit: Wikipedia)
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Virtualization

The SSEM CRT output

They decided to make computer memories from CRT’s, which were

already used in radars. The screen of the tube is used as a matrix of dots,

each in one of two possible configurations, to store a bit. A bit can be

read by trying to change it (a destructive read): if a current is produced,

then the stored bit was different from the one we had tried to write. The

current was observed using a metal plate that covered the screen. Since

the cannon could be deflected to read and write from any desired

location in a relatively constant time, this was a RAM. The memory

content had to be periodically refreshed, so it was actually a DRAM.



The SSEM CRT output

Figure : The CRT output showing the memory contents as a matrix of
32×32 big/small dots (credit: Wikipedia)
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Virtualization

The SSEM CRT output

The tube that shows the contents of memory (the one in the picture) is
not the one actually used for storage: that one had the metal plate
covering it, and was also protected from interferences. However, the
display tube is receiving the same signal as the memory one. Note that
this was the only output device in the machine. Input was carried on
using a keyboard and a set of switches to select a location in memory
and write a digit into it.

The Baby was actually built only to test the memory tube (later known

as Williams Tube) and was deliberately a very simple machine, for which

(apparently) only three programs were ever written (one of them by A.

Turing). Once it worked, it was soon expanded into the more practical

Manchester Mark I computer.



The SSEM ISA (1)
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Virtualization

The SSEM ISA (1)

The machine has 32 memory locations 32 bits wide. Each location can
store either an instruction or a number. Numbers are integers represented
in 2’s-complement.
The machine has only one register, the accumulator A.
CI is the program counter. It is always incremented by 1 before fetching
an instruction. Since it starts at 0, the (default) entry point is at address
1.

Note the peculiar way of representing the numbers with the least

significant bit on the left. The CRT also shows the memory contents in

this way.



The SSEM ISA (2)

0 12 13 15 31

addr opcodeopcode

opcode effect

0 CI ← Mem[addr]
1 CI ← CI + Mem[addr]

2 A ← −Mem[addr]
3 Mem[addr] ← A

4,5 A ← A−Mem[addr]

6 if A < 0, CI← CI + 1
7 halt
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Virtualization

The SSEM ISA (2)

Note that the accumulator only had a subtracter and that reading from
memory reverses the sign. This was done to spare electronic circuits at
the expense of execution time (and program storage): you can still do
additions via a + b = −(−a− b). E.g., to have a + b in A starting with a
in Mem[20] and b in Mem[21] we can do:

A ← −Mem[20] read −a in A
A ← A−Mem[21] compute −a− b in A

Mem[22] ← A temporary store of −a− b
A ← −Mem[22] read a + b back into A

Note that the conditional branch (opcode 6) just skips a single
instruction if the test is true (another 1 will be added to CI before
fetching the next instruction).

Note, finally, that the unconditional jumps (opcodes 0 and 1) are always

indirect.



The emulator (1)

i n t 3 2 t Mem[ 3 2 ] ;
i n t 3 2 t A ;
i n t 3 2 t CI ;

void e x e c ( ) {
f o r ( ; ; ) {

/∗ advance CI ∗/
CI++;

/∗ f e t c h th e n e x t i n s t r u c t i o n ∗/
i n t 3 2 t PI = Mem[ CI ] ;

/∗ decode t he i n s t r u c t i o n ∗/
i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;
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The emulator (1)

We use int32 t which, if available, is guaranteed to be a 32 bit integer

represented in two’s-complement (C99 standard).



The emulator (2)

/∗ e x e c u t e the i n s t r u c t i o n ∗/
switch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 : /∗ below ∗/
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : return ; /∗ t e r m i n a t e s e m u l a t i o n ∗/
}

}
}
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The (amended) first program

1 00011000000000100000000000000000 A← −Mem[24]
2 01011000000001100000000000000000 Mem[26]← A
3 01011000000000100000000000000000 A← −Mem[26]
4 11011000000001100000000000000000 Mem[27]← A
5 11101000000000100000000000000000 A← −Mem[23]
6 11011000000000010000000000000000 A← A−Mem[27]
7 00000000000000110000000000000000 if A < 0, CI← CI + 1
8 00101000000001000000000000000000 CI← CI + Mem[20]
9 01011000000000010000000000000000 A← A−Mem[26]

10 10011000000001100000000000000000 Mem[25]← A
11 10011000000000100000000000000000 A← −Mem[25]
12 00000000000000110000000000000000 if A < 0, CI← CI + 1
13 00000000000001110000000000000000 halt
14 01011000000000100000000000000000 A← −Mem[26]
15 10101000000000010000000000000000 A← A−Mem[21]
16 11011000000001100000000000000000 Mem[27]← A
17 11011000000000100000000000000000 A← −Mem[27]
18 01011000000001100000000000000000 Mem[26]← A
19 01101000000000000000000000000000 CI← Mem[22]
20 10111111111111111111111111111111 -3
21 10000000000000000000000000000000 1
22 00100000000000000000000000000000 4
23 00000000000000000011111111111111 -262144
24 11111111111111111100000000000000 262143
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The (amended) first program

The program finds the the greatest proper divisor b of a number a.
Initially, word 23 must contain −a and word 24 must contain a− 1 (first
factor to try). The program tries each potential factor from a− 1 to 1 in
turn. Division is implemented by repeated subtraction (words 6–8).
When the program halts (word 13) we have b in word 27 and −b in word
26.

The original program has been lost and then reconstructed from memory.

Moreover, this is an amended, slightly improved version.



Running the first program

. . . about 130,000 numbers were tested, involving some
3.5 million operations. The correct answer was obtained
in a 52-minute run. (F.C. Williams, T. Kilburn,
“Electronic Digital Computers”, Nature, Vol. 162, p. 487,
September 25, 1948.)
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Virtualization

Running the first program

The emulator is available at
http://lettieri.iet.unipi.it/virtualization/mbaby.tgz

Clearly, we are not emulating execution time.

http://lettieri.iet.unipi.it/virtualization/mbaby.tgz


A formalization

Model both T + S and V + S as State Machines:

〈T -state,T -next〉
〈V -state,V -next〉

Define interp : V -state → T -state (interpretation)

Agree with O that she will only look at T -states
(either directly from T or from V through interp)

Require that V -next preserves the interpretation.

G. Lettieri Virtualization



A formalization

Model both T + S and V + S as State Machines:

〈T -state,T -next〉
〈V -state,V -next〉

Define interp : V -state → T -state (interpretation)

Agree with O that she will only look at T -states
(either directly from T or from V through interp)

Require that V -next preserves the interpretation.

2
0
1
4
-1
0
-0
1

Virtualization

A formalization

Let us try to generalize what we have done.
The idea is to let the T system run and take snapshots at some instants.
Then we work with descriptions of these snapshots. The descriptions do
not contain all the things that can be observed in the system, but only
some features we are interested in. The interval between two consecutive
snapshot must last for sufficiently long as to observe a different state, but
we are free to choose any interval that lasts longer than that (thus
jumping over intermediate states). Therefore, our sequence of
descriptions is an abstraction of the real system. It is this abstraction
that we want to reproduce.
We are assuming deterministic state machines for now: T -next is a
function T -next : T -state → T -state (and the same goes for V -next).

There are several ways to model “final” states. We choose to have

T -next(s) = s whenever s is final.



A formalization: T -state
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A formalization: T -state

What do we put in each T -state?

• First of all, it depends on what the observer can see or is interested
in. E.g., the observer may want that a given set of programs
(maybe all possible programs) produce the exact same output as in
the original machine. In the SSEM example, the output is the state
of the memory when the programs stops (opcode 0x7), therefore the
observer should at least be able to see the memory contents when
the machine stops.

• Then, we may need to include other details. The idea is that from
each snapshot description we should be able to predict the next one.
This is why we also add A and CI.

Note that the state includes the actual contents of the registers and the

memory. For convenience, we consider the state of the machine

immediately after the increment of CI.
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A formalization: T -state

What we put in the description determines the level of detail/abstraction
of our emulation. In the SSEM example we have included the
accumulator, the program counter and the memory, but we have left out
many other things. For instance, the SSEM was a serial machine,
processing one bit at a time, but we have not put an indicator of “the
current bit within the word” in the state.

As an additional example, we could have put the state on/off of each

vacuum tube in the virtual-state. Then, our emulation would have been

at the logic level. We have omitted these details from the state because

we “feel” that they are not needed, if we only want to reproduce the

memory contents. This feeling can be justified more rigorously.



A formalization: T -transitions
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A formalization: T -transitions

What we do in the transitions determines a further level of abstraction:

how much do we want to let the T -state change before we take another

snapshot? In the SEEM we have considered the full execution of single

instruction as a step.



A formalization: V -states

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}
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A formalization: V -states

The V -state is the state of our emulator program, including the contents

of all variables (here written in the comments) and the current execution

point (here marked by the double arrow). In the example, we are

considering the moment in time between the increment of CI and the

assignment to PI.



A formalization: V -state interpretation
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case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}
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Virtualization

A formalization: V -state interpretation

The equivalence between a virtual-state and a target-state is given by an
interp map, such that

interp : V -state → T -state

(answering the question: “What T -state does this V -state is equivalent

to?”). Note that each V -state is equivalent to just one T -state, but each

T -state may be equivalent to several V -state, i.e., we do not require

interp to be 1-to-1. For simplicity, however, we do require interp to be

onto: the virtual system must have a way to represent any target state.



A formalization: V -transitions

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;

i n t 3 2 t PI = Mem[ CI ] ;
⇒

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

. . .

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

V -state V -state

V -next

G. Lettieri Virtualization



A formalization: V -transitions

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;

i n t 3 2 t PI = Mem[ CI ] ;
⇒

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

. . .

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}
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Virtualization

A formalization: V -transitions

A V -next transition generally involves several transitions in our emulation

program. We only consider a new V -state when the program state is

again interpretable as a T -state. In our example, this only happens when

the execution returns to the point between the increment to CI and the

assignment to PI. What happens in-between does not have to correspond

to anything in the target system: the observer will not see the

intermediate states, and we are free to do anything we wish, as long that

the “stepwise correctness” property holds.



A formalization: stepwise correctness
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i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}
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A formalization: stepwise correctness
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i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

i n t 3 2 t Mem[ 3 2 ] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c ( ) {
f o r ( ; ; ) {

CI++;
⇒

i n t 3 2 t PI = Mem[ CI ] ;

i n t 3 2 t opcode = ( PI & 0 xE000 ) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch ( opcode ) {
case 0 : CI = Mem[ addr ] ; break ;
case 1 : CI = CI + Mem[ addr ] ; break ;
case 2 : A = −Mem[ addr ] ; break ;
case 3 : Mem[ addr ] = A ; break ;
case 4 :
case 5 : A = A − Mem[ addr ] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}
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Virtualization

A formalization: stepwise correctness

Assume the target system starts in a T -state state t1. We find a V -state
v1 whose interpretation is t1 (there must be at least one, since interp is
onto). Assume T -next(t1) = t2. Then V -next must be implemented
such that V -next(v1) is a state v2 whose interpretation is exactly t2.
We start with “equivalent” states (t1 and v1), we end up (after a single
step in both machines) with two new equivalent states (t2 and v2). If this
property holds for any starting states, then the equivalence will be
preserved for the entire execution.

Since O is only permitted to look at T -states, she will not be able to

distinguish the target system from the virtual system.


