
Distributed File Systems

G. Lettieri

10 Nov. 2016

In a distributed file system, users sitting at a machine can access files stored
on other machines connected via a Local Area Network (LAN). In the typical
setup a central, powerful machine acts as a file server for a set of clients. Cen-
tralizing the file system on the server has two main benefits: users may access
their files from any client, and client file system management is simplified (e.g.,
the operating system may be installed and upgraded only once on the server,
than used by all the clients). The latter benefit also applies to cloud data cen-
ters, where the virtual machines play the role of the clients. In this enviroment
the central file server simplies file system management, exactly as in the non
virtual case. In a virtualized environment, however, remotely accessed storage
brings an additional benefit, namely that is simplifies the implementation of
virtual machine migration (i.e., moving a virtual machine from one server to
another, for load balancing or server maintainance reason). Indeed, if the vir-
tual machine file system is stored in a local file, then this (possibly very big)
file must be moved along with the machine during migration. If, instead, the
VM file system is stored on a remote server and accessed through the network,
we only need to make sure that the VM is able to reach the server from its new
location after the migration, and no big file transfer is needed.

Many distributed file systems have been designed and built. Here, we are
going to examine the Network File System (NFS) developed by Sun Microsys-
tems in the ’80s. NFS has gone through several revisions (the current one being
NFSv4), but we will focus only on the original implementation.

1 NFS

Figure 1 shows the NFS architecture. NFS is defined as a protocol between a
client and a server. The client issues Remote Procedure Calls (RPC) to the
server. The NFS protocol defines the set of RPCs that the server must im-
plement, including their parameters and the possible replies. NFS has been
developed on Unix (BSD 4.2 originally) and is now avaible on all Unix variants,
including Linux. However, the protocol is independend of the operating system
and it is also available on Windows. Moreover, the messages exchanged between
the client and the server must use the XDR (eXternal Data Representation) for-
mat, which makes the protocol independend also from the physical architecture

1



ls, cat, . . .

client
userspace

FS API

kernel

VFS/vnode

local NFS
client

server
userspace

NFS server

kernel

RPC/XDR

NFS protocol

Figure 1: NFS architecture

of the machines (e.g., little-endian versus big-endian).
One of the design goals of NFS was to let the clients access local and remote

files as uniformly as possible. If the client is a Unix machine, the user may mount
a remote file system on a directory and then use the remote files (almost) exactly
like the local ones. In particular, no userspace program (like ls, cat, etc.) needs
to be modified in order to use the remote files. This is typically implemented
by defining an abstract interface inside the kernel (called VFS/vnode in the
original Sun implementation) through which all file operations are performed.
The kernel provides at least two implementations of the interface: one is used
to access local files by accessing the local storage in the usual way; the second
one is used to access remote files by translating the operations into RPCs sent
to the NFS server. Sun used synchronous RPCs (the clients blocks until it
receives a reply from the sever) which further simplified the implementation,
since synchronous RPCs behave much like normal function calls. On the server
part, the NFS server runs in a kernel thread and listens and replies to the client’s
RPCs.

Another design goal of NFS was to simplify crash recovery. In a distributed
system one must always assume that machines will crash for wathever reason and
will need to be rebooted. When this will eventually happen, the system must
be able to recover, possibly as quickly as possible and avoiding any data loss.
Crash recovery in NFS is simplified by adopting the following design decisisions:

1. The server is stateless: its volatile memory does not store any information

2



about clients between two different RPCs;

2. RPCs are idempotent: the effect of issuing the same RPC several times in
a row is the same as issuing it only once.

Since there is no state to recover, a crashed server does not need to do anything
after a reboot. Idempotency of the RPCs is useful for the following reason:
clients waiting for a reply from the server have no way to know if the server has
crashed, or if it is simply slow, or if there is some problem in the network. This
means that clients do not know wether a request that is taking a lot of time has
actually been lost, or it is eventually going to be completed. However, since the
RPCs are idempotent, they may simply resend the request after a timeout: no
problem may arise from the possible duplication of the request.

1.1 Implementation details

Several problems must be solved in order to let the (Unix) client applications
access the remote file system with the same semantics as a traditional one, while
keeping the NFS server stateless. The following probles arise from the fact that
the Unix API is not stateless.

• In Unix you open() a file and obtain a file descriptor which you then may
use to indirectly refer to the open file in all subsequent operation. The file
descriptor is an index in small per-process table stored in the kernel. The
NFS server, being stateless, has no such table, and therefore has no use
for file descriptors. The open RPC, instead, returns a file handle which
contains all the information needed to find the file, and which must be
sent by the client at each request. The NFS file handle has three parts: a
file system id (to identify the file system on the server), an inode number
(to identify the file in the file system) and a generation number. The latter
number is needed since inode numbers are reused, and therefore there is
no guarantee that the inode number passed to the client at open time still
refers to the the same file when the client later tries to access it. With
the generation number this ambiguity can be removed: the server stores
one such number for each inode, and increments it whenever the inode is
reused. When the server sends a file handle for an inode, the handle will
contain the current generation number of that inode. If the inode is later
reused, clients that still want to use a file handle for the old file will be
notified of the error.

• Consider the read() system call: each time you call read() the kernel
moves the read pointer, so that two identical read calls issued one after
the other return different parts of the file. To implement this behaviour
with a stateless server, the read pointer must be remembered by the NFS
client and passed to the NFS server at each read request. The problem is
the same for write(): the write RPC must send to the client the bytes to
be written and the starting offset in the file. Note that, in this way, the

3



read and write RPC become automatically idempotent: if the same RPC
is reissued, the final outcome is the same.

• The write RPC must wait until the data has actually been written on
the server hard disk before sending the reply to the client. The server
cannot write the data into its buffer cache and immediately notify the
completion to the client, since a crash at this point would cause a data
loss. Essentially, the written data is part of the client state that the server
is not allowed to remember in volatile memory between two RPCs.

• The Unix kernel only deletes a file when it is no longer open in any process.
This means that a process may, e.g., create a file with open(), delete
it with unlink(), and still be able to read and write from the deleted
file. unlink() removes the file name from the file system, but it does
not actually remove the file (i.e., it does not release the inode and the file
blocks) until the file is close()ed or the process terminates (in which case
the kernel closes all the process files). This feature has actually been used
to implement temporary files which must be deleted when an application
terminates: in this way the cleanup is done by the kernel, even if the
application crashes. This feature is difficult to implement with a stateless
server which does not know which files are opened by the clients. The
solution is in fact only partial and not particularly elegant: the client
knows the open files of each local process; if a process wants to unlink()

an open file, the client ask the server to rename it (so that it kind of
disappears) and only issues the delete RPC when the file is finally closed.
The solution is only partial since the client does not know whether the file
is opened by a process running on another client, so deletion of open files
is still possible (note that this is one reason why inode generation numbers
are needed).

1.2 Performance

The original implementation used UDP/IP to send the RPC messages, since that
was faster than TCP/IP. The fact that UDP may lose, duplicate and reorder
messaged is not a problem, since the recovery protocol of the clients (just resent
the request after a timeout) already addresses all of these problems.

To improve performance, the buffer cache of each client is still used: the
result of read RPCs are cached locally; local writes first go to the local buffer
cache and only go to the server on flush (this reduces the number of write RPCs
and somehow mitigates the fact that this RPC is slow, since it must wait for the
server to flush the data to disk). Of course, we must now consider the fact that
a client caches may become stale if cached files are updated by another client.
The solution adopted in NFS is to use the cached data for a limited amount of
time (a few seconds) before asking the server for an updated version.

4



1.3 Limitations

Some problems are related to the distributed nature of the file systems. The user
and group ids belong to processes running in the clients, but must be checked on
the server. A simple solution for this is to adopt a global namespace for uids and
gids for all the machines in the LAN. Another problem is related to the meaning
of “root” on the clients and the server: is the root user on the client also root on
the server? This is actually not clear, since particular installations may prefer
either way. In the original NFS implementation a safe approach is taken: root
on the client is mapped to user nobody on the server. Note that this is only
intended to prevent unintential errors, and is not an effective measure against
malicius clients. Indeed, the original NFS protocol is weak to malicius clients
and servers, since there is essentially no authentication and file handles can be
easily forged. Most of these problems have been addressed in the subsequent
revisions of the protocol.

5


	NFS
	Implementation details
	Performance
	Limitations


