Advanced virtualization topics

G. Lettieri
14 Dec. 2016

1 Introduction

In this lecture we briefly review some more advanced topics related to virtual-
ization. The common observation to all these topics is that the most important
use-case for virtualization is the safe sharing of hardware resources among differ-
ent applications. Typically, each virtual machine only runs just one application.
Since our real interest is in the application, not in the OS, do we really need to
insist that the OS must be unmodified, i.e., it must be the same OS that runs
on real hardware? Most of the costs of virtualization come from the need to
intercept and emulate actions performed by the guest OS kernel that assumes
it has direct access to the hardware. But we should actually be free to change
the internals of the guest OS as long as the OS API does not change, so that
the application is unchanged. This is the idea of Paravirtualization.

This idea can be pushed even further. Do we really need to run a full
Operating System inside each virtual machine, just for the purpose of running
a single application on top of it? Most of the functions of this guest OS will be
essentially duplicated in the host OS, thus potentially wasting a lot of resources.
The answer to this observation are Unikernels, the second topic that we are going
to survey. These are very small and simple kernels, designed to run just one
application, possibly only in a virtualized environment.

Finally, we can observe that sharing the resources among applications is what
Operating Systems should be designed for, so do we really need Virtual Machines
at all for this use case? The answer is not so simple, since unfortunately existing
OSs have increasingly become less good at isolating user applications from each
other. However, Containers, our last topic, try to improve the situation by
adding new isolation features to the traditional host OS. They are put forward
as an alternative to Virtual Machines.

1.1 Paravirtualization

Paravirtualization has been introduced in the first releases of the Xen hyper-
visor. Xen was built to run x86 virtual machines on x86 systems, before the
introduction of the Intel and AMD hardware extensions for virtualization. As



we have seen, normal x86 systems are not easy to virtualize by a standard trap-
and-emulate hypervisor, since some crucial instructions are not trapped when
executed at lower privilege.

We note that kernels are typically ported to several, completely different
machines, like x86 and ARM. This is achieved partly by the use of high level
languages (typically C) and partly by relegating the system-specific parts that
must be written in assembly language to a few well-defined routines (e.g., rou-
tines to access the MMU or save/restore the CPU registers). Porting a well
designed kernel to a new architecture is a matter of replacing the system-specific
routines and recompiling the rest.

In Xen they observed that a virtual machine can be seen as just another
architecture to which a kernel may be ported. In this architecture, for example,
you access the MMU by actually issuing calls to the hypervisor, instead of
writing into registers. This idea was put forward to simplify the task of building
virtual machines in the x86 architecture, but it also has potential performance
advantages: in the port, the kernel may be optimized for the virtual architecture.
It also has the obvious disadvantage that you have to be able to modify the
kernel: essentially, this was only fully completed for Linux and FreeBSD.

Note that Xen no longer uses paravirtualization for the purpose of virtualiz-
ing the CPU, as in the original implementation. Instead, it relies on the newly
available hardware extensions to implement hardware-assisted virtualization.
Still, paravirtualization has become an important topic in other areas, namely
in I/O: instead of trying to (inefficiently) emulate some hardware I/O device,
we can define a new virtual-only device, and simply provide a driver for it. Note
that the idea is still the same: we reuse some existing infrastructure in the orig-
inal kernel (in this case, the ability to install new drivers) to make some limited
change (a new driver) designed to work well in a virtualized environment. This
very important topic is examined in the virtio seminaries.

We now briefly describe the general architecture of Xen, which is an impor-
tant hypervisor on its own.

Xen is a very small kernel that is loaded first on the machine and gains direct
control to the hardware. On top of Xen, at lower privilege level, we have so-called
domains. There may be as many domains as needed, and inside each domain we
may run an entire OS with its own applications. Domains are isolated from each
other, and are used to implement the virtual machines. One special domain,
Dom 0, has access to the Xen API to create and destroy other domains. Inside
Dom 0 you can install any OS you like, so that you can develop your own tool
to manage the other domains. Typically, Dom 0 contains a Debian Linux with
Xen management tools installed. Domains can be given direct access to some
I/O devices, or they can use fully virtualized devices (taken from QEMU), or
they can use paravirtual devices. Paravirtual devices are split in a front-end and
a back-end, each running into a different domain and exchanging I/O requests
across the domain boundaries. The typical setup is to run the back-end in a
domain that has direct access to hardware devices (usually Dom 0) and gives
indirect access to possibly several front-ends running in non-privileged domains.

The kernels running in each domain may be either standard, unmodified



kernels (using hardware-assisted virtualization), or they may directly use some
of the Xen APIs to improve performance. Let us consider, for example, virtual
memory, to see how a paravirtual kernel (i.e., a kernel that is aware that it
is running inside a virtual machine) may run faster than an unmodified one,
assuming that nested page-tables are not available (as was the case in the orig-
inal Xen). We have seen that, in this case, the guest kernel uses a set of page
tables that are not the ones actually used by the MMU. The reason for keeping
them distinct is that the translation created by the guest kernel (G) must be
composed with the translation from guest-physical to host-physical addresses
created by the Hypervisor (H) before we can let the MMU to use it. There are
two distinct reasons for having H:

1. it is used to create the illusion of contiguous memory in the guest kernel;

2. it is used to limit access from the guest kernel to the pages that have been
assigned to it.

Note that to enforce point two we only need to deny write access to the host
page tables, but we could still grant read access to them. This would benefit per-
formance, since now the guest kernel would be able to read the MMU-updated
A and D bits from the page tables, without the need for the hypervisor to syn-
chronize them from the host tables. However, we cannot even grant read access
because of point one. This is a consequence of the guest kernel ignoring the
distinction between guest and host physical addresses and thinking that it has
access to a range of contiguous physical addresses starting at 0, while the hyper-
visor may have assigned to it a set of pages scattered anywhere in host memory.
Therefore, the (unmodified) guest kernel would not be able to correctly inter-
pret the host page tables. The situation changes for a paravirtual kernel: this
kernel may be fully aware of the distinction between guest and host physical
addresses, and so it can make good use of a read access to the host page tables.
To enforce point two, write access is still denied, and the paravirtual kernel
must call an hypervisor protected routine (an hypercall) whenever it wants to
update its page tables. The hypervisor will then check that the updates do not
grant the guest kernel access to portions of memory not assigned to it.

1.2 Unikernels

Unikernels are kernels that are directly linked to an application, like a nor-
mal library. The resulting executable can then be loaded and run directly on
the hardware machine. They usually only provide a single process and are not
harware-protected from the “user” code: unikernel primitive calls are imple-
mented like standard function calls and do not involve a change in privilege
level. During the linking process, only the functions that are actually used by
the application are included in the final executable. In practice, they differ from
a standard library only for the kind of code that they contain: low level access
to the hardware.

Unikernels are an old idea, but they have become much more important
today because they make a very good match with virtual machines:



e virtual machines can provide a stable and well defined set of I/O inter-
faces, greatly simplifiying the task of maintaining a unikernel, which does
not have to provide drivers for the daunting variety of hardware devices
normally available;

e hypervisors already provide all the isolation that is needed to run several
applications, one for virtual machine; inside the virtual machine there is
no need to replicate this functionality, so a simpler kernel is sufficient.

Having a stripped down unikernel has many adantages with respect to a full
blown operating system. First, the memory needed by the virtual machine is
much less, and this implies that we can have more of them and that migrating
them is faster. Second, no unneded service is included, and this means faster
boostrap and generally improved performance.

From the point of view of protection we may reason that, since the unikernel
is running just one application, there is no need to protect it. Some systems
still provide this kind of protection, mostly to isolate bugs in the applications,
but they check for protection violations statically, during the compilation and
linking phase. This is only practically possibile, however, if the applications are
written in languages amenable to this kind of static analysis. This is not the
case for C, for example, where unchecked array bounds, unions and casts to
pointers allow a program to access any memory location at run time, in a way
that is essentially impossible to prevent by analyzing the code. Java, or any
language interpreted by the Java Virtual Machine, is a more viable option and
is used, e.g., by the OSv unikernel.

1.3 Containers

Containers (or jails) are a feature of some host operating systems, but we limit
our considerations on Linux only, since this is what is commonly used in this
area. Containers are a way to isolate a set of processes and make them think
that they are the only ones running on the machine. The machine they see may
feature only a subset of the resources actually available on the entire machine
(e.g., less memory, less disk space, less CPUs, less network bandwitdh). Many
different containers may coexist on the same machine.

Containers are not virtual machines, even if they may look like ones in some
cases. Processes running inside a container are normal processes running on the
host kernel. There is no guest kernel running inside the container, and this is
the most important limitation of containers with respect to virtual machines:
you cannot run an arbitrary operating system in a container, since the kernel
is shared with the host (Linux, in our case). The most important advantage of
containers with respect to virtual machines is performance: there is no perfor-
mance penalty in running an application inside a container compared to running
it on the host. There is also a point of contention between containers and virtual
machines, about which one is more secure. VMs are considered (by some) to be
more secure of containers, because they have a smaller attack surface. By attack
surface we mean the amount of code and features that a malicius attacker may



probe for exploitable bugs: the entire host kernel, in the case of containers, and
the hypervisor in the case of virtual machines. The KVM and Xen hypervisors,
for example, are very small. In the KVM case, it must be noted that KVM is a
small module, but it actually uses facilities from the rest of the linux kernel (for
scheduling, virtual memory, etc.). However, this is still less than the amount of
code involved in the implementation of containers.

Container in Linux are implemement using two distinct kernel features:
namespaces and control groups. We briefly examine each one in turn.

1.3.1 Namespaces

Namespaces provide a means to segregate system resources so that they can be
hidden from selected processes. An old feature of Unix systems, which has a
similar purpose, is the chroot () system call, which works as follows:

e The kernel remeber for each process, the inode of the the process root
directoy;

e This directory is used as a starting point whenever the process passes the
kernel (e.g., in a open()) a filesystem path that starts with “/”;

e whenever the kernel walks through the components of any filesystem path
used by the process and reaches the process root directory, a subsequent
“..” path element is ignored;

e only root can call chroot();
e the process root directory is inherited by its children.

Normally, all processes have the same root directory, which coincides with the
root directory of the file system. But, by using chroot (), we can make a subset
of the filesystem look like it was the full filesystem for a set of processes. This
is typically used to segregate untrusted processes that provide network services
and, because of possible bugs in their implementations, may be forces by re-
mote attackers to execute arbitrary code. The idea is to prepare a subtree in
the filesystem that contains only the things that are needed for the execution
of the server, and nothing else—a chroot environment. Then, the server pro-
cess is started after a chroot to the root directory of the chroot environment.
Even if the server is subverted, it cannot access any file outside of the chroot
environment. [

Chroot enviroments, however, are not full containers. Contrary to popular
belief, infact, not everything is a file in Unix. For example network interfaces,
network ports, users and processes are not files. While we can have as many
instances as we want of, say, /etc/passwd, each different and living in its own
chroot environment, we can only have one port 80 throughout the system (thus,
only one web server), only one process with pid 1 (thus, only one init process),

INote that in the earlier implementations of the mechanism, root was able to escape a
chroot, so this strategy was only effective is the server did not run as root.



and user and process ids will have the same meaning in all chroot environments.
Thus, for example, a process running in a chroot environment will still be able
to see all the processes running in the system, and it will be able to send signals
to all the processes belonging to any user with the same user id as its own.

Namespaces have been introduced to create something similar to chroot en-
vironments for all these other identifiers. Each process in Linux has its own
network namespace, pid namespace, user namespace and a few others. Net-
work interfaces and ports are only defined inside a namespace, and the same
port number may be reused in two different namespaces without any ambiguity.
The same holds true for processes and users. Normally, all processes share the
same namespaces, but a process can start a new namespace that will be then
inherited by all its children, grandchildren, and so on. This is done when the
process is created using the clone() system call. This system call (taken from
the Plan 9 OS) is the new, preferred way to create new processes in Linux,
since it generalizes the behaviour of fork() and can be also used to implement
pthread_create(). The idea is that both processes and threads share some-
thing with their creating process, and have a private copy of something else. For
example, processes share open files with their parent, but have a private copy
of all the process memory. Threads, instead, also share the process memory.
The clone() system call is passed a set of flags using which the programmer
may choose what to share and what to copy. This same system call has been
extended to implement namespaces, essentially by adding flags for the sharing
or copying of the network, pid, user namespaces and so on.

1.3.2 Control groups

While namespaces can be used to hide and create private copies of all the system
entities, they are not sufficient in isolating sets of processes so that thay cannot
interfere with each other. Processes may interfere also by abusing the system
resources, e.g., allocating to much memory, using to much CPU time, or disk
and network bandwidth. To properly implement containarers, therefore, we also
need to limit the usage of resources by the processes that live in the container.
This is another thing that was not done very well before the introduction of
control groups. The problem is that, before enforcing a limit on a set of pro-
cesses, we need to know which processes belong to the set, and the processes
must not be able to escape from the set. We would also like some flexibility in
the definition of the set. Traditional Unix has a concept of process groups, but
unfortunately any process is free to enter or leave a group. Processes are also
grouped by user id (the user that is running them), but this is not very flexible.
Control groups, instead, are groups explicitly created by the administrator, who
can later assign processes to them. Processes cannot escape a control group,
only possibily create other control groups that will always be subgroups of the
original group, and therefore the association with the group is never lost. Con-
trol groups can be linked to so-called subsystem. Subsystems are used to control
the resources assigned to the linked group. There is, for example, a memory
subsystem, used to enforce limits on the usage of the system memory, and a



CPU subsystem, used to force the processes in the linked control group to run
only on some of the available CPU cores.



	Introduction
	Paravirtualization
	Unikernels
	Containers
	Namespaces
	Control groups



