An introduction to Docker

Ing. Vincenzo Maffione

Operating Systems Security

Container technologies on Linux

e Several light virtualization technologies are available for Linux

o They build on cgroups, namespaces and other containment functionalities
o LXC (Linux Containers) and Docker are the most popular products

A =4

Linux Containers Docker 1.10 and later

E & E & E

runC runC runC

containerd-shim containerd-shim

Docker Engine

SELinux/AppArmor SELinux/AppArmor

Linux kernel Linux kernel

Container vs Virtual Machine

e A VM has emulated hardware and hosts a whole Operating System
(guest), which is separate from the host O.S.
e A container does not emulate any hardware, and shares the O.S. kernel

with the host — less isolation, more efficiency

VM CONTAINER
App A App B App C App A App B App C
Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS
Docker

Hypervisor Host OS

Infrastructure Infrastructure

LXC - Linux Containers

e A set of tools for creating and managing system containers (or, to a lesser extent,
application containers)

o Supported by virt-manager as a possible hypervisor (even if it’s not)

e The goal of LXC is to provide an execution environment as close as possible to a
standard GNU/LINUX installation, without the need to have a separate Linux
kernel

e Designed for system administrators that are used to work with VMs

o A LXC (system) container looks like a VM without a boot loader

o The administrator can move its application stack from a VM to a container
without the need to modify the applications or their configuration

o Switching from VMs to LXC gives performance gains

o Storage technologies for LXC and VMs are similar

Docker

e Docker is a tool for creating, managing and orchestrating application
containers

e The goal of Docker is to optimize the process of development, testing,
delivery and deployment of applications, by means of packaging each
application component in a separate container

e Designed for software developers:

o Takes care of all the steps involved in software development
e Switching from VM to Docker containers is not immediate

o It may be necessary to modify the application or its configuration
o The root of the problem is that the execution environment of a Docker

container it’s not normally a complete UNIX system

Docker architecture

e C(lient-server architecture to to manage images, containers, volumes and

virtual networks

o Client and server may run on different machines
o Architecture is similar to libvirt, but with more functionalities, including the
capability to interact with an image registry (https://hub.docker.com/)

container image

: manages —J

docker build --{---:

netwaork data volumes

l REST API

docker pull -

docker run —|

OCKER_HOST}

7

l

manages server

docker daemon

e

Docker daemon

0009

‘\

Containers I— ,

~
\
B

A

ap
na,

=

Rl

¥

NGinNX

https://hub.docker.com/

Docker components (l)

e Jmage

©)

An image is a portable template, accessible in read only mode, that has all the
instructions necessary to create a Docker container

Contains all the dependencies needed for a software component (code or
binary, run-time, libraries, configuration files, environment variables, ...)

An image can be defined from a file system archive (tarball)

Or it can be defined by extending a previous image with a list of instructions

specified in a text file (known as Dockerfile)

e Docker registry

©)

©)

Database for efficient storage of images

Registries can be public (like DockerHub) or private to an organization

Docker components (l1)

e (Container

©)

A Docker container is an executable instance of a Docker image
m Defined by the image and the configuration specified at creation time

A container can be created, started, stopped, migrated, destroyed, connected
to one or more virtual networks, associated to one or more data volumes ...
The container is the unit of application development, testing, delivery and
deployment, assuming that Docker is used as operating support

Any modification to the file system visible to a container are not reflected on
the image (image is read-only)

It’s possible to define to what extent a container is isolated from the host

m Access to the host file system and special devices, limitations on memory

allocation and CPU utilization.

Docker components (l11)

e Network

o Virtual networks, implemented by means of virtual switches and iptables
o Bridge networks limit connectivity to the containers on a single host

o Overlay networks allow for containers connectivity among different hosts
m Typically using VXLAN encapsulation

e Volume

o A volume is a directory that can be associated to one or more containers
o Its lifespan is independent of the containers that use it
o Used to share storage across different containers, or anyway storage that can

outlive the user container

Docker components (IV)

® Service

o A Docker service is a set of containers that are replicas of the same image,
and which together provide a load balanced service
o Services are used to deploy containers “in production”

o A service can be scaled up or down depending on the input load

e Stack

o A set of interdependent services that interact to implement a complete
application:
m Ex: A web application to share pictures could be made of (i) a service for the

storage and search of pictures; (ii) a service for the web interface for the users;

and (iii) a service to encode/decode pictures

Single-host mode vs swarm mode

e By default, the containers of a Docker stack are deployed only on the host
that runs the dockerd daemon

e However, Docker can also be configured in swarm mode

o In this case the containers that make up the stack can be placed on all the
nodes of a cluster (a.k.a. swarm)

o A swarm consists of a swarm manager node and a set of swarm worker nodes

Docker under the hood

e Linux namespaces
o Normally, each containers comes with an instance of each type of namespace
(pid, net, ipc, mnt, uts), to limit the scope of host kernel objects visible to
the container
e Linux cgroups
o Used to limit the amount of resources assigned to the containers
e Union File Systems
o File systems that are defined by composition, overlapping different layers
o Common layers (e.g. base installation of Ubuntu or Fedora) are reused by

many images and containers
m New containers and new images consume only a small space

m They can be created very quickly!

Dockerfile

e A text file that contains a recipe to build an image
e An image should be a well-defined component and contain only the
software actually needed for a well-defined task

Start from an official image with the Python runtime

FROM python:2.7-slim

Set the container current working directory (PWD) to “/chess”
WORKDIR /chess

Copy files from current host directory to the /chess directory in the container
ADD . /chess

Install some packages

RUN apt-get update && apt-get install -y libcgroup acl

Flag that the software inside this image listens on port 9000

EXPOSE 9000

Define an environment variable

ENV PLAYER Ghost

Specify the command to be run inside the container when it’s started
CMD ["python", "./chess.py"]

Structure of a Docker image

e An image is a stack of layers (onion-like structure)

e FEach instruction in the Dockerfile adds a layer

o Each layer stores only the difference w.r.t. the previous layers.

e A read/write container layer gets created on containers creation

This is a Dockerfile
FROM ubuntu:15.10
COPY . /app

RUN make /app

CMD python /app/app.py

91e54dfb1179

d74508fb6632

1.895 KB
c22013c84729

154.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04

-

>— |mage layers (R/0)

Container
(based on ubuntu:15.04 image)

Sharing layers

e When a container is running, any modification to its disk are reflected to

the container layer.

e All the other layers are read-only and can be shared among many

container

L Thin R/Wlayer__}

/

d74508fb6632 1.895 KB

S

91e54dfb1179

it

€22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04 Image

Implications of the onion structure

e A container does not take any disk space until it performs some write

operation on the file system

o In any case it takes only the space needed to store the difference
o Huge disk space savings compared to VMs and LXC, which both store

images with a monolithic format (e.g. qcow2)
e (reation of new images and containers is extremely fast compared to

VMs and LXC

o To create a new container it is sufficient to create an empty container layer

Docker networking (I)

e Standard software bridges are used to connect the containers by means of
virtual interfaces (veth pairs in this case)

e The user can create and manage new networks, connect a container to
one or more networks (even while the container is running)

| eth0: 172.17.0.2

eth0: 10.0.0.254

my_bridge

eth0: 192.168.1.2

Docker networking (11)

e FEach bridge network uses a different IP subnet
e The IP subnet is visible to the host
e Networks use the bridge driver (host-only + NAT) by default

eth0: 10.0.0.254

eth0: 192.168.1.2

Main Docker commands

How to install Docker

e Install the latest Docker release on Ubuntu 16.04

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$ sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(1sb_release -cs) stable"

$ sudo apt-get update

$ sudo apt-get install docker-ce

$ sudo usermod -aG docker ${YOUR_USERNAME}

e Check that Docker is up and running:

$ sudo systemctl status docker

[...]

Active: active (running) since ...

[...]

Search images in a registry

Search in a registry (e.g., the default public one)
[user@host ~]$% docker search nginx

o The output shows a list of images matching the keyword

o Images are sorted by decreasing number of votes given by Docker users

m Most popular images first

Note: An incomplete command shows and help with all the possible
options

[user@host ~]$% docker image

[...]

Commands:

build Build an image from a Dockerfile

history Show the history of an image

import Import the contents from a tarball to create a filesystem image
inspect Display detailed information on one or more images

[...]

Image management

e List the existing images
[user@host ~]$% docker image 1s
e Import an image from a registry
[user@host ~]% docker image pull base/archlinux
e Remove an image (locally)
[user@host ~]% docker image rm ubuntu
e Show detailed information about an image
[user@host ~]$% docker image inspect ubuntu
e Remove unused images

[user@host ~]% docker image prune

Building an image from a Dockerfile

® Move to the directory containing the Dockerfile
[user@host ~]% cd /path/to/dockerfiledir

® Build an image from the Dockerfile in the current directory, giving it a name (tag)
“myimg”
[user@host ~]$% docker build -t mymig .

® The new image will be stored together with the other ones already available on
the host

e FEach Dockerfile is normally stored in a separate directory

o The file name must be “Dockerfile®

Creating and launching containers

® C(reate a container and launch it (within the same command)

[user@host ~]% docker run -it --name ubul ubuntu /bin/bash

O

O

O

©)

The ubuntu argument refers to the name of an available image

The /bin/bash argument specifies the command to be run by the container

m If present it overrides the command specified within the image (CMD)

The -t option specifies the allocation of a terminal
The -1 option specifies that the command is interactive (it’s a shell)

The -d option is used to run the container in background

e [t is possible to create and launch with separate commands:

[user@host ~]% docker create -it --name ubul ubuntu /bin/bash

[user@host ~]$% docker start -i ubul

Publication of exposed ports

e An image can expose a TCP/UDP port through the EXPOSE directive in
the Dockerfile

e When a container is launched, it is possible to map each exposed port to
an host port, to enable access from the host external network

e This mapping is specified through the -p option of the run or create

commands

o Ex:Launch a Web server container exposing port 80, mapping it on the port
8000 of the host

[user@host ~]$% docker run -p 8000:80 apache /usr/bin/apacheserv --daemon

Container management

e Show all the running containers
[user@host ~]$ docker ps

e Show all the containers (in any state)
[user@host ~]$ docker ps -a
o Includes containers that are not currently running
e Reboot a container (specified by name or ID)
[user@host ~]$ docker restart ubul
e Stop a container
[user@host ~]$% docker stop ubul
e Remove a container
[user@host ~]$% docker rm ubul

e More commands: kill, inspect, pause, unpause, ...

e Equivalent commands in canonical form:
[user@host ~]% docker container COMMAND

Volumes management

e C(reate a volume called “myvol”
[user@host ~]% docker volume create myvol
e Remove “myvol”
[user@host ~]% docker volume rm myvol
e Show the list of volumes available on the host

[user@host ~]% docker volume 1ls

e Run a container, making the content of the “myvol” volume available in
the /mntvol path inside the container
[user@host ~]% docker run -v myvol:/mntvol -it ubuntu /bin/bash

e Run a container, making the content of the host directory

“/home/user/tmp” available in the /mnt path inside the container
[user@host ~]$% docker run -v /home/user/tmp:/mnt -it ubuntu /bin/bash

Data volume containers

e It is possible to create unnamed volumes, implicitly associated to a

container (but still independent on the container lifespan)

o Ex: Create an unnamed volume, making it available in “/myvol”

[user@host ~]$ docker run -v /myvol --name ubul -it ubuntu /bin/bash

o Actually, a volume name is assigned automatically
® Unnamed volumes can be attached to other containers

o Ex:Launch a container importing volumes from another container called
ubul

[user@host ~]$ docker run --volumes-from ubul --name ubu2 -it ubuntu /bin/bash

o The imported volumes are mounted in the ubu2 file system at the same

mountpoints used inside ubu1l

e A container like ubui is called “Data volume container’

Management of Docker virtual networks

e Show current networks
[user@host ~]$% docker network 1ls
e C(reate an user-defined bridge network (“mynet”)
[user@host ~]% docker network create --subnet=192.168.13.0/24 mynet
e Remove a network
[user@host ~]$% docker network rm mynet
e Attach the ubu2 container to mynet
[user@host ~]% docker network connect mynet ubu2
e Detach the ubu2 container from mynet
[user@host ~]$ docker network disconnect mynet ubu2
e Launch a container attached to mynet
[user@host ~]$ docker run --network=mynet [options] imagename command
e Launch a container attached to mynet, specifying a static IP

[user@host ~]$% docker run --network=mynet --ip 192.168.13.4 [options] imagename
command

Other commands

e Show total Docker disk usage
[user@host ~]$% docker system df

e System clean up: remove stopped containers, and unused volumes,

networks and images
[user@host ~]$% docker system prune

e Remove all the images and all containers (including the ones in use)

[user@host ~]% docker rm $(docker ps -a -q)
[user@host ~]$% docker image remove $(docker images -q)

e Show per-container real-time statistics, including utilization of CPU,

memory, network and disk
[user@host ~]$% docker stats

Exercise

Deployment of the fortune service (l)

e The fortune service provides random proverbs and sayings to its clients

e Composed of three server-side programs and a client-side program

e When the client (fortune-client) connects to the main server program
(fortune-serv), the latter first contacts an authentication server
(fortune-auth) to authenticate the client; then it contacts a database
server (fortune-db) to fetch the proverb. Finally fortune-serv forwards
the response back to the client.

2 fortune-auth

1 /
'

fortune-client fortune-serv

- \4‘
6
\ fortune-db
5

Deployment of the fortune service (l1)

e The fortune-serv, fortune-auth and fortune-db programs listen for
TCP connections from any network interface
e They take the TCP port number to listen on as a command line argument

® The fortune-serv also accepts the following command line arguments:

o IP address and port where the fortune-auth program is listening
o IP address and port where the fortune-db program is listening

e The fortune-client programs takes as command line arguments the IP
address and port where the fortune-serv program is listening,

e All the programs provide an help (and terminate) if invoked with the “~h” option

Exercise - Part A

1. Deploy the fortune service with Docker in single-host mode, creating a
container for each of the three components (fortune-db, fortune-auth e
fortune-serv)

2. To create the containers, first build an image for each component,

defining proper Dockerfiles.
a. The fortune-serv program needs the fortune-mod package.

3. Run a client from the host
Run a client from within an additional container, using a Docker volume

to import the fortune-client program inside the container

Suggestions

e Start from the Dockerfile example in the previous slides (with python)

e Use a different directory for each Dockerfile

e Put all the containers on an user-defined network, and assign them static
IP addresses

o To check what is the IP address of a container called xyz, use

[user@host ~]$ docker container inspect xyz | grep IPAddress

e Run the containers in interactive mode, to check the terminal output (-it
options of the run command)

e To remove non-running containers (e.g. to make up for mistakes) use:

[user@host ~]$% docker container prune

e Use the Dockerfile ENV directive to extend the PATH environment

variable to include “/usr/games”

Lurking bugs

e The fortune-client program also takes an optional “--cookie”

command-line argument

o A string of alphabetic lowercase character used (somehow) by the server to

identify the anecdote to be selected
e Unfortunately, some bugs in the server-side code can cause the failure of
one or more components with various symptoms

o Kernel panic

o Memory exhaustion on the machine where they run

Exercise - Part B

e Figure out how bugs are triggered.

Suggestions:
o Users reported that there is more than one bug, and they seem to depend on
the value of the first character of the cookie

o Use per-container CPU stats to check for anomalies/crashes
e On a component crash, take all the actions necessary to restore the
functionality of the fortune service
e Verify that the crash of a component is isolated to its container (the other
containers and the host machine must not be affected)

o Suggestion: use the --cpus, --memory and --pids-1imit options of docker

run to limit the resources assigned to a container

