
Hardware Assisted Virtualization

G. Lettieri

21 Oct. 2015

1 Introduction

In the hardware-assisted virtualization technique we try to execute the instruc-
tions of the target machine directly on the host processor, as much as possible.
If we are able to execute a large fraction of the target machine instructions in
this way, we clearly obtain a large speedup w.r.t. the other techniques we have
already examined.

Hardware-assisted virtualization is only possible if the host machine under-
stands a superset of the target machine instructions. In some cases, the target
and and host machine have exactly the same architecture. As we have seen,
this may make perfect sense when the motivations for the use of virtualization
are related to cost, flexibility and security, rather than on the unavailability of
the target machine hardware. In most cases, however, the two architectures are
not exactly the same. To understand why, let us now consider some well known
examples from computer architecture.

1.1 The virtual memory example

In virtual memory the target machine is almost, but not exactly the same as
the host machine we already have. Of course, the two machines may differ in
the amount of installed memory, but this is not the only difference. Another
difference between the host and target machines lies in the hardware (and maybe
software) that is unique to the host and that is needed to build the virtual
machine that emulates the target. For example, the host machine typically has
an MMU (Memory Management Unit), but the target machine has no such
thing.

To focus these ideas, let us consider a simple example, again based on the
Manchester Baby machine. The machine has only 32 words of memory, but the
addr field in the instruction format is 13 bits wide, allowing for a maximum
of 213 = 8196 addressable words. Let us imagine that we are in the ’50s and
we want a machine that is exactly the same as the Manchester Baby, only
with a memory of 8196 words. We may build other 255 tube memory devices,
plus all the logic to access them, but this is going to be very expensive, so we
take another route. We regard the 8192-words Manchester Baby as our target

1



Figure 1: The magnetic drum memory of the CEP, 1961. It has a capacity of
16384 36-bit words. (credit: www.cep.cnr.it).

machine and we create a virtual machine that emulates it on the standard, 32-
words Manchester Baby, with the addition of a magnetic drum memory. This
is a relatively less expensive, but also much slower, memory than the Williams-
Kilburn tubes (see Fig. 1 for an example). The idea is to store all the memory
of the target machine in the inexpensive drum. We organize this memory into
256 (i.e., 8192/32) pages, each one consisting of 32 consecutive words. At any
time, only one page is available in the 32-words tube memory of the Manchester
Baby. Our virtual machine must swap pages between the tube and the drum
as needed, in order to emulate the bigger memory of the target machine. To
implement swapping, we choose to add another piece of hardware to the host
Baby: an MMU, intercepting all accesses to main memory. Our MMU must
contain an 8 bit register, P, that records which one of the possible 256 pages
is currently stored in the tube. Whenever a memory operation is initiated at
an address a (on 13 bits), the MMU must compare the most significant 8 bits
of a with the contents of the P register: in case of match, the requested word
is in the tube at address a mod 32; otherwise, a swap must be performed: the

2



A

0 31

CI

0 31

0 31

0

1

213 − 1

M

a

v

Figure 2: The target machine.

current content of the tube must be copied on the drum, the requested page
must be copied from the drum to the tube, P must be updated accordingly.
Now P matches the 8 most significant bits of a, and the memory access can be
completed.

The drum and the MMU are pieces of hardware that we have added in order
to implement the virtual machine, but are not part of the target machine that
our virtual machine emulates. The target machine has no drum and no MMU,
it is just a Manchester Baby machine with a bigger tube memory.

Let us try to formalize what we have done, using the framework we intro-
duced in the first lecture. We need to define the states together with the state
transition function for both the target and the virtual machine, and then we
need to define the function that maps each virtual state to the corresponding
target state. Then, we should check that interpretation is preserved at every
step.

We take a snapshots just before the fetch of a new instruction, like we did in
the first lecture. The target state contains the state of the accumulator, A, the
instruction pointer, CI , and the state of the whole 8192 words memory, which
we can regard as a vector M , with elements M0, . . . ,M8191:

T -state = 〈A,CI, M〉.

Also see Fig. 2, where we have also shown the address, a, coming from the
control unit and going to the memory, and the data, v, returned by the memory
during a read operation, or provided by the control or arithmetic unit during
a write operation. The virtual states need to also show the current contents of
the drum and the P register of the MMU. Memory is a vector M of just 32
words,M0 . . .M31. For the drum, we assume that we can regard it as a vector

3



A
0 31

CI
0 31 P

0 7

0 31

0

1

31

M

D

a

v

Figure 3: The virtual machine.

D of 8192 words, D0, . . . ,D8191:

V -state = 〈A, CI,M,P,D〉.

Fig. 3 shows the architecture of the virtual machine.
Now we need an interp functions that maps a V -state to a T -state. First,

let us define a interpM functions that just maps the memory subsystem part.
If we are givenM, P and D, then X = interpM (M,P,D) is the 8192-elements
vector that represents the contents of the corresponding target memory. The
elements of X are defined as follows:

Xa =

{
Ma mod 32 if P = ba/32c,
Da otherwise,

(1)

for all 0 ≤ a < 8192. Each word of the target machine is stored in the main
memory, if the word is inside the page that is currently loaded; otherwise, the
word is stored in the drum. The complete interp function can be defined as

interp(〈A, CI,M,P,D〉) = 〈A, CI, interpM (M,P,D)〉,

i.e., the accumulator and instruction pointer are interpreted as themselves, while
the memory is interpreted as above.

We omit the definitions of the T -next and V -next functions. Intuitively,
T -next(s), where s is any T -state, must return the state of the target machine
after the execution of the instruction pointed to by CI in s. The same is true
for V -next(s). Note that memory accesses in the virtual machine are as follows,
where a is the requested memory address and ā = ba/32c:

1. if ā = P, then the page currently loaded in the tube memory is the one
containing the requested word. In this case there is an access toMa mod 32

(either for reading or writing) and the operation completes.

4



2. if ā 6= P, the requested page is on the drum. The current contents of
the tube memory are copied in drum locations 32P, . . . , 32P + 31 while
drum locations 32ā, . . . , 32ā + 31 are copied into the tube memory. The
P register is updated with the ā value and the access is completed like in
step 1 above.

We can prove the following (we give only informal proofs, since we have not
given the formal definition of T -next and V -next).

Lemma 1. Let M be the state of the target machine memory and M, P, D the
states of the virtual machine memory, MMU and drum, respectively. Assume
that

M = interpM (M,P,D) (*)

and we start a read operation at address a in both memories. Then we obtain the
same value v from both. Moreover, if M ′,M′, P ′ and D′ are the new states after
the completion of the operation, it still holds that M ′ = interpM (M′,P ′,D′).

Proof. Note that the read operation on the target machine memory returns Ma

and the memory is not changed, i.e., M ′ = M . For the virtual machine memory
we must consider two cases, where ā = ba/32c:

1. if ā = P, the virtual machine memory returns Ma mod 32. Since we are
assuming (*), this is equal to Ma by definition (1). Moreover, no state is
changed, and therefore the interpreting relation is preserved.

2. If ā 6= P the virtual machine memory will perform a swap, as explained
above. At the end of the swap, the new state is

M′
0 = D32ā,

...

M′
31 = D32ā+31,

P ′ = ā,

D′
32P =M0,

...

D′
32P+31 =M31,

D′
i = Di for 0 ≤ i < 32P or i ≥ 32(P + 1).

The read operation will return the word

M′
a mod 32 = D32ā+a mod 32 = D32ba/32c+a mod 32 = Da,

but this is equal to Ma by (*) and (1). Note that this time the state
of virtual machine memory has changed, so we have to prove that M ′ =
interpM (M′,P ′,D′) holds. This can be easily checked by using the equa-
tions above, hypothesis (*) and definition (1).

5



Lemma 2. Let M be the state of the target machine memory and M, P,
D the states of the virtual machine memory, MMU and drum, respectively.
Assume that M = interpM (M,P,D) and we start a write operation of word v
at address a in both memories. If M ′, M′, P ′ and D′ are the new states after
the completion of the operation, it still holds that M ′ = interpM (M′,P ′,D′).

Proof. Exercise.

With these two lemmas we can prove the following.

Theorem 1. Let s be any T -state and t a V -state such that s = interp(t). Let
s′ = T -next(s) and t′ = V -next(t). Then s′ = interp(t′).

Proof. Starting from s, the target machine will try to fetch the instruction at
address CI . The virtual machine, starting from t, will try to fetch the instruction
at CI. Since s = interp(t), we know that CI = CI and, by Lemma 1, we know
that both machines will read the same instruction. Moreover, by the same
Lemma, the two memories will be left in an equivalent state. After fetching the
instruction, the two machines will start to decode and execute them. Since their
control and arithmetic unit is exactly the same (the two machines only differ
in their memory subsystem), they will perform exactly the same actions until
they will need to either read or write from memory. They will present their
memories with exactly the same address and, in case of a write operation, also
the same value to be written. Now we can apply either Lemma 2 or 1 again
and see that the two machines will go into equivalent states even after this new
memory operation. The two (identical) control and arithmetic units will again
perform exactly the same actions until the point where they will need to fetch
another instruction. It is clear that the new states at this point, t′ and s′, will
satisfy s′ = interp(t′).

Why is this technique called hardware assisted virtualization? In this exam-
ple we can see that we need help from the hardware to maintain the correspon-
dence between the virtual machine state and the target state. Our problem,
here, is that the host hardware is not exactly the same as the target one: we
have a drum memory instead of the bigger tube memory. The target-machine
programs will try to access the bigger tube memory, and have no knowledge
of the drum. In emulation and binary translation we have the opportunity to
change the target-machine program instructions before executing them (either
when we interpret them or when we translate them). But now we are running
the unmodified target-machine programs directly on the host hardware, so we
need assistance from the host hardware itself to hide all the differences. In this
example, it is the MMU (a part of the host hardware) that translates all the
memory accesses generated by the target machine programs, so that they have
the same effect as if they were completed on the target machine. In our formal-
ization, the MMU takes care of updating that part of the V -state that differs
from the T -state, so that the V -state continues to be equivalent to the T -state.

6



Note that, in this simple example, we have assumed that all the virtual
machine logic can be implemented in the MMU. This is feasible since the Baby
has just one physical page, so there is no need for complex data structures
and algorithms. In a more realistic example, part of the virtual machine logic
would be implemented in software: typically, the MMU only translates addresses
for the pages that are loaded in memory, and raises an exception for all the
other ones. The exception causes the execution of virtual machine software
that, in this cases, implements the swapping. Note that, even when part of
the virtual machine is software based, we still need help from the hardware:
it is the hardware that must raise the exception that triggers the execution
of the software module. Keep in mind that we always need to maintain the
correspondence between the T -state and V -state. The hardware may be able
to perform some of the necessary translation by itself; if it cannot, it must stop
the execution and invoke the software.

1.2 The virtual processor example (multiprogramming)

In multiprogramming we emulate a target machine which has a greater number
of processors than the host machine. Each process runs on its own virtual
processor, and virtual processors are multiplexed on the host machine physical
processors (host processors from now on). Let us assume that the target machine
uses a shared memory model, otherwise we would have to virtualize the private
memory of each target process as well.

In the most simple case, the host machine has just one host processor. Here,
the T -state contains the registers of all virtual processors. The V -state state
contains the registers of the host processor and a set of data structures in the
host memory, including:

• one data structure for each virtual processor, containing a copy of the
virtual processors registers;

• one variable containing the identifier of the virtual processor that is cur-
rently running on the host processor.

Our virtual machine emulates one target processor at a time. This is obtained
by loading the registers of the host processor with the values stored in the
virtual processor data structure and then letting the host processor continue
the execution. At some later time (maybe determined by a timer), execution is
paused, the virtual processor data structure is updated with the current contents
of the host registers, a new virtual processor is selected for execution and so on.

A complete definition of T -state, V -state and interp for a simple processor
is left as an exercise.

Why do we need hardware assistance to implement this virtual machine?
Much like the virtual memory example, part of the virtual machine logic may be
implemented in software. This is typically the case for the “context switching”,
i.e., loading and unloading the host processor registers. However, we still need
help from the hardware to force the invocation of this software, e.g., with a

7



timer based interrupt. But there is also another kind of help that we need:
the data structures that store the contents of the virtual processors must only
be accessible to the software that implements the virtual machine, and not to
the (target) software running on the virtual processors. Otherwise, one virtual
processor would be able to read and write into the registers of another virtual
processor, something that is not possible in the target machine. The standard
solution is to introduce privilege levels in the host processor. The processor may
run in one of at least two different privilege levels: in the “system” level it has
access to all the memory, in the “user” level it has access to only a memory
subset that does not include the virtual processors data structures. The timer
interrupt switches the host processor to system level and causes a jump to
the virtual machine software that performs the context switch. One special
instruction, only available at system level, then causes the return to user mode.
If there is an attempt to access the privileged memory while the processor is in
user mode, the accesses is denied by the hardware.

2 Virtual machines

When we talk of virtual machines, we want to virtualize a complete computing
system, composed of full processors, memory and I/O peripherals. In the virtual
memory and virtual processors examples we have virtualized only a part of
the complete system. In particular, the virtual processor (multiprogramming)
example only virtualizes part of a full processor—namely, only the userspace
visible part. In a virtual machine we want to emulate the full processor, since
we want to run all the software that runs in the target machine: this includes
the operating system software that, in the target machine, has access to the
privileged registers and instructions of the processor. For the Intel x86 processor
these would be the %cr3 register (pointer to the page directory), the %idtr

register (pointer to the interrupt descriptor table), . . . , plus the instructions
that manipulate them. It should be clear that we cannot directly execute any
instruction of the target-machine programs that modifies any of these registers,
since modifying them affects the state of the entire host machine. Each virtual
machine will have its own virtual copy of these registers, and it is these copies
that should be updated, not the host registers. At the same time, we want to
execute target-machine instructions directly on the host hardware, as much as
possible. Again, we need help from the hardware to handle these problematic
instructions when they show up in the stream of target instructions.

2.1 Trap-and-emulate

A special case of hardware assisted virtualization is when the target and host
architecture is exactly the same, i.e., we emulate the full processor by reusing the
hardware mechanisms that are already available, and nothing else. The idea is to
use the two levels of privilege, user and system, and reserve the system level for
the virtual machine monitor (the software that implements the virtual machine)

8



and the user level for all the software running inside the virtual machine (i.e.,
the software originally written for the target machine). The effect of this is that
the target-machine system software will run at user privilege. This scheme may
work if our processor raises an exception whenever a privileged instruction is
used while running at user level: the virtual machine monitor may intercept the
fault and emulate the effect of the privileged instruction on the virtual state.
Non privileged operations, which typically are a large fraction of the stream
of instructions, may be executed directly. This is called a “trap-and-emulate”
virtual machine monitor.

The trap-and-emulate virtual machine monitor can be implemented on some
architectures but, unfortunately, not on the (original) Intel x86 processors. The
problem is that some privileged operations do not raise an exception when
executed at user level. One example is the popf instruction. This instruction
pops one double-word from the stack and stores it in the EFLAGS register. This
is a privileged operation since the EFLAGS register contains the IF flag, that,
when zeroed, disables the external interrupts on the processor. Assume that the
target system software, running inside our virtual machine, tries to execute this
instruction. We would like to intercept the instruction so that we can disable
the “virtual interrupts” of the virtual machine, and (of course) not the real
interrupts of the host machine. Unfortunately, the x86 processor does not raise
an exception in this case, but it simply does not updated the IF flag when the
popf instruction is run at user level. Therefore, we obtain only a part of what
we need: the host interrupts are not disabled, but also the virtual interrupts are
not disabled, since the virtual machine monitor has no way to know that the
system software was trying to disable the target machine interrupts. The former
part is good, but the latter part is bad, since our V -state no longer matches the
T -state: the target machine has disabled its interrupts, but our virtual machine
has not. Other problems arise when the target system software tries to access the
privileged registers, such as %cr3: writes from userspace cause an exception, but
reads are allowed. Therefore, the software running inside the virtual machine
may detect that it is not running on the target machine, by comparing what
it writes with what it reads from %cr3: on the target machine the two things
would match, but on the virtual machine they would most certainly not (since
%cr3 contains the pointer to the page directory used by the host, not the one
used by the virtual machine).

VMware solved these (and many other) problems using hardware-assisted
virtualization for all the target userspace software, and switching to binary
translation for the target system software. Today, both AMD and Intel have
added virtualization extensions to their processors, in order to allow for efficient
hardware assisted virtualization implementations.

9


	Introduction
	The virtual memory example
	The virtual processor example (multiprogramming)

	Virtual machines
	Trap-and-emulate


