
Containers

G. Lettieri

23 Nov. 2017

1 Introduction

The most important use-case for virtualization is the safe sharing of hardware
resources among different applications. Typically, each virtual machine only
runs just one application. We can observe that sharing the resources among
applications is what Operating Systems should be designed for, so do we really
need Virtual Machines at all for this use case? The answer is not so simple,
since unfortunately existing OSs have increasingly become less good at isolating
user applications from each other. However, Containers try to improve the
situation by adding new isolation features to the traditional host OS. They are
put forward as an alternative to Virtual Machines.

Containers (or jails) are a feature of some host operating systems, but we
limit our considerations on Linux only, since this is what is commonly used in
this area. Containers are a way to isolate a set of processes and make them
think that they are the only ones running on the machine. The machine they
see may feature only a subset of the resources actually available on the entire
machine (e.g., less memory, less disk space, less CPUs, less network bandwidth).
Many different containers may coexist on the same machine.

Containers are not virtual machines, even if they may look like ones in some
cases. Processes running inside a container are normal processes running on the
host kernel. There is no guest kernel running inside the container, and this is
the most important limitation of containers with respect to virtual machines:
you cannot run an arbitrary operating system in a container, since the kernel
is shared with the host (Linux, in our case). The most important advantage of
containers with respect to virtual machines is performance: there is no perfor-
mance penalty in running an application inside a container compared to running
it on the host. There is also a point of contention between containers and virtual
machines, about which one is more secure. VMs are considered (by some) to be
more secure of containers, because they have a smaller attack surface. By attack
surface we mean the amount of code and features that a malicious attacker may
probe for exploitable bugs: the entire host kernel, in the case of containers, and
the hypervisor in the case of virtual machines. The KVM and Xen hypervisors,
for example, are very small. In the KVM case, it must be noted that KVM is a
small module, but it actually uses facilities from the rest of the linux kernel (for

1



scheduling, virtual memory, etc.). However, this is still less than the amount of
code involved in the implementation of containers.

Linux Containers are implement using two distinct kernel features: names-
paces and control groups. We briefly examine each one in turn.

1.1 Namespaces

Namespaces provide a means to segregate system resources so that they can be
hidden from selected processes. An old feature of Unix systems, which has a
similar purpose, is the chroot() system call, which works as follows:

• For each process, the kernel remembers the inode of the the process root
directory;

• This directory is used as a starting point whenever the process passes the
kernel (e.g., in a open()) a filesystem path that starts with “/”;

• whenever the kernel walks through the components of any filesystem path
used by the process and reaches the process root directory, a subsequent
“..” path element is ignored;

• only root can call chroot();

• the process root directory is inherited by its children.

Normally, all processes have the same root directory, which coincides with the
root directory of the file system. But, by using chroot(), we can make a
subset of the filesystem look like it was the full filesystem for a set of processes.
This is typically used to segregate untrusted processes that provide network
services and, because of possible bugs in their implementations, may be forced
by remote attackers to execute arbitrary code. The idea is to prepare a subtree
in the filesystem that contains only the things that are needed for the execution
of the server, and nothing else—a chroot environment. Then, the server process
is started after a chroot() to the root directory of the chroot environment.
Even if the server is subverted, it cannot access any file outside of the chroot
environment. 1

Chroot environments, however, are not full containers. Contrary to popular
belief, in fact, not everything is a file in Unix. For example network interfaces,
network ports, users and processes are not files. While we can have as many
instances as we want of, say, /etc/passwd, each different and living in its own
chroot environment, we can only have one port 80 throughout the system (thus,
only one web server), only one process with pid 1 (thus, only one init process),
and user and process ids will have the same meaning in all chroot environments.
Thus, for example, a process running in a chroot environment will still be able
to see all the processes running in the system, and it will be able to send signals
to all the processes belonging to any user with the same user id as its own.

1Note that in the earlier implementations of the mechanism, root was able to escape a
chroot environment, so this strategy was only effective is the server did not run as root.

2



Namespaces have been introduced to create something similar to chroot en-
vironments for all these other identifiers. Each process in Linux has its own
network namespace, pid namespace, user namespace and a few others. Net-
work interfaces and ports are only defined inside a namespace, and the same
port number may be reused in two different namespaces without any ambiguity.
The same holds true for processes and users. Normally, all processes share the
same namespaces, but a process can start a new namespace that will be then
inherited by all its children, grandchildren, and so on. This is done when the
process is created using the clone() system call. This system call (taken from
the Plan 9 OS) is the new, preferred way to create new processes in Linux,
since it generalizes the behaviour of fork() and can be also used to implement
pthread_create(). The idea is that both processes and threads share some-
thing with their creating process, and have a private copy of something else. For
example, processes share open files with their parent, but have a private copy
of all the process memory. Threads, instead, also share the process memory.
The clone() system call is passed a set of flags using which the programmer
may choose what to share and what to copy. This same system call has been
extended to implement namespaces, essentially by adding flags for the sharing
or copying of the network, pid, user namespaces and so on.

1.2 Control groups

While namespaces can be used to hide and create private copies of all the system
entities, they are not sufficient in isolating sets of processes so that they cannot
interfere with each other. Processes may interfere also by abusing the system
resources, e.g., allocating to much memory, using to much CPU time, or disk and
network bandwidth. To properly implement containers, therefore, we also need
to limit the usage of resources by the processes that live in the container. This
is another thing that was not done very well before the introduction of control
groups. The problem is that, before enforcing a limit on a set of processes,
we need to know which processes belong to the set, and the processes must
not be able to escape from the set. We would also like some flexibility in the
definition of the set. Traditional Unix has a concept of process groups, but
unfortunately any process is free to enter or leave a group. Processes are also
grouped by user id (the user that is running them), but this is not very flexible;
moreover, processes may temporarily switch their user id when they execute
setuid programs.

Control groups, instead, are groups explicitly created by the administrator,
who can later assign processes to them. The administrator may setup the system
so that processes cannot escape their control group.

There are two implementations of the cgroups framework in Linux: version
1 and version 2. The second version is very recent and most installations are
still using version 1.

Control groups can be organized in a tree-shaped hierarchy, like the one in
Fig. 1. Each process in the system must belong to exactly one control group in
the hierarchy, and therefore the hierarchy is a partition of the system processes.

3



root

cg1

cg2 cg3

cg4

Figure 1: An example cgroup hierarchy

When a process creates a child process, the child inherits the control group of
its parent. Note that some cgroups may be empty. Indeed, it is good practice
to put processes only in the root cgroup and in the leaf cgroups, leaving all
intermediated cgroups empty. E.g., in Fig. 1 cgroup cg1 should be left empty.
In version 2 this has become mandatory.

In version 1 there may be many independent hierarchies. Each process must
belong to a cgroup in each hierarchy, and therefore each hierarchy is a different
partition of the processes. This was meant to enhance flexibility, but was later
found to be very complex to implement and use; therefore, version 2 has dropped
this feature: there is now only one cgroup hierarchy in the system.

Once we have the ability to reliably group processes in one or more hierarchy,
we can start controlling their resource usage. To this aim, hierarchies can be
linked to so-called subsystems (subsystem controllers would be a better name).
Subsystems are used to control the resources assigned to the cgroups in the
linked hierarchy. Some examples of existing subsystems are:

memory limits that amount of main memory used by each cgroup;

cpu limits the maximum fraction of CPU that each cgroup may use and may
schedule the CPU based on cgroups weights;

cpuacct this is not much of a controller, since it only provides accounting
information about the CPU usage of the cgroups;

cpuset on multi-cpu systems, limits the the set of CPUs that may be used by
each cgroup;

pids limits the number of processes that can be created in a cgroup.

Other subsystems control device access, block I/O and so on.
In version 1 each subsystem may be attached to at most one of the existing

hierarchies, while in version 2 all the subsystems are attached to the single
system hierarchy. A typical setup for version 1 is to have a separate hierarchy
for each subsystem, with a few exceptions (e.g., cpu and cpuacct are usually
attached to the same hierarchy).

4



The interpretation of the hierarchical relations among the cgroups is up to
each subsystem. The general idea, however, is that limits imposed on parent
cgroups should also be enforced on their descendants.

1.2.1 Using cgroups

Cgroups are managed via a pseudo-filesystem. The idea is to mimic the cgroups
hierarchy in a pseudo-directory tree. The subsystems controllers then add their
own pseudo-files to each pseudo-directory in the tree.

Let us consider an example, using the version 1 implementation. To create
a new cgroups hierarchy, without any subsystem attached, we need commands
like:

mkdir mytree

sudo mount -t cgroup -o none,name=myhierarchy cgroup mytree

Note the option none that says that we don’t want to attach subsystems con-
trollers to the hierarchy. Here we are also giving a name (myhierarchy) to the
hierarchy.

Initially, the hierarchy consists only of the root node, represented by the
mytree directory. We can see that mytree has already been populated by some
pseudo-files (this is done automatically by the cgroup pseudo-filesystem imple-
mentation in the kernel). The most important one is tasks, which contains a
list of all task that belong to this cgroup. If we try cat mytree/tasks we can
see that it now contains all processes in the systems, since each process must
belong to a cgroup in each hierarchy, and this hierarchy has only one cgroup
yet.

To create a new cgroup, we use mkdir:

sudo mkdir mytree/cg1

We can now see that also cg1 has been automatically populated with pseudo-
files. In particular, the pseudo-file mytree/cg1/tasks is for the processes that
belong to cg1 and it is initially empty.

To move a process to the new cgroup we need to write its pid into the tasks

file inside cg1:

sudo -s

echo $$ > mytree/cg1/tasks

With the first command we start a root shell. The special variable $$ contains
the pid of the current shell, so now our new shell and all the processes that it
creates will belong to this cgroup. Note that, since a process must be in only
one cgroup for each hierarchy, the root shell has also been removed from its old
cgroup (the root one, in this case). If we now run cat mytree/cg1/tasks we
should see two pids: the pid of our shell and the pid of the process created by
our shell to execute cat. If we run the command several times we should see
that the second pid changes every time.

5



If we exit from the root shell we should now see that the tasks file has
become empty. To remove a control group we can use rmdir

sudo rmdir mytree/cg1

This can only be done if the tasks file of the cgroup is empty. Note that, unlike
a “normal” rmdir, deleting the cg1 directory will succeed even if it looks not-
empty, due to the pseudo-files it contains. Again, this is done automatically by
the kernel.

A hierarchy with subgroups is kept in the kernel even if its pseudo-filesystem
is not mounted anywhere. The mounted pseudo-filesystem just gives userspace
access to the in-kernel hierarchy, which in this case is identified by its name
(myhierarchy, in the example). The pseudo-filesystem can also be mounted
several times in different locations, and all the mount points will give access to
the same information. The in-kernel data structures are freed when they are no
longer needed (i.e., when there is no subgroup and no mount-point).

To create a hierarchy with one or more subsystem controllers attached we
can issue a command like

mkdir mytree2

sudo mount -t cgroup -o cpu,memory,pids cgroup mytree2

where we are trying to create a hierarchy and attaching to it the cpu, memory
and pids subsystems (note that we are not giving a name this time, since the
set of attached subsystems is also sufficient to identify a hierarchy).

If you try to issue the above command you will probably obtain an error,
since a subsystem cannot be attached to more than one hierarchy, and your
Linux distribution has very likely already attached these subsystems at boot.
All hierarchies are typically mounted in subdirectories of /sys/fs/cgroup, each
named after the corresponding set of attached subsystems. E.g., in an Ubuntu
OS (or any OS managed via systemd) we we can interact with the cpu subsys-
tem (and its attached hierarchy) by looking inside /sys/fs/cgroup/cpu. Here
we find the usual cgroup related pseudo-files (e.g., tasks) plus the pseudo-files
added by the subsystem controller. Their names follow the pattern “subsys-
tem.parameter”.

As an example, we can take a loop at the cpu.shares pseudo-file. This is
added by the cpu subsystem and can be used to assign a “relative weight” to
each cgroup. These weights are used to assign a fraction of the available CPU
time to each cgroup according to the following rules:

• the root cgroup is assigned 100% of the time;

• if a cgroup has n child subgroups with weights w1, w2, . . . , wn, the i-th
child is assigned the fraction wi/

∑n
j wj of the parent time.

Note the CPU is assigned in a work conserving fashion: if any cgroup is not
using all of its CPU time, the remaining time is made available for the other
cgroups.

6



root

cg1600

cg2100 cg3 200

cg4 200

Figure 2: An example assignment of CPU weights to the hierarchy of Fig. 1

For example, let us consider the assignment of weights given in Figure 2. We
can create the hierarchy and assign the shares with the following commands as
root

cd /sys/fs/cgroup/cpu

mkdir cg1

echo 600 > cg1/cpu.shares

mkdir cg1/cg2 cg1/cg3

echo 100 > cg1/cg2/cpu.shares

echo 200 > cg1/cg3/cpu.shares

mkdir cg4

echo 200 > cg4/cpu.shares

If we call Fi the fraction of CPU-time assigned to cgroup cgi, we have

F1 =
600

600 + 200
=

3

4
,

F2 =
100

100 + 200
F1 =

1

3
F1 =

1

4
,

F3 =
200

100 + 200
F1 =

2

3
F1 =

1

2
,

F4 =
200

600 + 200
=

1

4
.

It is easy to check the above setup and calculations by creating a program that
uses all of its available CPU-time (e.g., a simple infinite loop), running it several
times, moving the corresponding processes into the available subgroups and
observing the CPU times reported by top. Note that, even if modern systems
have many CPUs, it is simpler to use only one CPU for this experiment. This
can be accomplished by using the taskset utility, which can run a program by
pinning the process on the given set of CPUs. E.g.,

sudo taskset -c 0 ./loop

will run the ./loop program only on CPU 0.

7


	Introduction
	Namespaces
	Control groups
	Using cgroups



