
Virtio networking: A case study of I/O

paravirtualization

Ing. Vincenzo Maffione

1/12/2016

Outline

1. How NICs work
2. How Linux NIC drivers work
3. How NICs are emulated
4. Performance analysis of emulated e1000
5. I/O paravirtualization ideas
6. The VirtIO standard
7. The VirtIO network adapter (virtio-net)
8. Performance analysis of virtio-net

How NICs work (1)
Ethernet Network Interface Cards (NICs) are used to
attach hosts to Ethernet Local Area Networks (LANs).
NICs are deployed everywhere - laptops, PCs,
high-end machines in data centers - and many
vendors and models are available - e.g. Intel,
Broadcom, Realtek, Qualcomm, Mellanox.

But how does a NIC work? How does the Operating
System (OS) control it?

How NICs work (2)
All modern NICs are DMA-capable PCI devices, exposing a model-specific set of registers.

Most of the registers are memory-mapped, which means that x86 CPUs can access them with regular MOV instructions.
Some registers can be mapped in the CPU I/O space, which means that they can be accessed with IN/OUT instructions on
x86 CPUs. In x86, memory-mapped I/O is preferred over port I/O, because it is more flexible. IN/OUT instructions can
only use DL or immediate operand as I/O port, and EAX/AX/AL as value.

Direct Memory Access (DMA)* allows PCI devices to read (write) data from (to) memory without CPU intervention. This is
a fundamental requirement for high performance devices.

(Very) Old devices - e.g. ISA, non-DMA capable - are not considered here.

(*) In the PCI standard DMA is also known as Bus Mastering

How NICs work (3)
Memory space I/O space

0x001b9800

0x00a3d520

0x05e1

A PCI device exposes one or more Base Address Registers (BARs) in its PCI configuration space. BARs are programmed
by the OS with base addresses where the corresponding memory or I/O regions - containing PCI registers in the NIC
case - will be available. OS can read the sizes of the device’s address regions.

BAR0

BAR1

BAR2

...

...

e1000 (1)
The device’s configuration space also exposes the Device ID, Vendor ID and other registers that are used by the
Operating System (OS) to identify the device model.

We will take the Intel e1000 family of Gigabit network adapter as a NIC case study. In particular, we will consider the
82540EM model, commonly emulated by hypervisors (VMWare, VirtualBox, QEMU), which has Device ID 0x100E and
Vendor ID 0x8086.

The 82540EM exposes a 128KB memory-mapped region (through BAR0) and a 64 bytes I/O mapped region (through
BAR1). More than 300 32-bit registers are visible to the NIC programmer. Regular PCI interrupts are used by the NIC to
inform the OS about asynchronous events.

Complete reference available at
http://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf

http://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf
http://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf

e1000 (2)
A lot of complexity of NICs comes from configuration: power management, PHY module, EEPROM, FLASH, and other
advanced features and components. This explains the huge manuals (500-1000 pages).

Nevertheless, we will focus on the NIC datapath, which refers the software interface that the OS uses in order to
transmit and receive Ethernet frames (packets, in the following). Datapath involves only a few registers and
DMA-mapped memory.

While reported here on a specific example, these datapath basic concepts are actually common to all modern NICs,
even if register names and other details are different.

e1000 (3)
The OS exchanges packets with the NIC through the so called rings. A ring is a circular array of descriptors allocated by
the OS in the system memory (RAM). Each descriptor contains information about a packet that has been received or
that is going to be transmitted. The e1000 NIC uses a ring for transmission (TX ring) and another ring for reception (RX
ring). The descriptor format is different, but (almost) all descriptors have at least the physical address and length of a
(memory) buffer containing a packet. Note that physical addresses are used, not virtual ones, since the NIC accesses
rings and packets through DMA.

head tail

ETH
IPv4

UDP

payload

ETH
IPv4

...

e1000 transmission (1)
Each TX descriptor is 16 bytes long and contains

➢ The physical address of a buffer with the contents of a packet that is going to be sent or that has already been
sent

➢ The length of the packet
➢ A status bit (Descriptor Done) indicating whether the packet is going to be sent or has already been sent
➢ Flags and other fields that can be used by the OS to specify TX options to the NIC

Address

Length Status Others

Memory

Length bytes

...

e1000 transmission (2)
Synchronization between the OS and the NIC happens through two registers, whose content is interpreted as an index
in the TX ring:

➢ Transmit Descriptor Head (TDH): indicates the first descriptor that has been prepared by the OS and has to be
transmitted on the wire.

➢ Transmit Descriptor Tail (TDT): indicates the position to stop transmission, i.e. the first descriptor that is not
ready to be transmitted, and that will be the next to be prepared.

Descriptors between TDH (incl.) and TDT (excl.) are owned by the hardware, ready to be transmitted by the NIC. The
remaining ones are owned by the software, ready to be used by the OS to request new transmission.

TDH TDT

e1000 transmission (3)
At the start-up, the OS initializes TDT and TDH at zero. In this situation, the TX ring is completely free, since all the
descriptors are available for the OS to be used for transmission. Consequently, there are no pending descriptors to be
processed (i.e. no packets waiting in the ring to be transmitted by the NIC).

TDH, TDT

e1000 transmission (4)
Let’s assume the OS wants to transmit 3 packets at once (e.g. three ARP requests). The OS will first prepare (produce)
three consecutive descriptors, starting from the first available one, which corresponds to the current TDT value. The
prepared descriptors will contain packet physical addresses and packet lengths, with the status bit set to zero.

TDH, TDT

ETH

ARP

ETH

ARP

ETH

ARP

e1000 transmission (5)
Once the three descriptors are ready, the OS will update the TDT register (with the value of 3 in the example), to make
the NIC aware of them. A write to the TDT acts as a notification from the OS to the NIC, so that the NIC can start
transmitting the prepared descriptors.

TDH

ETH

ARP

ETH

ARP

ETH

ARP

TDT

e1000 transmission (6)
Once notified, the NIC will start consuming the prepared descriptor, starting from the one pointed by TDH. Consuming
a descriptor involves reading (DMA) the descriptor from the ring, reading (DMA) the buffer referenced by the descriptor
and sending it on the wire. Once a descriptor has been consumed, the NIC advances the TDH to the next position.
Moreover, if required by the descriptor flags, the NIC will set the Descriptor Done (DD) bit in the status flag (descriptor
write-back) and raise a TX interrupt.

TX processing only stops when TDH reaches TDT.

TDH, TDT

e1000 transmission (7)
Note that the OS may prepare new descriptors and advance TDT concurrently to the NIC processing descriptors and
advancing TDH. Therefore, the TX datapath is a producer-consumer parallel system where the OS produces descriptors
and NIC consumes them. OS uses TDT writes to notify (kick) NIC that more descriptors are ready for transmission,
whereas NIC uses TX interrupts to notify OS that more descriptors have been consumed (and can then be reused for
new transmission).

To prevent the index registers to wrap around, the OS should always leave one TX descriptor unused, in such a way that
the condition TDT == TDH indicates the stop condition for the consumer (no pending descriptors), while
(TDT+1)%N==TDH (with N number of descriptors in the ring) indicates the stop condition for the producer (no more
descriptors available).

TDHTDT

e1000 transmission (8)
e1000 also supports Scatter-Gather (SG) transmission, that allows the NIC to transmit a multi-fragment packet (i.e. stored
non-contiguous memory chunks). In this case, many consecutive TX descriptors must be used for a single packet (one for
each fragment), with descriptor flags indicating that packet continues in the next descriptor.

SG transmission is particularly useful with packets that are bigger than page size. This happens with jumbo frames or when
TCP Segmentation Offloading (TSO) is used. With TSO, the NIC can process TCP segments up to 64KB, doing the TCP
segmentation - to build MTU-sized frames - in hardware.

TDH TDT

frag #1 frag #2 frag #3 frag #4

e1000 reception (1)
Each RX descriptor is 16 bytes long and contains

➢ The physical address of a buffer containing a packet that has been received from the wire or a buffer that is
ready to be used for a next-coming packet.

➢ The length of the receive buffer.
➢ A status bit that indicates whether the associated buffer has already been filled by a received packet or is still

available.
➢ Flags and other fields that can be used by the OS to specify RX options to the NIC

Address

Length Status Others

Memory

Length bytes

...

e1000 reception (2)
Synchronization between the OS and the NIC happens through two registers, whose content is interpreted as an index
in the RX ring:

➢ Receive Descriptor Head (RDH): indicates the first descriptor prepared by the OS that can be used by the NIC to
store the next incoming packet.

➢ Receive Descriptor Tail (RDT): indicates the position to stop reception, i.e. the first descriptor that is not ready to
be used by the NIC.

Descriptors between RDH (incl.) and RDT (excl.) are owned by the hardware, ready to be used for packets received from
the wire. The remaining ones are owned by the software, ready to be prepared by the OS with new buffers to give to the
RX hardware.

RDH RDT

e1000 reception (3)
At the start-up, the OS initializes RDH at zero, and prepares (produces) as many descriptors as possible for reception,
setting RDT accordingly. Preparing a descriptor involves filling it with a buffer physical address and buffer length, and
zeroing the status bit.

To prevent the index registers to wrap around, the OS always leaves one RX descriptor unused, in such a way that the
condition RDT == RDH indicates the stop condition for the NIC consumer (no descriptors available for reception), while
(RDT+1)%N==RDH (with N number of descriptors in the ring) indicates the stop condition for the OS producer (no more
descriptors to prepare).

In this situation, almost all the RX descriptors are pending, which means that are available for the NIC to be used for
reception. Consequently, no packets have been received yet.

RDH RDT

e1000 reception (4)
Let’s assume 3 packets are received on the wire, one immediately after the other. Since descriptors are available for
reception, the NIC will consume three consecutive descriptors, starting from the first available one, which corresponds
to the current RDH value.

Consuming a descriptor involves reading (DMA) the descriptor from the ring and writing (DMA) the packet received from
the wire to the buffer referenced by the descriptor. Once a descriptor has been consumed, the NIC advances the RDH
to the next position. Moreover, the NIC will set the Descriptor Done (DD) bit in the status flag, properly set the length
field (descriptor write-back) and raise an RX interrupt.

RDH RDT

e1000 reception (5)
When the OS processes the RX interrupt, it will go over the received packets and use them (typically putting them in a
queue where they can be read by an user-space application). Each consumed descriptor is also replenished, i.e.
prepared again, with a (typically) new buffer.

RDH RDT

ETH

IPv4
NEW

BUFFER

e1000 reception (6)
Once the replenished descriptors are ready, the OS will update the RDT register (with the value of 2 in the example), to
make the NIC aware of them. A write to the RDT acts as a notification from the OS to the NIC, so that the NIC is aware of
the new buffers being available.

RDHRDT

e1000 reception (7)
Once again, OS may prepare new descriptors and advance RDT concurrently to the NIC processing descriptors and
advancing RDH. Therefore, the RX datapath is a producer-consumer parallel system where the OS produces descriptors
and NIC consumes them. OS uses RDT writes to notify (kick) NIC that more descriptors are available for reception,
whereas NIC uses RX interrupts to notify OS that more descriptors have been consumed (and are then available for
applications).

Note that preparing an RX descriptors involves both pushing the received packets to applications and make the
descriptor point to a new buffer.

How Linux NIC drivers work (1)
How is the e1000 driver implemented (regarding the datapath parts)?

NIC drivers in Linux are usually implemented by loadable kernel modules. The kernel exports an API that NIC drivers use
to exchange network packets with the rest of the kernel. By means of this API, the NIC driver can register a new network
interface, associating a name to it (e.g. eth0, enp2s0f1). Registered interfaces can be listed by using the ifconfig or ip
link command-line tools.

Linux extensively uses Object Oriented techniques to manage complexity. The interaction between kernel and driver
happens through an abstract class, represented by the struct net_device. When registering a new NIC, the driver
specifies a set of function pointers (contained in a struct net_device_ops object) to provide the implementation of the
abstract methods to be invoked by the kernel. About 70 methods are defined, but here we will focus on basic
datapath-related ones.

How Linux NIC drivers work (2)
Linux stores each network packet using the struct sk_buff,
which contains data and metadata. During normal TX and RX
operation, these objects (skbs) are continuously allocated,
deallocated, and passed back and forth between the driver and
kernel, possibly on behalf of an user-space application.

The packet contents are stored partly in the skb object itself
(linear part) and partly in pages scattered throughout system
memory (paged/indirect part). The linear part always contain
the beginning of the packet. The paged part is optional, and
usually used for very big packets (e.g. > 1.5KB). Maximum
packet size is 64KB.

Memory

sk_buff

...

frag #1 ref

frag #2 ref

frag #3 ref

linear part (head)

frag #2

frag #1

frag #3

How Linux NIC drivers work (3)
Some driver methods:

1. ndo_open(dev) - The kernel asks the driver to
bring the interface up. The driver will initialize NIC
rings for transmission and reception and enable
the NIC.

2. ndo_close(dev) - The kernel asks the driver to
bring the interface down. The driver will disable
the NIC and clean up NIC rings (e.g. free allocated
sk_buffs in TX rings).

3. ndo_start_xmit(dev, skb) - The kernel asks the
driver to transmit the packet contained in the skb
object. The ownership of skb is passed to the
driver, which means that the driver is in charge to
free it.

NIC driver

Kernel network stack

Applications

ndo_start_xmit(skb) netif_receive_skb(skb)

read() / recv()write() / send()

USER-SPACE

KERNEL-SPACE

How Linux NIC drivers work (4)
When the driver receives packets (e.g. after an RX
interrupt), it can push them up to the kernel using the
netif_receive_skb(skb) function or other variants.
Depending on the packet contents, the kernel will take the
appropriate action:

➢ Appending the skb to the receive queue of an
application socket

➢ Forward it to another NIC
➢ Drop it
➢ ...

NIC driver

Kernel network stack

Applications

ndo_start_xmit(skb) netif_receive_skb(skb)

read() / recv()write() / send()

USER-SPACE

KERNEL-SPACE

NAPI (1)
Inside TX/RX interrupt routines, NIC drivers should do as little work as possible. This principle holds because CPU
interrupts are masked while it is executing an interrupt routine, and the latencies of a system can only worsen if
interrupts are kept disabled for non-very-short periods. Moreover, interrupt context is a very limited execution
environment (e.g. sleeping functions cannot be invoked).

However, a NIC driver needs to respond to TX/RX interrupts by cleaning up TX rings and extracting/replenishing from RX
rings, respectively. Since these operations can be quite long, they could be performed in a deferred execution context
(e.g. a softirq, a tasklet, workqueue, etc.). An interrupt routine can restrict itself to very simple operations - i.e.
acknowledge the interrupt with a register access - and defer the real work.

However, due to the problematic nature of network drivers, the so called New API (NAPI) mechanism has been
introduced. A NIC driver interrupt routine disables NIC interrupts* and defer its work to a per-CPU NAPI kernel thread.
When scheduled, the kernel thread invokes a driver-specific poll callback to perform the work. The poll callback enables
NIC interrupts only when there is no more pending work.

(*) n.b. CPU can still handle interrupts originating from other sources.

NAPI (2)
Each poll callback must limit the amount of work to be done - e.g. number of RX packets processed - in order to ensure
fair scheduling among different poll callbacks belonging to different NIC devices. If more work is pending when budget is
exhausted, the NAPI kernel thread will reschedule the poll callback as soon as possible.

Temporarily disabling NIC interrupts means de facto temporarily switching from interrupt-driven I/O to polled I/O. This
has a very beneficial effect on throughput with minimum impact on receive latency.

In the example below, polled mode starts at t1, ends at t2 and restarts at t3.

NAPI thread

interrupt context

t1 t2 t3

interrupts

e1000 driver
Among (a lot of) other things, the e1000 ndo_open implementation (e1000_open):

➢ Allocates TX and RX rings in physically contiguous DMA-able memory.
➢ Tells the NIC the physical addresses and length of the allocated TX and RX rings, writing to the TDBAH,

TDBAL,TDLEN, RDBAH, RDBAL, RDLEN registers.
➢ Inits TDH,TDT, RDT, RDH to zero. At this point TX ring is in the start-up configuration.
➢ Fills the RX ring with freshly allocated skbs, advancing RDT for each descriptor. At this point RX ring is in the

start-up configuration.
➢ Allocates interrupt vectors and enables interrupts.

TDH, TDT

RDH RDT

e1000 driver transmission (1)
The e1000 ndo_start_xmit implementation (e1000_xmit_frame) is in charge of mapping the skb received as an input
argument into one or more consecutive descriptors of the TX rings. More descriptors are used if the packet referenced by
the skb is scattered in memory - this normally happens with GSO packets.

Each descriptor is filled with the physical address and length of a fragment of the packet to be transmitted, plus flags and
status fields. The driver must also make sure that all packet memory fragments, allocated in virtual memory, are
accessible by the NIC through DMA access, even in the presence of IOMMUs. This is achieved through dynamic DMA
mapping*.

Once the descriptors have been prepared (the example assumes a single-fragment packet), the driver can advance TDT.
Note that TDT is updated for each packet transmitted.

TDH
(*) https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

TDT

e1000 driver transmission (2)
When the NIC has transmitted the submitted packet, it will send an TX interrupt. The driver interrupt routine - shared
among all the e1000 interrupts, since the interrupt pin is shared - will just acknowledge the interrupt and schedule the
NAPI.

TDH, TDT

next_to_clean

e1000 driver transmission (3)
The e1000 poll callback (e1000_clean) takes care of processing consumed descriptors for both rings. The
e1000_clean_tx_irq subroutine scans the TX ring looking for consumed descriptors - i.e. completed transmissions. A
consumed descriptor has the DD bit set in the status field.

A consumed descriptor is cleaned up by destroying the dynamic DMA mapping for the packet fragment, and free the
transmitted skb.

A ring index variable (next_to_clean) keeps track of the next descriptor to be cleaned.

(*) This clearly happens just once for each multi-fragment packets.
TDH, TDT

next_to_clean

e1000 driver reception (1)
When the NIC receives one or more packets, it raises an RX interrupt. The interrupt routine schedules the NAPI, that will
invoke the e1000 poll callback.

In the example, blue descriptors contain received packets ready to be processed by the driver.

RDH RDT

next_to_clean

e1000 driver reception (2)
The e1000_clean_rx_irq subroutine scans the RX ring looking for consumed descriptors - i.e. completed receptions. A
consumed descriptor has the DD bit set in the status field.

A consumed descriptor is cleaned up by destroying the dynamic DMA mapping for associated skb and pushing the skb up
to the kernel where it will find its destination.

Similarly to what happens in the TX ring, a ring index variable (next_to_clean) keeps track of the next descriptor to be
cleaned.

RDH RDT

next_to_clean

e1000 driver reception (3)
Once consumed RX descriptors have been cleaned, they can be prepared again to receive new packets. Each descriptor is
refilled with the physical address and length of a buffer contained into a freshly allocated skb, plus flags and status fields.
The driver will also setup a dynamic DMA mapping for the new skb’s buffer, similarly to what happens for transmission.

Note that these refill operations (skb allocations and DMA mapping) are the same executed at start-up time, to make the
RX ring ready to receive some packets.

RDHRDT

next_to_clean

e1000 emulation
The difference between RAM accesses and register accesses is that the latter ones may have side-effects - registers are
not merely storage. RAM accesses from the guest code do not require any hypervisor intervention.

Register accesses, instead, have a meaning that is dependent on the specific device, and that’s why register accesses for
emulated devices must be emulated in software.

Assuming hardware-based virtualization, how does QEMU (or in general type-1 hypervisors) emulate an e1000 NIC?

In QEMU terminology, the piece of software implementing device emulation is known as front-end, so let’s see how the
e1000 front-end works, keeping in mind that

➢ A QEMU process can access all the guest system memory of the guest, since from its point of view it’s just a set of
malloc()ed buffers.

➢ QEMU keeps internal data structures (not visible to the guest) to represent I/O devices, CPUs, memory regions, and
lots of other things.

e1000 transmission emulation (1)
When an host thread* is natively executing guest code, a write to
the TDT register - or to any other register - causes the CPU to exit
from the native emulation mode (VM exit) and return in the KVM
module (host kernel-space) that was executing an
ioctl(KVM_RUN) syscall for QEMU.

When the ioctl returns, QEMU figures out that the VM exit was
due to a register access for an e1000 device and invokes the
e1000 frontend.

QEMU process

Guest
memory e1000

frontend
TAP

backend

KVM module TUN/TAP driver

ioctl(KVM_RUN) write(buf)

send(buf)

(*) This is also referred to as vCPU thread.

e1000 transmission emulation (2)
The e1000 handler for TDT writes collects all the produced TX
descriptors (from TDH to TDT-1). For each one, translates the
guest physical address of the Ethernet frame into host virtual
address, sends the frame to a network back-end, writes back the
descriptor (i.e. DD bit) and increments TDH.

QEMU supports different back-ends: netuser (NAT), TAP, netmap,
etc. TAP is the most commonly used in Data Centre deployments.
Frames written to a TAP file descriptor are injected in the host
network stack as they were received on a physical interface.

Once all descriptors have been a TX interrupt is emulated by
means of the KVM module.

QEMU process

e1000
frontend

TAP
backend

KVM module TUN/TAP driver

ioctl(KVM_RUN) write(buf)

send(buf)

Guest
memory

e1000 transmission emulation (3)
All the TX processing here described is executed by the same vCPU thread that was executing the guest code. The e1000
emulated TX processing is then completely synchronous, differently from what happens with a real e1000 NIC, where
the NIC hardware runs in parallel to the CPU running the sending application and the driver code.

guest code VM-exit KVM frontend + backend KVM VM-enter guest codevCPU thread

TDT write return from
ioctl()

ioctl()

e1000 reception emulation (1)
When the host kernel transmit a packet on the TAP network
interface, the Ethernet frame becomes available to be read from
the TAP file descriptor.

A QEMU thread executing the main event-loop (the I/O thread)
wakes up and invokes the TAP backend. The backend, in its turn,
reads the frame from the TAP file descriptor and sends it to the
e1000 frontend.

The e1000 frontend - assuming RDH != RDT - uses the buffer
referenced by next available RX descriptor to copy the frame to
the guest memory, writes back the descriptor, advances RDH and
emulates an RX interrupt.

Similarly to what happens with transmission, a guest-physical to
host-virtual address translation is necessary.

QEMU process

Guest
memory e1000

frontend
TAP

backend

KVM module TUN/TAP driver

ioctl(KVM_RUN) read(buf)

recv(buf)

e1000 reception emulation (2)
Differently from TX datapath, RX emulation can run in parallel to guest code (e.g. guest driver and application), since the
frontend and backend processing is executed in the I/O thread. This is a simple consequence of the QEMU architecture.

The side effect of writes to RDT is to re-enable the backend if it was temporarily disabled because of the consumer stop
condition (RDH == RDT).

In this example we didn’t assume posted interrupts: on interrupt, the vCPU thread is forced to VM exit.

guest code VM-exit KVM KVM VM-enter guest codevCPU thread

main loopI/O thread backend + frontend

QEMU

wakeup read(buf) RX interrupt ioctl()return from
ioctl()

Performance of emulated e1000
Some numbers, assuming recent i5/i7 CPUs (3th and 4th generation):

➢ Register write are very expensive when executed by a guest, since they cause a VM exit (with involved KVM and
QEMU processing and the subsequent VM enter). The overhead is in the order of 1-10 us.

➢ Interrupts are extremely expensive in both host and guest environment - they have high hardware and OS
overhead. They becomes even more expensive with VMs, since they hardware overhead (context switch) is
replaced by a VM exit*. Overhead is in the order of 5-40 us.

These numbers may look acceptable to you, but they actually aren’t in Data Centre environment. A 20 us per-packet
overhead implies a 50 Kpps packet-rate upper bound. 40Gbit hardware NIC can do over 50 Mpps (with short packets).

(*) Posted interrupt mitigate this problem, but cost remains high.

Transmission throughput performance (1)
Some observations:

➢ For each packet transmitted - i.e. for each ndo_start_xmit call - there is one producer notification (TDT write) and,
with one vCPU*, one consumer notification (TX interrupt).

➢ The interrupt routine needs 5 register accesses
○ ICR (Interrupt Cause Read) read to get the interrupt reason and acknowledge it.
○ IMC (Interrupt Mask Clear) write to disable the interrupts.
○ STATUS register read to flush the previous register write.
○ At NAPI polling exit, IMS (Interrupt Mask Set) write to enable the interrupts.
○ STATUS register read to flush the previous register write.

guest code VM-exit KVM frontend + backend KVM VM-enter guest codevCPU thread

TDT write return from
ioctl()

ioctl()

(*) With multiple vCPUs, some ndo_start_xmit call may go in parallel with the NAPI poll callback, which runs with TX interrupts disabled, and therefore some interrupts are coalesced.

Transmission throughput performance (2)
Short packet experiments are good at evaluating the
per-packet fixed overhead, without interference due to
size-dependent copy overhead. We measure guest-to-host
transmission of UDP packets. UDP is chosen over TCP to
avoid interferences due to ACKs, in such a way to better
evaluate the TX datapath.

Performance is really poor, being killed by notification
overhead - interrupts and register accesses.

guest code VM-exit KVM frontend + backend KVM VM-enter guest codevCPU thread

TDT write return from
ioctl()

ioctl()

UDP payload Packet rate Throughput

20 B 32 Kpps 2.5 Mbps

500 B 32 Kpps 126 Mbps

1.5 KB 17 Kpps 206 Mbps

15 KB 3.6 Kpps 438 Mbps

64 KB 910 pps 476 Mbps

Receive throughput performance (1)
Some observations:

➢ With the vCPU (NAPI) thread running in parallel to the QEMU IO Thread, RX interrupt coalescing is possible, that is
very beneficial to performance. However, how coalescing shows up really timing-dependent (that is
machine-dependent), so measurements are often very difficult to reproduce

➢ For each interrupt processed by the driver, there is one producer notification (RDT write).
➢ When coalescing happens, interrupt cost (and RDT write) is amortized over a large batch of packets.

guest code VM exit & enter cleaning and producing RX descriptorsvCPU thread

I/O thread frontend consuming RX descriptors

wakeup

main-loop

RX interrupt Enter polled
mode

Exit polled
mode

Receive throughput performance (2)
With host transmitting UDP packets to guest application
we can measure RX datapath performance. Because of
interrupt coalescing, packet rates are way higher.

Unfortunately, high-packet rates may cause receiver
livelock*, with the application not having enough time to
drain its user-space socket buffer, and driver forced to
drop lots of packets because the socket buffer is full.

UDP payload Sender rate Receiver rate

20 B 740 Kpps 600 Kpps

500 B 700 Kpps 590 Kpps

1.5 KB 470 Kpps 136 Kpps

15 KB 127 Kpps 15 Kpps

64 KB 33 Kpps 17 Kpps

(*) It’s called livelock because the RX datapath is doing a lot of useless work, since packets will be dropped at the very
end.

Latency performance
People like large bandwidth, but latency is maybe even more critical*. Among the other things, it really affects TCP
performance, especially for bursty traffic (e.g. HTTP). With bursty traffic, we cannot count on batch of packets to amortize
notification costs, since traffic is sparse. Latency performance is therefore limited by interrupt overhead and multiple
register accesses.

Guest-to-host or host-to-guest ping-pong experiments, carried out using netperf UDP request-response tests, reports a
maximum transaction rate of about 17000. This means that the average round trip time between an application running
on the guest and one running on the host is about 60 us. Most of this overhead is due to the two interrupts (RX and TX)
and the 12 register accesses (TDT and RDT write plus 5 accesses per interrupt).

(*) The bufferbloat problem comes from this misconception.

I/O paravirtualization ideas (1)
Our e1000 NIC is emulated, it’s not real hardware. So why do we emulate?

Emulation is just a nice way to achieve software compatibility. By means of emulation, a guest can simply reuse
unmodified e1000 driver, network stack and all the rest of software appliance. This situation is also referred as full
virtualization.

Questions follow:

1. Do we really need 5 register accesses per interrupt?
2. Do we really need to to emulate things like link auto-negotiation, on-board flash or EEPROM?
3. Do we need to emulate plenty of registers that control hardware details that do not even make sense in software,

and that we’re not required to emulate?
4. Do we really need that many producer/consumer notifications (register access, interrupts)?

producer/consumer system

I/O paravirtualization ideas (2)
In the very end, we can see the e1000 driver and the e1000 frontend, together, as a producer consumer system that
transfers buffers back and forth between the guest kernel and the the hypervisor backend. The driver produces output
buffers to be transmitted and input buffers to be filled in. The frontend consumes output buffers passing them to the
backend and consumes input buffers by filling them in. The e1000 rings are two queues that decouple producer from
consumer.

Reformulating the last questions: is it possible to build a better - simpler and more efficient - producer/consumer system
that matches the same interfaces as the composite e1000 driver + frontend?

e1000
frontend

e1000
driver

Hypervisor
net backend

Guest
network stack

NIC driver
API

e1000
interface

net backend
API

producer/consumer system

I/O paravirtualization ideas (3)
A better producer/consumer system should follow these principles:

A. Registers used only by the producer to notify the consumer that a queue is not empty anymore. They should not be used to store
producer and consumer state (e.g. ring indices).

B. Interrupts used by consumer to notify producer that a queue is not full anymore.
C. Producer and consumer state should be stored in memory, so that both producer and consumer can read it without VM exit overhead.
D. Producer and consumer should be run in separate threads, so that they can work in parallel. They should both try to do as much

processing as possible (polling) before going to sleep again, to amortize notification and wake-up costs.
E. Notifications should not be used when not necessary, i.e. when the other party is actively processing (not sleeping).
F. Busy waiting (uncontrolled polling) is not an acceptable general-purpose solution.

???
frontend

??? driver
Hypervisor

net backend
Guest

network stack

net backend
API

NIC driver
API

??? interface

producer/consumer system

The VirtIO interface (1)
These principles are the foundation of I/O paravirtualization, which means that the guest device driver is aware of
running in a VM, while the rest of the guest kernel is not.

To get things right, we should note that the same principles can be applied also to other forms of virtualized I/O (block
storage, serial ports, …), since all forms of I/O can be seen as producer/consumer systems that exchange messages.

In any case we need to define a reasonable interface that is compatible with them. The VirtIO standard has been
introduced to take this role.

virtio
frontend

virtio driver
Hypervisor

I/O backend
Guest kernel

I/O driver
API

virtio
interface

I/O backend
API

The VirtIO interface (2)
VirtIO aims at high performance I/O through device paravirtualization. It’s an effort to establish a standard message
passing API between drivers and hypervisors. Different drivers and frontends (e.g. a network I/O and block I/O) can use
the same API, which implies code reuse of the API implementation.

Moreover, adopting the standard avoids introducing ad-hoc I/O paravirtualization solutions (like Xen netfront/netback).
VirtIO is currently adopted by QEMU, VirtualBox and bhyve.

HV net
backend

API

HV virtio
API

guest-HV
interface

guest
virtio API

NIC driver
API

virtio-net
frontend

HV virtio
implementation

guest virtio
implementation virtio-net driverHV backend guest kernel

The VirtIO interface (3)
The task of a VirtIO driver is to convert the OS-specific representation of the message (e.g. a skb object for a Linux
network driver) to the VirtIO message format, and the other way around.

The virtio-net frontend performs the same task on the hypervisor side, converting VirtIO messages from/to formats
understandable to the backend.

HV net
backend

API

HV virtio
API

guest-HV
interface

guest
virtio API

NIC driver
API

virtio-net
frontend

HV virtio
implementation

guest virtio
implementation virtio-net driverHV backend guest kernel

conversion conversion

The VirtIO interface (4)
VirtIO exchanges data using Scatter-Gather (SG) lists.
An SG list is conceptually a list of (physical) address
and length couples, and is usually implemented as an
array. Each SG list describes therefore a
multi-fragment buffer, that can be used by the
consumer for input or output operations.

Memory

...

fragment #2

fragment #1

fragment #3

sg-list

Virtqueues (1)
Central to VirtIO is the Virtqueue (VQ) abstraction. A VQ is a queue where SGs are posted by the guest driver to be
consumed by the hypervisor. Output SGs are used to send data to the hypervisor, while input SGs are used to receive data
from the hypervisor.

A device can use one or more queues, and the number of queues may be negotiated.

HV net
backend

API

HV virtio
API

guest
virtio API

NIC driver
API

virtio-net
frontend virtio-net driverHV backend guest kernel

virtqueue #1

virtqueue #2

Virtqueues (2)
When a guest driver wants to produce a SG, it calls the add_buf VQ method, also passing a token. On the other side, the
HV pops the SG, consumes it (interacting with a backend), and pushes it back in the VQ.

The guest polls for used SGs by calling the get_buf VQ method, so that can perform cleanup operations. The token -
which is opaque for the VQ and is not passed to the HV - can be used by the driver to match produced SGs (requests)
against consumed ones (responses). Tokens allow for out-of-order SG consumption (e.g. useful with block I/O).

GUEST DRIVERHV FRONTEND

[4] get_buf() -> Token

[1] add_buf(SG, Token)[2] pop(SG)

[3] push(SG)

consume VIRTQUEUE

Virtqueues (3)
When the driver wants the HV to start consuming SGs, it notifies it using a VQ kick (implemented with a register write).
Similarly, when the HV wants to notify the driver about consumed SGs, it uses a VQ interrupt.

To avoid busy waiting on get_buf, the driver can register a per-VQ callback function that is invoked on VQ interrupt.
Similarly, to avoid busy waiting on pop, the HV can register a per-VQ callback function that is invoked on VQ kick.

GUEST DRIVERHV FRONTEND

kick

interrupt

VIRTQUEUE

kick callback

interrupt
callback

Minimizing notifications (1)
The kick and interrupt operations are part of the VirtIO interface. The driver should produce as many SGs as possible
before kicking (principle E). Similarly, the HV should consume as many SGs as possible before sending an interrupt. In this
way, notification costs are amortized over many SGs.

This strategy is usually difficult to deploy. Most of the times the producer doesn’t know when the next SG will come, so it’s
forced to kick after each add_buf. The HV, instead, interrupts after each consumed packet to minimize latency.

Luckily, drivers can temporarily disable interrupts and HV can temporary disable kicks!

GUEST DRIVERHV FRONTEND

kick

interrupt

VIRTQUEUE

kick callback

interrupt
callback

Minimizing notifications (2)
If we follow principle D, we have to run the HV pop/consume/push processing in a separate thread from the vCPU
running the guest producer code. The HV thread can be waken up by the VQ kick callback.

Similarly, the get_buf/cleanup processing should run in a separate guest thread, to be waken up by the VQ interrupt
callback.

Key observations follows:

➢ Once the HV consumer thread has been waken up, VQ kicks can be disabled to temporarily switch to polled mode.
When all the pending SGs have been consumed, VQ kicks can be enabled again.

➢ Once the guest cleanup thread has been waken up, VQ interrupts can be disabled to temporarily switch to polled
mode. When all the consumed SGs have been cleaned up, VQ interrupts can be enabled again.

This strategy (similar to Linux NAPI) allows both producer and consumer to temporarily switch from interrupt mode to
polled mode. In this way, notifications (kicks and interrupts) may be amortized over many packets. Does this actually
happen? It depends on timings.

Minimizing notifications (3)
Wrapping up the previous considerations, we can build
a producer/consumer system that tries to minimize
notifications and perform processing in parallel.

The blue thread produces requests in parallel to the
green thread consuming them. The green thread
returns consumed requests in parallel to the yellow
thread cleaning them up.

While the threads run, notifications are disabled.

This scheme is general and can be applied to any
paravirtualized I/O device.

void request(Request r) {
 sg = to_scatter_gather(r);
 virtqueue.add_buf(sg, r);
 virtqueue.kick();
}

void interrupt_callback() {
 virtqueue.disable_interrupts();
 guest_worker_schedule();
}

void guest_polling() {
 while (r = virtqueue.get_buf()) {
 clean_up(r);
 }
 virtqueue.enable_interrupts();
 if (virtqueue.more_used()) {
 virtqueue.disable_interrupts();
 guest_worker_schedule();
 }
}

void kick_callback() {
 virtqueue.disable_kicks();
 hv_worker_schedule();
}

void hv_polling() {
 while (sg = virtqueue.pop()) {
 consume_request(sg);
 virtqueue.push(sg);
 virtqueue.interrupt();
 }
 virtqueue.enable_kicks();
 if (virtqueue.more_avail()) {
 virtqueue.disable_kicks();
 hv_worker_schedule();
 }
}

GUEST DRIVER HV FRONTEND

Not surprisingly, the current VQ implementation is
ring-based. To cope with multi-fragments SGs,
out-of-order SGs consumption, and optimize cache usage,
a VQ is more complex than a NIC ring (e.g. and e1000 TX
ring).

A VQ is implemented with three shared data structures:
the descriptors table, the avail ring and the used ring.

Other data structures are used, but they are private to the
guest or the HV.

The VRing implementation (1)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

A VRing descriptor is not very different from the e1000 TX
or RX ones. It contains

➢ the physical address and length of a buffer
➢ a next field for descriptor chaining
➢ flags (e.g. to indicate if the buffer is for input or

output).

An SG entry with N fragments is mapped into N
descriptors.

The descriptor table is written by the guest only, with the
HV only reading it. This removes cache invalidation effects
between producer and consumes threads.

Descriptors in the table are not necessarily used
sequentially (like e1000 rings) because the consumer may
process produced SGs out-of-order.

The VRing implementation (2)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

The avail ring it’s an indirect ring used by the guest to
expose produced SGs.

Each slot contains an head, which is the index - in the
descriptor table - to the first descriptor of an SG list
produced by the guest.

The avail ring also contains a free running index, the
avail-idx, that indicates the next avail slot to use. It is
incremented by one for each produced SG list. The
avail-idx has a similar purpose as e1000 TDT/RDT
registers, but is stored in memory (principle C).

The descriptor table is written by the guest only, with the
HV only reading it.

The VRing implementation (3)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

The used ring it’s an indirect ring used by the HV to return
consumed SGs to the guest.

Each slot is a pair, containing the head of a consumed SG
(taken from the avail ring) and the a length field. For an
output SG, the length field is 0. For an input SG it is the
total length written into the SG buffers.

The used ring also contains a free running index, the
used-idx, that indicates the next used slot to use. It is
incremented by one for each consumed SG list. The
used-idx has a similar purpose as e1000 TDH/RDH
registers, but is stored in memory (principle C).

The descriptor table is written by the HV only, with the
guest only reading it.

The VRing implementation (4)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

VQ add_buf implementation (guest):

➢ Put the SG list into free descriptor table entries,
chaining them through the next fields. If not
enough descriptors are available, return an error.
Free descriptors are chained together for efficient
allocation/deallocation.

➢ Put the head of descriptor chain in the avail ring (in
the slot indexed by avail-idx) and increment
avail-idx.

➢ The token is stored into a private ring parallel to
the avail ring.

The avail ring cannot wrap around, because the number
of ring slots is the same as the number of descriptors, and
allocation of free descriptors happens before updating the
avail ring.

The VRing implementation (5)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

VQ pop implementation (HV):

➢ Read the next slot in the avail ring. An internal
index is kept to track the last processed slot.

➢ Read the referenced SG list from the descriptor
table and return it to the caller.

Note that the HV does not modify the descriptor table.

The VRing implementation (6)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

VQ push implementation (HV):

➢ In a real implementation, this method receives as
an argument the head of the descriptors chain
representing a consumed SG, instead of the SG
itself.

➢ Put the head in the next slot used ring (in the slot
indexed by used-idx) and increment used-idx.

The VRing implementation (7)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

VQ get_buf implementation (guest):

➢ Read the next slot in the used ring. An internal
index is kept the track the last processed slot.

➢ Deallocate the descriptors for the used SG list, so
that they can be allocated again by add_buf.

➢ Return the used length to the caller together with
the associated token.

The VRing implementation (8)
DESCRIPTOR TABLE

...

avail-idx

..

used-idx

AVAIL
RING

USED
RING

9 7 6 3 0 2 ..

.. 9 6 7 ..

5

4

1

7

6

5

4

3

2

1

0

ADDRESS LENGTH FLAGS NEXT

In addition to slots and avail-idx, the avail ring contains a
flag to be used to suppress VQ interrupts. When the
producer sets this flag, the consumer should not
interrupt, and in fact the VQ interrupt method has no
effect in this case.

A similar flag stored in the used ring is used by the
consumer to suppress VQ kicks. When the consumer sets
this flag, the producer should not kick, and in fact the VQ
kick method has no effect.

These are a very useful optimization, but the
producer/consumer cannot count on it, notifications may
still arrive.

But why do we need to double check (highlighted code)?

VRing notifications (1)

void request(Request r) {
 sg = to_scatter_gather(r);
 virtqueue.add_buf(sg, r);
 virtqueue.kick();
}

void interrupt_callback() {
 virtqueue.disable_cb();
 guest_worker_schedule();
}

void guest_polling() {
 while (r = virtqueue.get_buf()) {
 clean_up(r);
 }
 virtqueue.enable_interrupts();
 if (virtqueue.more_used()) {
 virtqueue.disable_interrupts();
 guest_worker_schedule();
 }
}

void kick_callback() {
 virtqueue.disable_notifications();
 hv_worker_schedule();
}

void hv_polling() {
 while (sg = virtqueue.pop()) {
 consume_request(sg);
 virtqueue.push(sg);
 virtqueue.interrupt();
 }
 virtqueue.enable_kicks();
 if (virtqueue.more_avail()) {
 virtqueue.disable_kicks();
 hv_worker_schedule();
 }
}

GUEST DRIVER HV FRONTEND

A race condition is lurking over there.

Assuming consumer does not double check, here is
an example of what can happen. Consumer exits
the polling cycle (1), but new data is produced (2)
before consumer has the chance to enable kicks
again (4).

If producer stops for a while (e.g. no more network
packets to transmit), the request submitted at (2)
does not get executed until next kick.

To solve this, consumer has to double check for
more work after enabling VQ kicks.

VRing notifications (2)

check for more work == false

enable kicks

exit the worker

insert more work

kick == NOP

don’t produce anything for an hour

......

2

3

4

5

6

GUEST DRIVER HV FRONTEND

1

VirtIO defines an optional advanced feature for VQ kick suppression, replacing the flag-based suppression, referred to as
event-idx. At the end of the used ring, the consumer stores an avail-event-idx field, to indicate when the next kick is
desired. The producer should kick when avail-idx goes beyond avail-event-idx from the last time kick was invoked, which
means that the producer has just filled the avail slot at index avail-event-idx.

VRing notifications (3)

old-avail new-avail

avail-event
KICK

old-avail new-avail

avail-event
SUPPRESS

old-avail new-avail

avail-event
SUPPRESS

In the examples, the producer has called add_buf
many times, so that avail-idx transitions from old-avail
to new-avail since the last time the kick method was
invoked.

A dual interrupt suppression mechanism is also
defined, based on an used-event-idx field stored at the
end of the avail ring.

old-avail new-avail

avail-event
KICK

Why is event-idx useful? The avail-event-idx may be used by the consumer to ask for kicks as soon as there is more to
consume, by setting avail-event-idx to the current value of avail-idx*. By doing this, we obtain the very same behaviour of
of flag-based suppression, with the advantage that the consumer does not have to reset the flag in the VQ kick callback.

However, event-idx may be used to ask for delayed notifications. If the consumer sets avail-event-idx = avail-idx +
20, the producer will kick only when 21 more SGs will have been produced. In this way, the notification cost is amortized
over 21 requests.

Consequently, event-idx is an additional mechanism to suppress notifications. Should we always use delayed
notifications? Not in practice, we should use them only when we are sure latency will be under control.

VRing notifications (4)

(*) Double check is still necessary to avoid race conditions.

avail-idx (171)

avail-event-idx (191)

Virtio networking
By means of a solid I/O paravirtualization scheme, a VirtIO network adapter (virtio-net) can be designed. The workflow of
driver and front-end is not much different from the one used with e1000, but here we will also apply our
paravirtualization principles.

Let’s make a concrete example, assuming Linux as guest OS, and QEMU as Hypervisor. The virtio-net adapter has at least
one VQ for TX and one VQ for RX. More TX/RX VQ couples can be negotiated at initialization time, to spread network
processing over multiple CPUs.

HV net
backend

API

HV virtio
API

guest
virtio API

NIC driver
API

virtio-net
frontend virtio-net driverHV backend guest kernel

TX virtqueue

RX virtqueue

Virtio-net transmission
The virtio-net driver translates each skb objects into a multi-fragment SG that matches the packet fragments. A GSO
packet (up to 64KB) may need up to 17 VirtIO descriptors. The QEMU virtio-net front-end consumes a virtio-net TX SG list
by passing it to a net backend (e.g. a TAP device). The TX consumer runs into a deferred context within the QEMU IO
Thread. Driver performs TX cleanup operations of previous TX SGs already consumed (get_buf) opportunistically, right
before calling the add_buf. This is possible because TX cleanup does not affect latency. Since get_buf and add_buf are
called by the same thread, this strategy does not require locking the TX VQ.

guest kernelvirtio-net drivervirtio-net frontendTAP backend

TX VQ

skbskbSGSGSG

writev()

1

234

5

6 7

Virtio-net reception
At initialization time, the virtio-net driver pre-allocates skb objects and add_bufs their internal buffer to the RX VQ.

The QEMU virtio-net frontend uses (consumes) an RX SG list to copy in a packet received from the net backend, and
pushes it back to the driver. On interrupt, the driver defers the get_buf work to the NAPI kernel thread, where
consumed skb objects are pushed up to the kernel stack and replaced by freshly allocated skbs (with new add_buf calls).
Similarly to the transmission datapath, add_buf and get_buf are called by the same thread, therefore no locking is
required on the RX VQ.

guest kernelvirtio-net drivervirtio-net frontendTAP backend

RX VQ

skbskbSGSGSG

read()

1

2

3

4 5 6

7

Virtio-net and delayed notifications (1)
The virtio-net driver does not normally know when the guest kernel will ask to transmit the next packet. Therefore, the
virtio-net frontend cannot use avail-event-idx to ask for delayed TX kicks without incurring in unbounded latency (TX SGs
stall indefinitely in the VQ).

Similarly, the virtio-net frontend does not know when the HV net backend will receive the next packet. Therefore, the
virtio-net driver cannot use used-event-idx to ask for delayed RX interrupts, since RX used SGs may stall indefinitely in the
VQ.

AVAIL
RING

avail-idxprevious
avail-event-idx

avail-event-idx

In the example, red TX SGs may stall in the
VQ indefinitely, since nobody knows when
avail-idx will advance beyond
avail-event-idx.

Virtio-net and delayed notifications (2)
Conversely, delayed TX interrupts are normally used, since the driver can assume the frontend will process pending TX
SGs as soon as possible, and therefore knows that it will receive an interrupt soon. Moreover, introducing a bit of
controlled delay on the TX cleanup processing does not affect latency.

This strategy is useful when TX producer is faster than TX consumer. In this situation, without delayed TX interrupts,
descriptor table is always almost full (just one or a few descriptors available), so that producer fills the free one(s) and
goes to sleep, waiting for a VQ interrupt. When an interrupt comes, only one or a few descriptors have been used, and
the cycle restarts. On average, we have thus approximately one TX interrupt per TX SGs, which is bad. If we use
used-event-idx, we can tell the consumer to delay the TX interrupt until enough SGs have been consumed, so that the
interrupt is amortized over many slots.

AVAIL
RING

avail-idx

USED
RING

used-idx

previous
used-event-idx

used-event-idx

In the example, red TX SGs are pending in
the VQ. Producer sets used-event-idx in
such a way that consumer will interrupt
once 10 SGs will have been used.

Virtio-net performance evaluation
We now redo the same performance unit tests done with e1000, to check that paravirtualization principles lead to a
better producer/consumer system.

producer/consumer system

virtio-net
frontend

virtio-net
driver

Hypervisor
net backend

Guest
network stack

NIC driver
API

virtio
interface

net backend
API

netperf
UDP

application

netperf
UDP

application

Virtio-net transmission throughput
Performance benefits from parallel frontend TX
processing, TX kick suppression and delayed TX
interrupts.

For tests over 1.5 KB e1000 performs TSO
emulation, while virtio-net just passes the TSO
packet unaltered to the TAP.

Paravirtualization principles lead to huge
improvements over e1000.

UDP payload Packet rate Throughput Improvement
over e1000

20 B 270 Kpps 43.3 Mbps 17.3 x

500 B 270 Kpps 1,08 Gbps 8.5 x

1.5 KB 240 Kpps 2.9 Gbps 14 x

15 KB 162 Kpps 19.5 Gbps 44 x

64 KB 70 Kpps 36.6 Gbps 76 x

driver (first TX SG) VM exit & enter driver cleaning and producing TX SGsvCPU thread

I/O thread frontend consuming TX SGsmain-loop

TX kick Enter polled
mode

Exit polled
mode

Virtio-net receive throughput
The table shows measurements for the same
reception experiments performed over e1000.
Performance benefits from lighter interrupt
management, interrupt suppression, and RX kick
suppression.

For short packets, netperf receiver is able to
perform better with e1000. This is not
contradictory, it’s a consequence of livelock.
Higher sender rates means more wasted work,
and so less time for the receiver to drain its socket
receive queue. So virtio-net loses because it’s
faster.

In general, a good improvement, but e1000 is still
competitive thanks to NAPI.

UDP
payload

Sender rate Improvement
over e1000

Receiver
rate

Improvement
over e1000

20 B 1010 Kpps + 36% 560 Kpps - 7%

500 B 970 Kpps + 38% 430 Kpps - 28%

1.5 KB 870 Kpps + 85% 382 Kpps 2.8 x

15 KB 460 Kpps 3.6 x 143 Kpps 9.5 x

64 KB 204 Kpps 6.2 x 38.3 Kpps 2.3 x

Virtio-net latency
The virtio-net interrupt routine (differently from e1000), does not require lots of register accesses. In the most legacy
configuration, one access is necessary to acknowledge the interrupt. However, in practice, virtio devices use per-queue
MSI-X interrupts, that do not require a register access as acknowledge. This greatly improves latency.

To be fair, since consumer (HV) TX processing happens in a different thread than the producer (guest) TX processing, on
TX kick virtio-net has to pay the overhead context switch (if the consumer was not already running), while e1000 doesn’t.

Ping-pong experiments (netperf UDP request-response tests) reports a maximum transaction rate of about 29000. Thus
the average round trip time between an application running on the guest and one running on the host is about 35 us,
which is roughly half of what measured with e1000.

Some references
1. Rusty Russell - virtio: Towards a De-Facto Standard For Virtual I/O Devices
2. Virtio 1.0 standard. Available online at http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
3. Speeding Up Packet I/O in Virtual Machines. Available online at http://info.iet.unipi.it/~luigi/papers/20130903-rizzo-ancs.pdf
4. The QEMU project. http://www.qemu.org.

http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
http://info.iet.unipi.it/~luigi/papers/20130903-rizzo-ancs.pdf
http://www.qemu.org

