
Emulation

G. Lettieri

Oct. 2018

1 General strategy

The program we have written for the Manchester Baby is an emulator. An
emulator is a program that is built around a main loop that mimicks the actions
of the target machine processor: fetch a single instruction, decode it, execute
it and start again. The execution phase typically contains a big switch with a
case for each possible instruction of the target processor. By emulating every
instruction, we are able to run any software that was written for the target
machine. This also gives our emulator complete control on all the things that
target software tries to do.

Let us now look at how we can build an emulator for machine with a more
complex CPU and I/O devices. The general strategy for the implementation is
as follows:

• write the emulator as a non-privileged program in the host system;

• define a data structure for each device (CPU, memory, MMU, each I/O
dev, . . .);

• write a CPU loop like the one in Fig. 1.

Since the emulator is a non-privileged program, it can only interact with the host
hardware through the operating system libraries and primitives. We assume a
Unix-like system with

• files, accessed through the open, close, read, write and fseek functions;

• processes and threads;

• the select system call.

In the Manchester Baby example we only had two devices: CPU and mem-
ory. Moreover, the CPU only had two registers: the accumulator A and the
instruction pointer CI .

1

memory mem;
cpu state cpu;

void cpu loop()
{

raw instr ri ;
decoded instr di ;

for (;;) {
ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);

}
}

void exec(decoded instr di)
{

switch(ri−>opcode) {
case . . .
case . . .
}

}

Figure 1: Emulated CPU pseudo-code.

2

1.1 Memory

To implement the Baby memory we defined an array of 32 int32_t entries. An
array is a good candidate for the implementation of the main memory also in
the general case, but we have to consider some complications. In particular,
the Baby memory was only word-addressable: each address was the address of
a word, not of a byte (bytes did not even exist back then). Modern systems
typically are byte-addressed, they may support words of different sizes, and they
may also allow misaligned reads and writes. The x86 architecture, in particular,
supports all of these cases. Therefore, a more fitting candidate data structure
for a modern main memory is an array of bytes.

1.2 CPU

The Baby emulator CPU state only consisted of two int32_t variables, one for
A and the other for CI . A modern CPU will have many more registers, which
we can put in a cpu_state data structure. Note that we already do something
similar when we implement processes in a multiprogrammed kernel, but there
is a difference: we now need to consider all the CPU registers available to the
programmer, even those registers that are only accessible to privileged software
(e.g., IDTR, CR0, CR2, . . . in x86). This is because our emulator will need to
run all of the software of the target system, including the system software.

A modern CPU will also have many more features that we need to emulate.
In particular: interrupts, exceptions and protection.

1.2.1 Interrupts

We can implement interrupts by allocating a flag for the interrupt request and
(if the target architecture needs it) a variable for the interrupt type. Then, the
CPU loop must check the interrupt flag after the execution of each instruction. If
the interrupt is set, we must load the interrupt handler address in the emulated
CPU instruction pointer, and then start fetching again:

. . .
bool interrupt ;
uint8 t int vector ;

void cpu loop()
{

. . .
for (;;) {

ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);
if (interrupt) {

. . .
/∗ obtain the new ip from

3

∗ the interrupt descriptor table
∗/

cpu−>ip = read idt(int vector);
}

}
}

We must also do all other things the target CPU does on interrupt acceptance.
For the x86, these include saving the current (emulated) EIP and EFLAGS regis-
ters on top of the stack (the emulated stack in the emulated memory, pointed to
by the emulated ESP register in the cpu_state), and many other things which
we should recall from other courses.

1.2.2 Exceptions

Exceptions (e.g., division by 0, general protection, page fault, . . .) are a bit
more complex, since they may occur anywhere during the fetch, decode and
execution of an instruction. If the language we are using supports it, we can
use the try . . . catch construct:

. . .
void cpu loop()
{

. . .
for (;;) {

try {
ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);
if (interrupt) {

. . .
}

} catch (exception e) {
. . .

cpu−>ip = read idt(e−>type);
}

}
}

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case DIV:
. . .

so = get 2nd operand(ri);

4

Figure 2: Emulation of exceptions in the CPU in the C language.

if (so == 0)
throw exception(DIVISION BY ZERO);

. . .
}

}

Note that, in x86, exceptions can also be raised by read_idt itself (gate not
present, protection, even page fault), so we need to account for that also (this
is left as an exercise for the reader).

The C language does not support exceptions. In this case we can use the
setjmp and longjmp functions from the C standard library as follows:

. . .
#include <setjmp.h>
. . .

jmp buf exc jbuf;
exception exc type;

void cpu loop()
{

. . .
for (;;) {

if (setjmp(&exc jbuf)) {
. . .

cpu−>ip = read idt(exc type);
}
ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);
if (interrupt) {

. . .
}

}
}

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case DIV:
. . .

so = get 2nd operand(ri);
if (so == 0) {

5

. . .
exc type = DIVISION BY ZERO;
longjmp(&exc buf);
}
. . .

}
}

First, we need to define a variable with type jmp_buf (the type is defined in
the library). Then, we call setjmp with the address of our variable, which
is exc_jbuf in the Figure. The functions stores in exc_jbuf all the informa-
tion needed to jump at the current program point and returns 0 (which means
that the code in the if is skipped). Then, if/when we later call longjmp with
exc_jbuf, the program will jump to the corresponding setjmp. This time,
setjmp will return 1 and the code in the if will be executed. Note that we
need to pass all additional information (like the exception type in the Figure)
through global variables, since the stack is unwinded during the jump.

1.2.3 Protection

To emulate protection we simply need to implement in software all the checks
performed by the target CPU. For example, the SIDT x86 instruction changes
the CPU pointer to the interrupt descriptor table and it is, of course, a privileged
instruction that can only be executed when the CPU is at the system privilege
level. In our emulator we will need to do something like the following:

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case SIDT:
. . .
if (cpu−>privilege level < SYSTEM)
throw exception(GENERAL PROTECTION);

/∗ otherwise ∗/
cpu−>idtptr = . . .
. . .
}

}

1.3 I/O

I/O devices are connected to the rest of the system via interfaces. Interfaces
have a set of registers that are mapped in I/O or memory space. I/O registers
look like memory locations, but the crucial difference is that whenever we write
(or even read) from an I/O registers, actions take place, e.g., a character is

6

printed, a message is sent, and so on. Therefore, in our emulator, we need a
way to map I/O register accesses to functions, rather than simply to locations
in memory.

In x86, I/O space can only be accessed via the in and out instructions,
therefore we can emulate all accesses to I/O mapped interfaces with something
like (assuming all operand sizes are the same):

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case IN:
. . .

a = get io addr(di);
v = io input(a);
. . .

case OUT:
. . .

v = get 1st operand(di);
a = get io addr(di);
io output(v, a);
. . .

}
}

The io_input and io_output functions might be implemented with another
switch:

void io output(operand v, ioaddr a)
{

switch(a) {
. . .

case 0x40:
/∗ this is the timer ∗/
. . .

case 0x60:
/∗ this is the keyboard ∗/
. . .

}
}

However, such a solution would be very inflexible. The PC platform, for exam-
ple, can come with many different configurations of I/O devices and cannot be
easily captured by such a static mapping of addresses. A much better solution
is to have a data structure that maps I/O addresses to the data structures that
represent the I/O devices. Then, we can do something like:

7

iomap io;

void io output(operand v, ioaddr a)
{

iodevice ∗iodev = io.search(a);

if (iodev != NULL)
iodev−>set register(v, a);

}

But we also need to consider memory mapped interfaces, i.e., interfaces whose
registers are given memory addressed and then are accessed via any instruction
that can have memory operands. In this case we need to do something like
the following, whenever an instruction tries to write memory (and similarly for
reading):

memory mem;
mem map mm;

void mem output(operand v, addr a)
{

iodevice ∗iodev = mm.search(a);

if (iodev != NULL)
iodev−>set register(v, a);

else
mem[a] = v;

}

That is: first check whether the given address corresponds to an I/O interface,
and only if this is not the case do a normal write into the (emulated) memory.
The cost of this lookup can be mitigated if I/O is restricted to some fixed
region of memory, since in that case we can do a quick check on the address
value to understand if it corresponds to normal memory, without performing
the (possibly expensive) lookup into the mm data structure.

1.3.1 Asynchronous events

The biggest problem with I/O devices is that they introduce asynchronous
events in our emulation: “things” must happen in the devices while our program
is executing the CPU loop.

As a first example, let us assume that our emulated CPU writes a character
in the transmit buffer of an interface connected to a (very old) printer. The
printer will start printing the character and reset the “buffer empty” bit in its

8

status register, since now it cannot accept any other character. Concurrently,
the CPU will continue to fetch and execute other instructions and, if it tries to
read the printer status register, it will see the buffer empty bit at 0. At some
later time, the printer will finish printing the character and it will set the buffer
empty bit in the status register. If the CPU tries to read the status register
now, it will see the buffer empty bit at 1. Therefore, the result of the status
register read should depend on an event which is asynchronous with respect to
what our emulated CPU is doing.

If we go back to our state machine abstract model, we se that now the
T-state contains the state of the target CPU (the contents of its register, the
interrupt flag, and so on), the state of the target main memory, and also the
state of the target printer. This latter state is made up of the contents of the
interface registers (in our case, the transmit and status registers), and the state
of target I/O device itself. It is no longer true that this T-state changes only
when the CPU executes an instruction, i.e., the T-next function should take
into account also events that occur inside the printer. Since these events occur
concurrently with the execution of the instructions, things may become very
complicated very quickly: we should take a new snapshot (modelled as a T-
state change) also when the printer becomes ready to accept a new character,
but this may occur while the target processor is in the middle of the execution
of an instruction. Note that this is different from exceptions, since these are
only raised in precise points in our program, while the change in the I/O device
state may occur at any moment.

A simple way to think of the new system without disrupting too much of
what we have already done, is to model it as a non-deterministic state machine.
Like before, we take a new snapshot only when the CPU has completed the
execution of an instruction (possibly aborted by an exception), but whenever
the snapshot captures a 0 in the buffer-empty bit of the printer status register,
we allow for two possibile next states: in both states the CPU will have executed
the next instruction, but in one state the buffer-empty bit is still 0, and in the
other state the bit has become 1. Each execution of the software in the target
system may take one path or the other.

In general, our virtual machine will also be non-deterministic, so each V-
state may also have more than one next state. Assume now that we start from
a V-state v that is interpreted as a T-state t. We say that our virtual machine
preserves the interpretation if, for each V-state v′ which is a next-state of v, there
exists a T-state t′ among the next-states of t such that t′ is an interpretation of
v′. In other words, each execution of our virtual machine must correspond to
at least one possible execution of the target machine.

Note that this definition allows our virtual machine to never emulate some
target executions. This may or may not be acceptable, depending on context.
In the printer emulation example, it may be acceptable: we can assume that
the target printer is very fast, so fast that the CPU is never able to see the
buffer empty bit go to 0: the read from the status buffer can simply always
return 1 in the buffer empty bit. From an implementation point of view, this
is possible if the action that our virtual machine has to perform in response to

9

the write to the transmit buffer can be implemented by a (mostly) non-blocking
operation in the host system. For example, this is the case if we emulate the
printer by simply writing the received characters in a file, or by showing them
on the terminal.

Assume now, as a second example, that the CPU tries to read from the
receive buffer register of the keyboard. We can emulate this by, e.g., reading
from the terminal with a read system call. Now we have a different problem: the
read system call may block the process waiting for the user to press a key on the
keyboard (actually, it normally waits until the user has entered a complete line,
but we can ignore this for now). Blocking the emulated CPU for an unbounded
amount of time may not be acceptable. Assume, for example, that the software
running in the target is a videogame: the enemies must continue to move even
if the player is not moving her character. We can solve this particular problem
by using non blocking I/O in the host system. This is an option that can be
set on a file descriptor (including one connected to a terminal). If the option is
set, any read will return an error if no input is available, instead of blocking.
If the read returns error, we can complete the emulated input instruction by
returning the previously read character.

As a final example, assume the program running on our emulated CPU
is trying to read from the keyboard using interrupts. Now, we need to set
our emulated interrupt flag as soon as the emulated keyboard has a new key
available. But, again, our emulator only knows that the emulated keyboard
has a new key when the read system call returns (without error). We have
essentially two choices here:

• put the file descriptor corresponding to the emulated keyboard in non
blocking mode, then periodically (e.g., after the CPU loop has executed a
few instructions, or whenever it executes an HLT instruction) issue a read

to check whether something new has arrived;

• use multi-threading; we can use a thread for the CPU loop, and one or
more threads for the I/O devices.

(Actually we also have a third, less common option: use asynchronous I/O, if
available.) If we have a separate thread for the emulated keyboard, we can sim-
ply block it in the read and set the interrupt flag (in shared memory) whenever
the system call returns.

Most emulators, however, do not have a separate thread for each device.
Another solution is to have just one thread for all the I/O devices. This thread
is normally blocked on a select system call that checks all the file descriptors
corresponding to all the devices. Whenever any one of the file descriptors is
ready, the select returns, the thread uses some data structure that maps the
file descriptor number to an emulated I/O device, it performs the necessary
actions on the devices (possibly setting the interrupt flag), and then blocks in
the select again.

10

2 I/O examples

We now sketch the implementation of some I/O interface we already know. It
is a useful exercise to fill the missing details and to think at the emulation of
other interfaces.

We can implement each I/O device as an object, or a set of objects. The real
device in the target system is connected to the CPU via an interface consisting
of a set of registers, with may reside in a separate address space (e.g., the I/O
address space of IA32 architectures, or the configuration space of PCI devices),
or just in memory space. In all cases, the emulated CPU will access the emulated
device via a (at least) a pair of functions provided by the object that implements
the device, which we can define as follows (assuming 8 bit registers only):

class IOdev {
public:

// get the contents of register at address a
virtual uint8 t get register (address a) = 0;
// write v into register ad address a
virtual void set register (address a, uint8 t v) = 0;

}

These functions are the interface between the device object and the emulated
interface. The object will implement them to complete the I/O emulation. In
order to do that, the object has to interact with the host operating system.
Therefore, there will be another interface, between the I/O object and the host
OS. The details of this latter interface depend on the kind of device we are
emulating and the way we are using the host resources to emulate it.

It is often useful to split the code that emulates a device into two parts:

• a frontend, that only depends on the device we are emulating (e.g., which
registers the devices has and what they do);

• a backend, that depends on how we are using the host to emulate the
device (e.g., we are using a file, a terminal, . . .).

The frontend implements the interface between the emulated CPU and the em-
ulated device (the CPU-frontend interface), while the backend implements the
interface between the emulated device and the host (the host-backend interface).

In some emulators the backend and frontend are implemented as two inde-
pendent objects, interacting through yet another interface: the frontend-backend
interface. This setup enhances the flexibility of the emulator since now we can
attach one of several equivalent emulated devices (e.g., Ethernet cards from Re-
altek, Intel, Novell, . . .) to any of several possible host resources (e.g., sockets,
software bridges, tap devices, . . .). This interface is also dependent on the kind
of emulated device (e.g., video adapter, network interface, block device, . . .).

11

2.1 Multi-threading

If the emulator uses several threads (e.g., one for the CPU loop and another for
the I/O select() loop), then the I/O device object will be accessed concur-
rently and will need to be protected from interference problems with any of the
techniques you already know or you are studying right now.

Be careful not to mistake the frontend/backend separation with the CPU-
thread/IO-thread one: it is generally not the case that the frontend is only
accessed by the CPU-thread and the backend only by the IO-thread. Instead,
depending on the emulator and the kind of device, it may well be the case that
both frontend and backend are accessed concurrently by both threads. In a
typical interaction, the CPU thread executes an I/O instruction that accesses
a register in the I/O device and it calls the corresponding set_register (or
get_register) method on the device. This method will update the state of the
object (to match the state of the target system) and then will call into the back-
end (using the frontend-backend interface) to complete the I/O operation, all
in the same thread. Concurrently, the I/O thread may exit from the select()

and find out that the same device needs to be updated (e.g., a new key has
been pressed on the keyboard). Then, it will call some function of the backend
(from the host-backend interface), which will in turn call some function in the
frontend (from the frontend-backend interface). All these function calls occur
in the context of the I/O thread. In the following we will omit the solution to
the concurrency problems: assume that each interface function is protected by
per-object mutual exclusion (it is synchronized in the Java sense).

2.2 Hard Disk

Let us consider a simplified and abstract version of the ATA interface, with:

• a set of registers SN1, SN2, SN3, SN4 to specify the Sector Number (we
assume there are four of them since a sector number does not fit into a
single one);

• one CMD register to specify the operation we want the device to perform
(e.g., sector read or sector write);

• a BR register that gives us access to an internal buffer of the interface.

Assume all registers are 8 bits wide and a sector is 512 bytes. A write operation
is started as follows:

1. write the sector number in the SN1, . . . , SN4 registers;

2. write the code for “write sector” in the CMD register;

3. perform a sequence of writes in the BR register to fill the internal buffer
with the data we want to write.

12

Only when the buffer is full the interface starts the write operation, ordering
the device to move the read/write head to seek for the desired sector, and then
start writing the buffered data to the disk plate.

To emulate this interface, the corresponding (frontend) I/O object in our
emulator program will look like the following (assuming C++):

class HDFrontend: public IODev {
enum { iSN1, iSN2, . . . };
static const uint8 t WRITE = . . . ;
static const uint8 t READ = . . . ;

uint8 t SN1, SN2, SN3, SN4;
uint8 t CMD;
uint8 t buf [512]; // the internal buffer
int next; // next read/write position in the buffer

/∗ we assume split frontend/backend ∗/
HDBackend ∗be;

public:
HDFrontend(HDBackend ∗be): next(0), be(be) {}

void set register (address a, uint8 t v) {
/∗ the interface may be mounted at several addresses,
∗ but the the lower bits of the address always
∗ identify the same register
∗/
int index = a & ADDR MASK;
switch (index) {
case iSN1:

/∗ just store it for later ∗/
SN1 = v;
break;

case iSN2:
/∗ just store it for later ∗/
SN2 = v;
break;

. . .
case CMD:

/∗ just store it for later ∗/
CMD = v;
break;

case iBR:
if (CMD != WRITE) {

/∗ an error ∗/
}

13

buf[next++] = v;
if (next == 512) {

/∗ compute the sector number ∗/
uint32 t sn = SN1 | SN2 << 8 | . . . ;
/∗ start the write ∗/
be−>write sector(sn, buf);
/∗ reset ∗/
next = 0;

}
break;

. . .
}

}
. . .

};

The backend may use a file in the host system to emulate the target hard disk.
It needs to translate the sector number into a file offset and perform the write.

class FileBackend: public BlockDeviceBackend {
int fd; // file descriptor
size t hdsize;
. . .

public:
FileBackend(const char ∗filename, size t hdsize):

fd (0), hdsize(hdsize)
{

/∗ create if it does not exist , but do not O TRUNC! ∗/
fd = open(filename, O RDWR|O CREAT, 0660);
if (fd < 0) {

/∗ cannot continue, throw error ∗/
throw . . . ;

}
}
˜FileBackend() {

close (fd);
}
void write sector(int sn, const uint8 t ∗buf) {

if (outsideHD(sn)) {
/∗ do not write, update internal state ∗/
. . .
return;

}
off t offset = sn ∗ 512;
lseek(fd, offset , SEEK SET);
write(fd, buf, 512);

14

}
. . .

};

The BlockDeviceBackend should define the frontend-backend interface for block
devices. It should contain the declaration of the write sector () and, of course,
read sector () functions. A FileBackend is only one of several possible BlockDe-
viceBackends, other options being a disk partition in some host hard disk, an
host device such as a DVD,

Note the difference in the error handling in the constructor and in the
write sector () function. In the former case, our emulator is not able to open the
file: this is an error in the host and the emulator most likely cannot continue. In
the latter case, the frontend passed the backend an invalid sector number (one
that is outside the emulated hard disk): this is an error in the guest, and now
we should emulate the behavior of the target hard disk in the same scenario (set
some error bit in its status register).

2.3 Video

Let us briefly recall how VGA-compatible video adapters work. If the adapter
is in text mode, the display is organized in rows and columns of characters and
there is an area of memory that describes the contents of each character. In
the memory area, each character is represented by a pair of bytes, one byte for
the ASCII value of the symbol that must be displayed and another byte for
the foreground/background colors and optional blinking. In the simplest to use
graphics modes, the display is organized in rows and columns of pixels and there
is a much bigger memory area where the programmer can set the color of each
pixel.

The main point to note is that programs show output on the video by simply
writing in the video memory area, where each write modifies only one or two
characters or a few pixels (possibly just one). If we map each of these writes to
a function, video updates are going to take a lot of time. Instead, we can draw
inspiration from the target hardware itself: writes into video memory do not
instantly cause video updates; instead, the video adapter periodically (with a
frequency of, say, 60 times a second) scans the entire video memory to generate
the corresponding signals for the display. We can adopt the same strategy for
our emulator: we implement video memory with a plain buffer, so that writes
to emulated video memory translate to writes into the buffer, with no other
immediate side effect (and, therefore, no function to call). At the same time, we
arrange for the I/O tread (or a dedicated thread) to periodically read the buffer
and, e.g., draw the corresponding contents in a window on the host display.

2.4 Interrupt Controller

We know that I/O devices do not send interrupts directly to the CPU, which
typically only has one interrupt request pin for I/O. Instead, the target system

15

may have an interrupt controller which collects all interrupt requests coming
from the I/O devices, prioritizes them and then sends them to the CPU one
at a time, possibly with a number that identifies the interrupt source. This is
how things work for IA32 processors coupled with the APIC. If interrupts are
enabled in the CPU, it responds to the interrupt request from the APIC with
a jump to an interrupt handler routine. When the routine completes, it has to
write an EOI word in an APIC register: the APIC is then enabled to pass the
CPU lower priority interrupts that may have been queued in the meantime.

In our emulator, the interrupt controller is another IOdev object, since the
CPU must be able to read and write into its registers (in particular, the EOI
register). At the same time, the interrupt controller is used by other objects:
when an emulated device want to raise an interrupt, it cannot simply set the
CPU interrupt flag, but it has to notify the controller instead. This notification
can be implemented by a call to a method in the interrupt controller interface.
This method will update the internal state of the controller and either set the
interrupt flag, or queue the request internally if it cannot pass it right away (e.g.,
because there are higher priority requests pending). The set register () method
of the interrupt controller object, when it identifies a write to the EOI register,
can then inspect the internal queue and pass other interrupts as needed. Note
that, in a multi-threaded emulator, the actions corresponding to an interrupt
request will be performed in the I/O thread, while the actions following the EOI
are executed by the CPU thread.

3 Virtual Memory

One of the most complex part of virtualization is the management of virtual
memory. Here, we are talking about virtual memory in the guest. If the tar-
get system includes a MMU, the target system code will try to program it to
implement its own virtual memory.

Assume, for example, that we use an array of bytes, call it Mem, to emulate
the target physical memory, and assume that our CPU loop is trying to execute
the following IA32 instruction

movl 4100, %eax

If pagination is not enabled, the emulator will correctly read the operand at
Mem[4100], since the target CPU will load the operand from the corresponding
address 4100 in its physical memory. If pagination is enabled, however, address
4100 is virtual and the target CPU will not load the operand from address
4100. Instead, he address will be translated into something else, say 8196, by
the MMU, and then address 8196 will be loaded from memory. Accordingly,
our emulator must read Mem[8196] instead of Mem[4100]. We need to make a
distinction among several kinds of addresses:

• address 4100 in the example is a guest virtual address; it is an address that
needs to be translated according to the rules set up by the guest MMU;

16

• address 8196, the result of this translation, is a guest physical address; it
is the address of a location in the guest physical memory;

• &Mem[8196], i.e., the address of the location the emulator will actually
read, is a host virtual address, if pagination is enabled in the host (as it is
usually the case);

• finally, the host virtual address will be translated to an host physical ad-
dress by the host MMU.

The translation from guest virtual to guest physical is performed by the guest
MMU and we need to emulate it. We need to provide a translate address () func-
tion that returns a guest physical address when given a guest virtual address,
then we need to call this function whenever the CPU loop needs to access guest
memory. Recall that these accesses not only occur during instruction operands
loads and stores, but also during instruction fetches, since instructions are in
memory.

There is also a translation, that must not be overlooked, from guest physical
to host virtual addresses. In this simple example the translation is simple: we
use the guest physical address as an index in the Mem array. In the example,
we translate 8196 to whatever the value of &Mem[8196] is. Note, however,
that if the memory data structure we use is more complex, this translation will
accordingly be more complex. We already know of a source of complexity here:
if the target system has memory mapped I/O devices, before accessing memory
we first need to check whether the address maps to any I/O device.

Finally, the host virtual address is translated into an host physical address.
In our example, we have nothing special to do to make this translation happen:
the emulator is an unprivileged program in the host system and it typically has
no control at all on its virtual memory, which is transparently managed by the
host kernel.

3.1 Translating guest virtual addresses

To implement the translate address () function we need to implement in soft-
ware the actions performed in hardware by the target MMU. Assuming an
IA32 system, we need to read the (guest physical) address in the cr3 field of the
emulated CPU data structure and read the emulated physical memory at offset

CPU−>cr3 + 4 ∗ ((virtual address & 0xFFC00000) >> 22)

to obtain the page table descriptor, an so on. If we find some reset P bit, we
also need to throw a page fault exception.

We can speed up this process, again, by drawing inspiration from the hard-
ware. The target MMU includes a TLB, which caches recently used translations.
We can also define a software TLB of sorts, where we put recently used trans-
lations in a form that is more easily accessed. Note that the hardware TLB is
useful because it is a much faster memory compared to the main memory con-
taining the actual page tables. The software TLB, instead, is a data structure

17

in our program just like the emulated physical memory is. The software TLB
can be still useful, however, if it allows us to complete the translation from guest
virtual address to guest physical address using fewer instructions.

A simple TLB is an array of entries like the following:

struct TLB entry {
uint32 t guest virtual ;
uint8 t∗ host virtual ;

};

where we directly cache the mapping from guest virtual address to host vir-
tual address (in the above example, we would cache the mapping from 4096
to &Mem[8192]: recall that mapping are between pages, while the offset in the
page, which is 4 in the example, simply has to be added to the resulting pointer).
We can use NULL in the second field to mark an empty entry.

Assume we keep an array of, say, 1024 TLB entry’s. When we need to
translate a guest virtual address, we first use an hash function to obtain an
index into the array from the address, we check that the corresponding entry
is not empty and it actually contains the address we are looking for. If this
is the case, the host virtual field already gives us a pointer into the emulated
memory. Otherwise, we complete the translation in the ordinary way, then
store the resulting pointer in the entry (replacing any previous one). The hash
function may be very simple: since programs typically access their memory
in order, we can simply use the 10 lower order bits of the guest virtual page
address.

4 The IA32 case study

We conclude this notes on emulation by focussing a little more on the emulation
of the IA32 and AMD64 architecture.

Several features of the IA32/AMD64 architecture make its emulation par-
ticularly inefficient. The worst offenders are:

• the incredibly complex instruction format;

• the EFLAGS/RFLAGS register.

4.1 The IA32 instruction format

The IA32 instruction format has evolved over time, starting with 16 bits proces-
sors, moving to 32 bits, then adding new sets of instructions in several rounds.
The format was variable length already in the first processors, and this forces
any emulator to have a combined fetch&decode function. In the current proces-
sors, the format is as follows:

1. optional 1–4 prefix bytes;

18

2. 1–3 opcode bytes;

3. optional Mod R/M byte;

4. optional SIB byte;

5. optional 1/2/4 bytes displacement;

6. optional 1/2/4 bytes immediate operand.

Prefix bytes are used for several purposes, among them we can mention:

• the REP, REPE, REPNE, . . . prefixes for string instructions;

• the LOCK prefix, to lock the bus and turn instructions like XCHG into
atomic operations;

• some prefixes to change the default size of “large” operands. Operands
may be either “short” (8 bits) or “large” (either 16 or 32 bits depending
on several things, including these prefixes).

The opcode may include three bits that encode a register operand, so that
instructions like pushl %eax may be encoded in just one byte. The “Mod R/M”
byte encodes, in complex ways, the mode of one of the two operands, which may
be either register, immediate, or memory, the latter in several formats. The
“SIB” byte encodes the Scale, Index and Base of memory operand expressions
like 16(%ebx, %ecx, 4). The “16” displacement in this expression is encoded
in the “displacement” field. The optional “immediate” field encodes the value
of operands such as $1000.

The encoding is not regular at all, since several special cases have been added
over the years to add new features and new instructions. The Bochs file that
implements the fetch&decode function for IA32 is more than 2000 lines long!

Of course, all this complexity adds to the time needed to decode each IA32
instruction.

4.2 The AMD64 instruction format

The AMD exstension of the IA32 architecture to 64 bits, later adopted also by
Intel, reuses much of the IA32 instruction format with an additional byte prefix:
the REX prefix. Some instructions in AMD64 (most notably the PUSH/POP
instructions) default to 64bit operands. All the others, however, only use 64
bits operands when prefixed by REX. This adds another byte to the encoding
of most instructions.

Moreover, AMD64 brings the number of general purpose registers from 8 to
16, but the IA32 machine code only had 3-bits fields for registers names (e.g.,
in the SIB byte). The REX byte also provides the missing bits for those fields.

19

4.3 The IA32 EFLAGS (AMD64 RFLAGS) register

The main problem with the EFLAGS register is that almost all instructions up-
date it: this includes the arithmetic instructions, the compare instructions, the
logic instructions, the shift and rotate instructions. Depending on the emulator
architecture, and on the host CPU, the emulator may need to compute all the
flags in software. Some of these are both complex to compute, and little know
and used:

• the PF (parity) flag is set if the number of set bits in the least significant
byte of the result is even;

• the AF (adjust) flag is set if there has been a borrow/carry out of the four
least significant bits of the result (used in BCD arithmetic).

Our emulator will have to compute all these things, for many instructions.
Note that, even if the EFLAGS bits are updated very often, they are very

seldom read. Essentially, they are only read by conditional jump instructions.
Therefore, there is room for optimization here, since we can think to compute
these flags in a “lazy” way, delaying their computation until they are actually
needed, which in many cases means never.

We don’t explore this optimization here, since we are going to introduce
a better technique that allows us to address this and other problems: binary
translation.

20

	General strategy
	Memory
	CPU
	Interrupts
	Exceptions
	Protection

	I/O
	Asynchronous events

	I/O examples
	Multi-threading
	Hard Disk
	Video
	Interrupt Controller

	Virtual Memory
	Translating guest virtual addresses

	The IA32 case study
	The IA32 instruction format
	The AMD64 instruction format
	The IA32 EFLAGS (AMD64 RFLAGS) register

