
Harware Assisted Virtualization: The Intel VMX

technology

G. Lettieri

28 Oct. 2015

1 Trap-and-emulate

A special case of hardware assisted virtualization is when the target and host
architecture is exactly the same, i.e., we emulate the full processor by reusing
the hardware mechanisms that are already available, and nothing else. The idea
is to use the two levels of privilege, user and system, and reserve the system
level for the Virtual Machine Monitor and the user level for all the software
running inside the virtual machine (i.e., the software originally written for the
target machine, also known as guest software). The effect of this is that the
target-machine system software will run at user privilege. This scheme may
work if our processor raises an exception whenever a privileged instruction is
used while running at user level: the virtual machine monitor may intercept the
fault and emulate the effect of the privileged instruction on the virtual state.
Non privileged operations, which typically are a large fraction of the stream
of instructions, may be executed directly. This is called a “trap-and-emulate”
virtual machine monitor.

The trap-and-emulate virtual machine monitor can be implemented on some
architectures but, unfortunately, not on the (original) Intel x86 processors. The
problem is that some privileged operations do not raise an exception when
executed at user level. One example is the popf instruction. This instruction
pops one double-word from the stack and stores it in the EFLAGS register. This
is a privileged operation since the EFLAGS register contains the IF flag, that,
when zeroed, disables the external interrupts on the processor. Assume that the
target system software, running inside our virtual machine, tries to execute this
instruction. We would like to intercept the instruction so that we can disable
the “virtual interrupts” of the virtual machine, and (of course) not the real
interrupts of the host machine. Unfortunately, the x86 processor does not raise
an exception in this case, but it simply does not updated the IF flag when the
popf instruction is run at user level. Therefore, we obtain only a part of what
we need: the host interrupts are not disabled, but also the virtual interrupts are
not disabled, since the virtual machine monitor has no way to know that the
system software was trying to disable the target machine interrupts. The former
part is good, but the latter part is bad, since our V -state no longer matches the

1



T -state: the target machine has disabled its interrupts, but our virtual machine
has not. Other problems arise when the target system software tries to access the
privileged registers, such as %cr3: writes from userspace cause an exception, but
reads are allowed. Therefore, the software running inside the virtual machine
may detect that it is not running on the target machine, by comparing what
it writes with what it reads from %cr3: on the target machine the two things
would match, but on the virtual machine they would most certainly not (since
%cr3 contains the pointer to the page directory used by the host, not the one
used by the virtual machine).

VMware solved these (and many other) problems using hardware-assisted
virtualization for all the target userspace software, and switching to binary
translation for the target system software. Today, both AMD and Intel have
added virtualization extensions to their processors, in order to allow for efficient
hardware assisted virtualization implementations.

2 Intel VMX

To solve the problems above, both AMD and Intel have extended their CPUs
with new features explicitly designed to support Virtual Machine Monitors.
AMD and Intel extensions are mostly equivalent, but they are not compatible.
In the following we will focus on Intel extensions, called VMX (Virtual Machine
eXtensions).

2.1 Root and non-root modes

VMX technology introduces two new operating modes in the Intel CPU: the root
mode and the non-root mode. These new modes are orthogonal to the already
existing system and user modes, therefore we now have four combinations:

• root/system;

• root/user;

• non-root/system;

• non-root/user.

Root mode is intended for the VMM running on the host, while non-root mode
is intended for the guest software running in the virtual machine. Root/system
is more privileged than non-root/system, which is more privileged than non-
root/user. The main purpose of these new modes is to put hardware-controlled
limitations to the actions performed by the guest system software. Whenever
the system code tries to execute an instruction that would either violate the
isolation of the VMM, or that must be emulated via software, the hardware can
trap it and switch back to the VMM. The CPU enters non-root mode via the
new VMLAUNCH and VMRESUME instructions, and it returns to root mode for a
number of reasons, collectively called VM exits. VM exits should return control

2



to the VMM, which should complete the emulation of the action that the guest
code was trying to execute, then give control back to the guest by re-entering
non-root mode. All the new VM instructions are only allowed in root/system
mode.

Since we have both non-root/system and non-root/user, this architecture
allows us to keep the distinction between user applications and OS-kernel inside
the virtual machine automatically. For example, while in non-root mode, the
INT instruction may cause a switch from non-root/user to non-root/system, and
the IRET instruction may return from non-root/system to non-root/user.

The root/user mode is not directly comparable, in terms of privilege level,
to non-root modes. The existence of both root/system and root/user, however,
allows for implementations where the VMM is part of a standard OS running on
the host, since normal host userspace applications may run in root/user mode,
while virtual machines use the non-root modes.

2.2 The Virtual Machine Control Structure (VMCS)

Intel VMX adds a new Virtual Machine Control Structure (VMCS) that contains
all the information needed to manage the new non-root mode. The VMM
may maintain several VCMSs, typically one for each processor of each virtual
machine. However, only one VMCS at a time is the current one on the physical
processor: the processor has a register pointing to the current VMCS, and all
VM instructions (such as VMLAUNCH) use the current VMCS. The VMM may
use the VMPTRLD to load the address of a VMCS, making it current.

The VMCS data structure has several fields, that may be grouped as follows:

• Guest state: The state of the processor is loaded from here during a VM
enter and stored back here during a VM exit;

• Host state: The state of the processor is loaded from here during a VM
exit;

• VM execution control: here we can specify what is allowed and what is not
allowed during non-root mode; unallowed actions will cause a VM exit;

• VM enter control: it contains several flags and fields that determine some
optional behaviours of the root to non-root transition;

• VM exit control: likewise, but for the non-root to root transition;

• VM exit reason: this section contain several informations related to the
reason that caused the latest VM exit.

The Guest state contains such registers as %cr3 (the pointer to the page direc-
tory), %idtr (the pointer to the interrupt descriptor table), %gdtr (the pointer
to the global descriptor table) and %tr (the selector of the current task). The
guest state also contains the instruction pointer, which we can use to determine
the first instruction that the guest should execute on VM enter, and to find the
instruction that the guest was trying to execute before the latest VM exit.

3



The Host state contains the values that must be loaded into %cr3, %idtr,
and so on when there is a VM exit. Since now we have a way to save and
restore these registers, the guest software is free to manipulate them without
affecting the host. This section also contains the value that must be loaded in
the instruction pointer on VM exit. This should be the entry point of a VMM
routine that will examine the exit reason, perform the necessary emulation and
then re-enter the non-root mode.

The VM execution control section contains many flags. The most important
ones are:

• a flag that determines what should happen when the CPU receives an
external interrupt while running in non-root mode; we may let the CPU
serve the interrupt using the guest IDT, without leaving non-root mode,
or we may cause a VM exit; in the latter case, the value of the IF flag
is ignored (the VMM regains control on external interrupts, regardless of
what the guest was doing);

• a set of flags that determine whether some critical instructions should
cause a VM exit or not; there are flags for hlt, invlpg, reading from
%cr3, writing to %cr3 and a few other instructions;

• one flag for each kind of exception; so we can say that page fault, e.g.,
should cause a VM exit, while other exceptions should not;

• a set of flags to cause a VM exit for I/O operations; there is a general flag
(VM exit on any in and out instruction) and a more specific bitmap with
a bit for each one of the 65536 possible I/O registers;

The VM exit reason section contains a code that specifies the general reason
that caused the exit (e.g., external interrupt, I/O access), then several fields
that give more informations about the actual reason. For example, if the general
reason was “I/O access”, then the additional fields will contain the address of
the I/O register and the direction of transfer, among other things. If the reason
was an exception, the additional fields will contain the type of the exception,
and so on.

The most important fields in the VM enter control and VM exit control
sections are related to interrupts. In the VM exit control section there is a
flag that determines what happens during a VM exit caused by an external
interrupt. Recall that the interrupt controller sends the request, but then the
processor has to reply and obtain the interrupt vector from the controller. Using
the flag we can choose between two options: either (i) the processor obtains the
vector during the VM exit, and stores it in the VMCS, or (ii) it does nothing.
Note that in neither case the processor automatically jumps to the interrupt
handler: a VM exit always jumps to the address stored in the Host section of
the VMCS. In case (i), the VMM may read the vector in the VMCS and jump
to the handler via software (e.g., by using an INT instruction). In case (ii),
the VMM can use the fact that external interrupts are disabled during the VM
exit: by re-enabling them (e.g., with a STI), the processor will complete the

4



protocol with the interrupt controller, thus obtaining the vector and jumping
to the proper interrupt handler.

In the VM enter control section there are a few fields that can be used to
inject an event during a VM enter. This are mainly used to make the guest
receive a fake external interrupt, but we can also inject exceptions and faults.
The VMM writes the vector of the desired interrupt and, during VM-enter,
the processor will perform all the actions in response to interrutp reception, in
particular: save the state on the guest stack and look up the guest interrupt
descriptor table to determine the address of the interrupt-handling routine.

2.3 Examples

In Section 1 we have seen a pair of example instructions that were difficult to
virtualize on the Intel x86: popf and mov %cr3,%eax.

The popf instruction is difficult to virtualize without VMX since: we cannot
let the guest system software execute it at host system privilege, since it may
be used to disable host interrupts; we cannot let the guest system software
execute it at host user privilege, since this would silently ignore any change
in the enabled/disabled state of the interrupts in the virtual machine. Now,
using VMX, we can execute the popf instruction in any non-root mode. The
guest system software is now free to change the value of the interrupt flag, so
we do not loose this information. At the same time, the guest system software
cannot disable or enable the host interrupts, if the host does not agree: by
setting the proper flag in the VMCS structure (which must not be accessible
from the guest), the processor will still see all external interrupts while running
in non-root mode, independently of the state of the interrupt flag in the EFLAGS

register.
The mov %cr3,%eax instruction is difficult to virtualize without VMX, since

it never causes a fault. Recall that, without VMX, we cannot allow the guest
software to write into %cr3, since this would give the guest full access to all the
host memory. Therefore, while the guest is running, the contents of %cr3 will
be different from what the guest has written. This would not be a problem by
itself, but it becomes a problem if the guest tries to read from %cr3: then it will
learn the truth, and we have no way to prevent it. With VMX, we can force the
read attempt to cause a VM exit. The VMM will then be able to put into %eax

the value that the guest expects to see, increment the guest instruction pointer
(in the guest section of the VMCS) to skip the mov %cr3,%eax instruction, and
finally restart the guest from the new state.

5


	Trap-and-emulate
	Intel VMX
	Root and non-root modes
	The Virtual Machine Control Structure (VMCS)
	Examples


