
Hardware Assisted Virtualization: Introduction

G. Lettieri

21 Oct. 2015

1 Introduction

In the hardware-assisted virtualization technique we try to execute the instruc-
tions of the target machine directly on the host processor, as much as possible.
If we are able to execute a large fraction of the target machine instructions in
this way, we clearly obtain a large speedup w.r.t. the other techniques we have
already examined.

Hardware-assisted virtualization is only possible if the host machine under-
stands a superset of the target machine instructions. In some cases, the target
and host machine have exactly the same architecture. As we have seen, this
may make perfect sense when the motivations for the use of virtualization are
related to cost, flexibility and security, rather than on the unavailability of the
target machine hardware. In most cases, however, the two architectures are not
exactly the same. To understand why, let us now consider some well known
examples from computer architecture.

1.1 The virtual processor example (multiprogramming)

In multiprogramming we emulate a target machine which has a greater number
of processors than the host machine. Each process runs on its own virtual
processor, and virtual processors are multiplexed on the host machine physical
processors (host processors from now on). Let us assume that the target machine
uses a shared memory model, otherwise we would have to virtualize the private
memory of each target process as well. Figure 1 shows the target machine that
we want to emulate. In the most simple case, the host machine has just one
host processor, and this is the example we are going to focus on.

Here, the T -state contains the state of the shared memory and the registers of
all virtual processors. The V -state contains the state of the shared memory, the
registers of the host processor and a set of data structures in the host memory,
including:

• one data structure for each virtual processor, containing a copy of the
virtual processors registers;

• one variable containing the identifier of the virtual processor that is cur-
rently running on the host processor.

1



CPU1

CPUn

...

Shared Memory

Figure 1: The target machine for the multiprogramming example.

Our virtual machine emulates one target processor at a time. This is obtained
by loading the registers of the host processor with the values stored in the
virtual processor data structure and then letting the host processor continue
the execution. At some later time (maybe determined by a timer), execution is
paused, the virtual processor data structure is updated with the current contents
of the host registers, a new virtual processor is selected for execution and so on.

Why do we need hardware assistance to implement this virtual machine?
Part of the virtual machine logic is typically implemented in software. This
is the case for the “context switching”, i.e., loading and unloading the host
processor registers. However, we still need help from the hardware to force the
invocation of this software, e.g., with a timer based interrupt. But there is also
another kind of help that we need: the data structures that store the contents of
the virtual processors must only be accessible to the software that implements
the virtual machine, and not to the (target) software running on the virtual
processors. Otherwise, one virtual processor would be able to read and write
into the registers of another virtual processor, something that is not possible in
the target machine. The standard solution is to introduce privilege levels in the
host processor. The processor may run in one of at least two different privilege
levels: in the “system” level it has access to all the memory, in the “user” level it
has access to only a memory subset that does not include the virtual processors
data structures. The timer interrupt switches the host processor to system level
and causes a jump to the virtual machine software that performs the context
switch. One special instruction then causes the return to user mode. If there is
an attempt to access the privileged memory while the processor is in user mode,
the accesses is denied by the hardware.

In Figure 2 we have shown an example host machine which can be used to
implement the virtual machine sketched above. The host CPU is similar to the
CPUs of the target machine, but it also has additional features. There is a
sys/usr flag that records whether the CPU is running in system or user mode.

2



CPU

sys/usr
sys-mem

ret

timer

Host Memory

Figure 2: The host machine for the multiprogramming example.

There is also a “sys-mem” register that contains a memory address. When in
user mode, the CPU can only access the host memory at addresses below the
sys-mem address. In system mode there is no such restriction. Finally, there
is a “ret” register that can also store a memory address. The contents of the
sys/usr flag and of the sys-mem and ret registers can only be changed while
the CPU is running in system mode. The host machine also contains a timer
device, which can send a periodic interrupt to the CPU. When the CPU receives
an interrupt it disables further interrupts, switches to system mode, saves the
current instruction pointer in the ret register and jumps at the address stored
in the sys-mem register. A special instruction can be used to jump back to the
address stored in the ret register, returning to user mode and re-enabling the
interrupts.

Figure 3 shows how the host machine of Figure 3 can be used to emulate the
target machine of Figure 1. The sys-mem register points to the address of the
“system code” that, whenever the timer triggers:

• saves the state of the CPU into the current virtual-cpu slot (the contents
of the instruction pointer are taken from the ret register);

• selects a new virtual cpu to run (also updating the “current” variable);

• loads the state of the selected virtual cpu into the host CPU (the contents
of the virtual instruction pointer are stored in the ret register);

3



VCPUiCPU

usrsys/usr
sys-mem

ret

20mstimer

Host Memory

Emulated
Target Memory

System Memory

VCPUn

· · ·
VCPU1

icurrent

system
code

Figure 3: The virtual machine for the multiprogramming example.

• executes the special instruction that jumps to the address stored in ret,
returning into user mode.

Note how the host machine needs additional hardware capabilities that are not
available in the target machine. The additional host hardware (the sys/usr,
sys-mem and ret register, the privilege level checks, the timer, . . . ) assists the
software in the implementation of the virtual machine. Note also that, unlike
the emulation and binary-translation software, the hardware-assisted virtual
machine software (which in this example coincides with multiprogrammed ker-
nel) is privileged, since it must have access to the additional hardware.

1.2 The virtual memory example

Also in virtual memory the target machine is almost, but not exactly the same
as the host machine we already have. Of course, the two machines may differ
in the amount of installed memory, but this is not the only difference. Another
difference between the host and target machines lies in the hardware (and maybe
software) that is unique to the host and that is needed to build the virtual
machine that emulates the target. For example, the host machine typically has
an MMU (Memory Management Unit), but the target machine has no such
thing.

To focus these ideas, let us consider a simple example, again based on the

4



A

0 31

CI

0 31

0 31

0

1

213 − 1

M

a

v

Figure 4: The target machine.

Manchester Baby machine. The machine has only 32 words of memory, but the
addr field in the instruction format is 13 bits wide, allowing for a maximum of
213 = 8192 addressable words. Let us imagine that we are in the ’50s and we
want a machine that is exactly the same as the Manchester Baby, only with a
memory of 8192 words. See Fig. 4, where we have also shown the address, a,
coming from the control unit and going to the memory, and the data, v, returned
by the memory during a read operation, or provided by the control or arithmetic
unit during a write operation. To use this machine we may build other 255 tube
memory devices, plus all the logic to access them, but this is going to be very
expensive, so we take another route. Instead, we regard the machine of Figure 4
as our target machine and we create a virtual machine that emulates it on the
standard, 32-words Manchester Baby, with the addition of a magnetic drum
memory. This is a relatively less expensive, but also much slower, memory than
the Williams-Kilburn tubes (see Fig. 5 for an example). The idea is to store all
the memory of the target machine in the inexpensive drum. We organize this
memory into 256 (i.e., 8192/32) pages, each one consisting of 32 consecutive
words. At any time, only one page is available in the 32-words tube memory of
the Manchester Baby. Our virtual machine must swap pages between the tube
and the drum as needed, in order to emulate the bigger memory of the target
machine. To implement swapping, we choose to add another piece of hardware
to the host Baby: an MMU, intercepting all accesses to main memory. Our
MMU must contain an 8 bit register, P, that records which one of the possible
256 pages is currently stored in the tube.

Fig. 6 shows the architecture of the virtual machine. Whenever a memory
operation is initiated at an address a (on 13 bits), the MMU must compare
the most significant 8 bits of a (i.e., the number ba/32c) with the contents of
the P register: in case of match, the requested word is in the tube at address

5



Figure 5: The magnetic drum memory of the CEP, 1961. It has a capacity of
16384 36-bit words. (credit: www.cep.cnr.it).

A
0 31

CI
0 31 P

0 7

0 31

0

1

31

M

D

a

v

Figure 6: The virtual machine.

6



a mod 32; otherwise, a swap must be performed: the current content of the tube
must be copied on the drum, the requested page must be copied from the drum
to the tube, P must be updated accordingly. Now P matches ba/32c, and the
memory access can be completed.

The drum and the MMU are pieces of hardware that we have added in order
to implement the virtual machine, but are not part of the target machine that
our virtual machine emulates. The target machine (Figure 4) has no drum and
no MMU, it is just a Manchester Baby machine with a bigger tube memory.

Section 2 contains a complete formalization of the example, using the frame-
work introduced in the first lecture, that shows that the virtual machine im-
plementation is correct, i.e., that it preserves the correspondence between the
target and virtual states.

Why is this technique called hardware assisted virtualization? In this exam-
ple we can see that we need help from the hardware to maintain the correspon-
dence between the virtual machine state and the target state. Our problem,
here, is that the host hardware is not exactly the same as the target one: we
have a drum memory instead of the bigger tube memory. The target-machine
programs will try to access the bigger tube memory, and have no knowledge of
the drum: where the program wants to read or write any location of memory,
the corresponding instruction will just contain the desired address. In the vir-
tual machine, however, we cannot use this address as is: we must inspect it, to
see whether it belongs to the page currently in the tube and, if not, a swap must
be performed. In emulation and binary translation we have the opportunity to
change the target-machine program instructions before executing them (either
when we interpret them or when we translate them). But now we are running
the unmodified target-machine programs directly on the host hardware, so we
need assistance from the host hardware itself to hide all the differences. In this
example, it is the MMU (a part of the host hardware) that translates all the
memory accesses generated by the target machine programs, so that they have
the same effect as if they were completed on the target machine. In our formal-
ization, the MMU takes care of updating that part of the V -state that differs
from the T -state, so that the V -state continues to be equivalent to the T -state.

Note that, in this simple example, we have assumed that all the virtual ma-
chine logic can be implemented in the MMU. This is feasible since the Baby
has just one physical page, so there is no need for complex data structures and
algorithms. In this case the virtual and host machines coincide. In a more
realistic example, part of the virtual machine logic would be implemented in
software: typically, the MMU only translates addresses for the pages that are
loaded in memory, and raises an exception for all the other ones. The exception
causes the execution of virtual machine software that, in this cases, implements
the swapping. In this more realistic case we can identify an host machine which
is distinct from the virtual machine: the host machine can potentially run any
software and make different uses of the MMU, or even not use it at all. The vir-
tual machine is the host machine plus the software that implements the virtual
memory. Note that, even when part of the virtual machine is software based, we
still need help from the hardware: it is the hardware that must raise the excep-

7



tion that triggers the execution of the software module. Keep in mind that we
always need to maintain the correspondence between the T -state and V -state.
The hardware may be able to perform some of the necessary translation by
itself; if it cannot, it must stop the execution and invoke the software.

2 Appendix

Let us try to formalize the Manchester Baby virtual memory example, using
the framework we introduced in the first lecture. We need to define the states
together with the state transition function for both the target and the virtual
machine, and then we need to define the function that maps each virtual state
to the corresponding target state. Then, we should check that interpretation is
preserved at every step.

2.1 The target machine

We take a snapshots just before the fetch of a new instruction, like we did in
the first lecture. The target state contains the state of the accumulator, A, the
instruction pointer, CI , and the state of all the 8192 words memory, which we
can regard as a vector M , with elements M0, . . . ,M8191:

T -state = 〈A,CI, M〉.

The definition of the T -next : T -state → T -state function is as follows:

T -next(〈A,CI ,M〉) =



〈A,Ma + 1,M〉 if o = 0;

〈A,CI + Ma + 1,M〉 if o = 1;

〈−Ma,CI + 1,M〉 if o = 2;

〈A,CI + 1,M{A/a}〉 if o = 3;

〈A−Ma,CI + 1,M〉 if o = 4 or o = 5;

〈A,CI + 2,M〉 if o = 6 and A = 0;

〈A,CI + 1,M〉 if o = 6 and A 6= 0;

〈A,CI ,M〉 if o = 7;

(1)

where:

o = (MCI >> 13) & 0x7,

a = MCI & 0x1FFF.

Intuitively, T -next(s), where s is any T -state, must return the state of the target
machine after the execution of the instruction pointed to by CI in s.

In the definition we have used the following notation: if X is any vector,
then X{v/a} is another vector with exactly the same elements as X, except for

8



element number a, which is v:

X{v/a}b =

{
Xb if b 6= a,

v if b = a.
(2)

The notation has been used in the case for o = 3, to represent the state of the
target memory after the store operation has been completed.

2.2 The virtual machine

The virtual states need to also show the current contents of the drum and the
P register of the MMU. Memory is a vector M of just 32 words, M0 . . .M31.
For the drum, we assume that we can regard it as a vector D of 8192 words,
D0, . . . ,D8191:

V -state = 〈A, CI,M,P,D〉.

Each word of the target machine is stored in the main memory, if the word is
inside the page that is currently loaded; otherwise, the word is stored in the
drum. We say that all the addresses with ba/32c = P are accessible in the VM
memory. Note that an accessible address a is stored in location a mod 32 of the
tube memory.

To make an address a accessible we can swap-in the page that contains it,
swapping out the current page from main memory. We can model this operation
with a function swapa that returns the state of the VM memory such that a
given address 0 ≤ a < 8192 is accessible:

swapa(〈M,P,D〉) =
〈M,P,D〉 if P = ba/32c,〈(
D32ba/32c, . . . ,D32ba/32c+31

)
, ba/32c,

D{M0/32P} · · · {M31/32P + 31}
〉 otherwise.

(3)

If address a is not accessible, the current contents of the tube memory are copied
in drum locations 32P, . . . , 32P+31 while drum locations 32ba/32c, . . . , 32ba/32c+
31 are copied into the tube memory. Note that the new P resulting from an
application of swapa is always equal to ba/32c.

9



The V -next : V -state → V -state function is defined as follows:

V -next(〈A, CI,M,P,D〉) =

〈A,M′′
a mod 32 + 1,M′′,P ′′,D′′〉 if o = 0;

〈A, CI +M′′
a mod 32 + 1,M′′,P ′′,D′′〉 if o = 1;

〈−M′′
a mod 32, CI + 1,M′′,P ′′,D′′〉 if o = 2;

〈A, CI + 1,M′′{A/a mod 32},P ′′,D′′〉 if o = 3;

〈A −M′′
a mod 32, CI + 1,M′′,P ′′,D′′〉 if o = 4 or o = 5;

〈A, CI + 2,M′,P ′,D′〉 if o = 6 and A = 0;

〈A, CI + 1,M′,P ′,D′〉 if o = 6 and A 6= 0;

〈A, CI,M′,P ′,D′〉 if o = 7;

(4)

where:

〈M′,P ′,D′〉 = swapCI(〈M,P,D〉),
a =M′

CI mod 32 & 0x1FFF,

o = (M′
CI mod 32 >> 13) & 0x7,

〈M′′,P ′′,D′′〉 = swapa(〈M′,P ′,D′〉).

Note that memory accesses in the virtual machine are as follows, where a is the
requested memory address and ā = ba/32c:

1. if ā = P, then the page currently loaded in the tube memory is the one
containing the requested word. In this case there is an access toMa mod 32

(either for reading or writing) and the operation completes.

2. if ā 6= P, the requested page is on the drum. A swap is performed and
the value and the access is completed like in step 1 above.

Note also that a single step of V -next may cause two swaps: one to bring in
the page containing the next instruction, and another one to bring in the page
containing the operand.

2.3 Interpretation of the virtual state

Now we need an interp function that maps a V -state to a T -state. First, let us
define an m-interp function that just maps the memory subsystem part. If we
are given M, P and D, then m-interp(〈M,P,D〉) is the 8192-elements vector
that represents the contents of the corresponding target memory. The elements
of m-interp(〈M,P,D〉) are defined as follows:

m-interp(〈M,P,D〉)a =

{
Ma mod 32 if P = ba/32c,
Da otherwise,

(5)

10



for all 0 ≤ a < 8192.
The complete interp function can be defined as

interp
(
〈A, CI,M,P,D〉

)
=
〈
A, CI,m-interp

(
〈M,P,D〉

)〉
, (6)

i.e., the accumulator and instruction pointer are interpreted as themselves, while
the memory is interpreted as above.

2.4 Preservation of the interpretation

We now give a complete proof of the correctness of the Manchester Baby virtual-
memory implementation.

First, we need a few Lemmas. Provided that the address is accessible in
the VM, the word at address a of the target memory can be read at address
a mod 32 in a corresponding VM memory.

Lemma 1. Let M be a target memory, 〈M,P,D〉 a VM memory and 0 ≤ a <
8192. If M = m-interp

(
〈M,P,D〉

)
and P = ba/32c, then

Ma =Ma mod 32.

Proof. By hypotesis, Ma = m-interp
(
〈M,P,D〉

)
a
. But m-interp

(
〈M,P,D〉

)
a

=
Ma mod 32 by definition 5, since P = ba/32c by hypothesis.

Similarly, writing the same value at address a mod 32 of the VM memory
and at address a of the target memory preserves interpretation, provided that
a is accessible.

Lemma 2. Let M be a target memory, 〈M,P,D〉 a VM memory, 0 ≤ a < 8192
an address and v a value. If M = m-interp

(
〈M,P,D〉

)
and P = ba/32c, then

M{v/a} = m-interp
(
〈M{v/a mod 32},P,D〉

)
.

Proof. To show that the two memories are equal, we need to show that they
contain the same value at all addresses. First, note that

m-interp
(
〈M,P,D〉

)
b

= m-interp
(
〈M{v/a mod 32},P,D〉

)
b

for all addresses b 6= a. Therefore, we only need to check the value at a, for
which we have M{v/a}a = v on one hand, and

m-interp
(
〈M{v/a mod 32},P,D〉

)
a

=M{v/a mod 32}a mod 32 = v

on the other hand, since P = ba/32c by hypothesis.

Swapping can be performed at any time, since it does not change the inter-
pretation of the VM memory subsystem:

11



Lemma 3. Assume that M = m-interp
(
〈M,P,D〉

)
. Then

M = m-interp
(

swapa

(
〈M,P,D〉

))
for all 0 ≤ a < 8129.

Proof. This is obvious whenever ba/32c = P, so assume ba/32c 6= P.
Let

〈M′,P ′,D′〉 = swapa

(
〈M,P,D〉

)
be the state of the VM memory after the swap. Note that P ′ = ba/32c 6= P. The
m-interp

(
〈M,P,D〉

)
and m-interp

(
〈M′,P ′,D′〉

)
vectors are the interpreted

VM memories before and after the swap, respectively. We know that X = M
and we need to show that also m-interp

(
〈M′,P ′,D′〉

)
= M . We do the latter

by showing that m-interp
(
〈M′,P ′,D′〉

)
x

= Mx for all 0 ≤ x < 8192. There are
three cases:

bx/32c = P (x was in the swapped-out page); we have

m-interp
(
〈M′,P ′,D′〉

)
x

= D′
x by (5) since P ′ 6= P = bx/32c

= D′
32bx/32c+x mod 32 decomposing x

= D′
32P+x mod 32 since bx/32c = P

=Mx mod 32 by (3)

= m-interp
(
〈M,P,D〉

)
x

by (5) since P = bx/32c
= Mx by hypothesis;

bx/32c = P ′ (x was in the swapped-in page); we have

m-interp
(
〈M′,P ′,D′〉

)
x

=M′
x mod 32 by (5) since bx/32c = P ′

= D32ba/32c+x mod 32 by (3)

= D32bx/32c+x mod 32 since bx/32c = P ′ = ba/32c
= Dx re-composing x

= m-interp
(
〈M,P,D〉

)
x

by (5) since P 6= P ′ = bx/32c
= Mx by hypothesis;

bx/32c 6= P and bx/32c 6= P ′ (x was in neither page); we have

m-interp
(
〈M′,P ′,D′〉

)
x

= D′
x by (5) since P ′ 6= bx/32c

= Dx by (3)

= m-interp
(
〈M,P,D〉

)
x

by (5) since P 6= bx/32c
= Mx by hypothesis.

There are no other cases, so this concludes the proof.

12



Finally, we can prove the theorem that we need.

Theorem 1. Let t = 〈A,CI ,M〉 and v = 〈A, CI,M,P,D〉 be such that t =
interp(v). Then

T -next(t) = interp
(
V -next(v)

)
.

Proof. First we can show that both machines, starting from their respective
states, will execute the same instruction. Let 〈M′,P ′,D′〉 = swapCI(〈M,P,D〉).
It is sufficient to show that MCI =M′

CI mod 32. Indeed, by hypothesis we know
that CI = CI and, by definition of swap, we have P ′ = bCI /32c. Moreover, by
Lemma 3, the m-interp function is preserved by the swap. Then, the conclusion
follows by Lemma 1.

So, the opcode o and the operand address a decoded by both machines will
be the same.

Now the proof is by cases on the opcode of the next instruction in state v.

Assume o = 0. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
〈A,M′′

a mod 32 + 1,M′′,P ′′,D′′〉
)

by (4)

=
〈
A,M′′

a mod 32 + 1,m-interp
(
〈M′′,P ′′,D′′〉

)〉
by (6)

= 〈A,M′′
a mod 32 + 1,M〉 by hyp. and Lemma 3

= 〈A,M′′
a mod 32 + 1,M〉 by hypothesis

= 〈A,Ma + 1,M〉 by hyp. and Lemma 1

= T -next
(
〈A,CI ,M〉

)
by (1)

Assume o = 1. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
〈A, CI +M′′

a mod 32 + 1,M′′,P ′′,D′′〉
)

= 〈A,CI + Ma + 1,M〉
= T -next

(
〈A,CI ,M〉

)
.

Assume o = 2. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
〈−M′′

a mod 32, CI + 1,M′′,P ′′,D′′〉
)

= 〈−Ma,CI + 1,M〉
= T -next

(
〈A,CI ,M〉

)
.

13



Assume o = 3. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
〈A, CI + 1,M′′{A/a mod 32},P ′′,D′′〉

)
=
〈
A, CI + 1,

m-interp
(
〈M′′{A/a mod 32},P ′′,D′′〉

)〉
=
〈
A,CI + 1,M{A/a}

〉
by hyp. and Lemma 2

= T -next
(
〈A,CI ,M〉

)
.

Assume o = 4 or o = 5. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
〈A −M′′

a mod 32, CI + 1,M′′,P ′′,D′′〉
)

= 〈A−Ma,CI + 1,M〉
= T -next

(
〈A,CI ,M〉

)
.

Assume o = 6 and A = 0. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
A, CI + 2,M′′,P ′′,D′′〉

)
= 〈A,CI + 2,M〉
= T -next

(
〈A,CI ,M〉

)
since A = A = 0.

Assume o = 6 and A 6= 0. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
A, CI + 1,M′′,P ′′,D′′〉

)
= 〈A,CI + 1,M〉
= T -next

(
〈A,CI ,M〉

)
since A = A 6= 0.

Assume o = 7. Then

interp
(
V -next

(
〈A, CI,M,P,D〉

))
= interp

(
A, CI,M′′,P ′′,D′′〉

)
= 〈A,CI ,M〉
= T -next

(
〈A,CI ,M〉

)
.

14


	Introduction
	The virtual processor example (multiprogramming)
	The virtual memory example

	Appendix
	The target machine
	The virtual machine
	Interpretation of the virtual state
	Preservation of the interpretation


