
Passthrough in QEMU/KVM on Linux

G. Lettieri

2 Nov. 2017

Let see how hardware passthrough can be used in practice, using the QEMU
hypervisor with the KVM API on Linux. We assume Intel hardware throughout
(Intel VMX and Vt-d). We want to passthrough an Intel 82598 10 Gb/s Ethernet
NIC (Network Interface Card) to a guest running inside QEMU (with KVM
enabled).

1 Linux setup

First, let us see what we need to do on the host system.

1.1 Enabling the IOMMU

Once the IOMMU has been enabled in the BIOS, we also need to tell the Linux
kernel to use it, since it is typically disabled by default.

We need to pass the intel iommu=on command-line argument to the kernel
at boot. How to do this depends on the boot loader and the Linux distribution
we are using. On Ubuntu we can modify the the /etc/default/grub file, adding
the command to the GRUB CMDLINE LINUX DEFAULT environment variable, e.g.:

GRUB CMDLINE LINUX DEFAULT=” qu i e t sp la sh inte l iommu=on”

Then we need to run update-grub (as root) and reboot. We can check that the
IOMMU has been activated by looking at the output of

dmesg | grep DMAR

The dmesg command shows on its standard output the contents of the kernel log.
We pipe the output into grep to look for log messages containing the “DMAR”
string (DMAR stands for DMA Remapping, which is what the IOMMU is used
for). If the IOMMU has been correctly enabled, we should see several lines of
output.

1.2 Attaching the device to the vfio-pci driver

To passthrough a device to a Virtual Machine we first need to detach it from
its normal driver on the host and attach it to a special driver called vfio-pci.

1



The standard way to interact with drivers in Linux is through the sys

pseudo-filesystem. A pseudo-filesystem in Linux is something that looks almost
exactly like any other file system, with directories and files, but these actually
give access to kernel data-structures, rather than to data in secondary storage.
A typical Linux installation will mount many of these pseudo-filesystems. One
of the oldest examples is the one usually mounted in /proc. The proc pseudo-
filesystem contains a subdirectory for each task in the system; each subdirectory
in turn contains many pseudo-files, symbolic links and other directories, giving
a lot of information about each task.

The advantage of pseudo-filesystems is that we can use all the ordinary Unix
tools and shell commands (cd, ls, cat, . . . ) to browse, read and update the
informations. For example, if we know the pid of a process (let us call it P ) and
we have sufficient privilege, we can see the path of all its open files with

l s − l / proc /P/ fd

For our purposes, we need to interact with the pseudo-filesystem typically
mounted on /sys. This contains subdirectories for every device and every driver
installed in the system. If we limit ourselves to PCI devices, we can take a
look at the /sys/bus/pci directory. Here we find the devices and drivers

subdirectories.

• The drivers directory contains a subdirectory for each loaded PCI driver.
In our example, we are interested in ixgbe (the host driver for the Intel
82598 card) and vfio-pci.

• The devices subdirectory contains a symbolic link for each PCI device.
The links are named according to the following schema

PCI-domain:bus:device.function

where PCI-domain is usually 0000. The other numbers make up the
standard triple that identifies each device in a PCI system. Assume that
the card we are interested in is 0000:01:00.0 (found using a tool like
lspci).

The driver symbolic-link in /sys/bus/pci/devices/0000:01:00.0 is now
pointing to /sys/bus/pci/drivers/ixgbe (through a relative path). We want
it to point to /sys/bus/pci/drivers/vfio-pci, but we cannot just overwrite
the link. Instead, we need to use the bind and unbind pseudo-files in the drivers
directories. By writing 0000:01:00.0 into the unbind file of the ixgbe driver
we detach our device from its current driver. Then, by writing 0000:01:00.0

into the bind file of the vfio-pci driver, we attach it to the driver we need for
passthrough.

Before doing that, however, we need to tell the vfio-pci driver that it can
accept devices like our network card. This is done using the new id pseudo-files
found in all drivers directories. These files accept strings of the form “xxxx yyyy”
where xxxx is the Vendor ID and yyyy is the Device ID of a PCI device (the

2



first two registers of the device in the PCI configuration space). We can find the
correct values for our device by looking at the vendor and device pseudo-files
in the device directory:

$ cat / sys /bus/ pc i / dev i c e s /0000 : 01 : 00 . 0/ vendor
0x8086
$ cat / sys /bus/ pc i / dev i c e s /0000 : 01 : 00 . 0/ dev i c e
0x10b6

In our example we obtain the Vendor ID for Intel (8086) and the Device ID for
82598 cards (10b6). We can now proceed to the driver change:

$ echo 8086 10b6 |
sudo tee / sys /bus/ pc i / d r i v e r s / v f i o−pc i /new id

8086 10b6
$ echo 0000 : 0 1 : 0 0 . 0 |

sudo tee / sys /bus/ pc i / d r i v e r s / ixgbe /unbind
0000 : 0 1 : 0 0 . 0

Now the driver symlink in the device directory should point to vfio-pci. (In
this particular case we don’t need to write into the bind file of vfio-pci since,
once we have told it that it can handle our device, it will grab it as soon as
the ixgbe driver releases it). We can also look at dmesg, where we should see
messages from ixgbe releasing the device. An ifconfig -a will also no longer
show the network interface, which has now been hidden from the host network
stack.

2 QEMU setup

QEMU was originally written by Fabrice Bellard as a very general emulator
based on binary-translation. In 2008, Avi Kivity introduced the kvm module
in Linux and forked the project into qemu-kvm to use the new API. The KVM
support was later backported into the original QEMU, where we can find it
today.

By default, QEMU still uses binary-translation. KVM support must be
enabled from the commandline with either -enable-kvm or the more general
-machine accel=kvm.

QEMU uses the front-end/back-end model for most of its emulated devices.
For networking, it emulates several network cards (Intel e1000, Realtek rtl8139,
and many others; recent versions also emulate the Intel 82598 we are trying to
passthrough). These are the front-ends. It also implements several networking
back-ends (called netdevs): user, tap, socket, and so on. Any emulated network
card can be attached to any netdev using commandline arguments like:

-device e1000,netdev=mynetdev -netdev tap,id=mynetdev

Where an arbitrary identifier (mynetdev in this case) is used to connect the
two.

3



In our case we need a device, but not a netdev: we don’t need to emulate
the network, since we are passing to the VM a real networking device. The
commandline argument that we need is:

-device vfio-pci,host=01:00.0

(Note the PCI triple of our device, without the PCI-domain part).
To actually run QEMU we also need a Linux installation (e.g., a file con-

taining the ISO image of a live CD). The final command line may be:

qemu-system-x86_64 -enable-kvm -cdrom linux.iso -boot d \

-device vfio-pci,host=01:00.0

If everything has worked correctly, we should be able to see the 82598 device
inside the virtual machine (note that the PCI triple will be different).

3 IOMMU groups

Linux will prevent the passthrough of devices that can communicate with other
host-devices without going through the IOMMU, since this would pose a security
risk. To complete the passthrough of a device, we always have to detach all the
devices that can talk to it in this way.

Note that sometimes Linux assumes, conservatively, that two devices can
communicate in this way unless the vendor certifies that they don’t. This affects
us, since the Intel card typically contains two devices, and Linux will assume that
they can talk to each other bypassing the IOMMU. We can find out how Linux
has grouped together the devices by looking in the /sys/kernel/iommu groups

directory. This directory contains a subdirectory for each “group” of devices
that Linux thinks must be detached together. In our case we may see something
like:

$ l s / sys / ke rne l / iommu groups/1
00000 : 01 : 0 0 . 0 0000 : 0 1 : 0 0 . 1

where we can see that our example device has been grouped with 0000:01:00.1

(which we may note is indeed another function of the same physical device). In
order to successfully run QEMU with the passthrough device, we need to bind
both of them to vfio-pci.

$ echo 0000 : 0 1 : 0 0 . 1 |
sudo tee / sys /bus/ pc i / d r i v e r s / ixgbe /unbind

0000 : 0 1 : 0 0 . 1

Note that this device has the same Vendor ID and Device ID as the other
one, so vfio-pci already knows that it can handle it and will automatically
grab it when ixgbe releases it. Finally, note that we don’t need to pass both
0000:01:00.0 and 0000:01:00.1 to the VM if we don’t want to. The only
important thing is that nobody else may use 0000:01:00.1 if we passthrough
0000:01:00.0, and vice-versa.

4



4 SR-IOV

Our network device supports SR-IOV, so it can create several “virtual func-
tions” that behave like independent network cards, even if they share the same
hardware.

To create n virtual functions we just need to write n in a pseudo-file in the
device directory. E.g., for n = 4,

$ echo 4 |
sudo tee / sys /bus/ pc i / dev i c e s /0000 : 01 : 00 . 0/ sr iov numvfs

4

If the command completes without errors, “ifconfig -a” should show 4 new
network interfaces. Note that the virtual functions are similar, but not ex-
actly the same as the origina device: their driver is ixgbevf, not ixgbe. The
bus/device/function triple of these new devices is chosen by Linux and has no
relationship with the actual physical location of the devices in the bus. You
may need to pass pci=assign-busses to Linux at boot (see the above example
for intel iommu=on) in order for this to work.

Theoretically, we can now pass each virtual function to a different VM. If we
are unlucky, however, Linux will group all of them in the same IOMMU group,
essentially defeating the purpose of SR-IOV.

5


	Linux setup
	Enabling the IOMMU
	Attaching the device to the vfio-pci driver

	QEMU setup
	IOMMU groups
	SR-IOV

