
Virtualization
Introduction

G. Lettieri

Dipartimento di Ingegneria dell’Informazione
Università di Pisa

A/A 2018/19

G. Lettieri Virtualization

Folk definition

What do people mean when they talk about “virtualization” w.r.t.
computers?

Anything you do on computers/Internet

it cannot be touched =⇒ it is not real

“fake” vs “real” experience

A fake V behaves like some real T w.r.t. some observer O.

G. Lettieri Virtualization

Computer Science definition

S S

T V

H

O

Typically (but not necessarily):

real T (Target): some hardware

Virtual V : made in software (running on hardware H, Host)

Observer O: someone using software (S) originally made for T

G. Lettieri Virtualization

Computer Science definition

S S

T V

H

O

Typically (but not necessarily):

real T (Target): some hardware

Virtual V : made in software (running on hardware H, Host)

Observer O: someone using software (S) originally made for T2
0
1
9
-1
0
-2
6

Virtualization

Computer Science definition

So, we have some software S that works on T . We want to replace the
real T with the virtual V and make S work like before (to the satisfaction
of some observer O).
Why do we say “Typically (but not necessarily)”?

• T may be software itself, e.g., Windows emulated by Wine on Linux

• V may make use of some hardware designed specifically for the
virtualization (we will see several examples of this), or may be
entirely in hardware (e.g., old PC peripherals emulated by modern
I/O chip-sets)

It is sometimes useful to regard the software S as the observer, since O’s

interaction with T is often limited to the software she can run. For a

software to “observe” something we mean that it changes behavior (e.g.,

it prints different outputs) depending on something.

Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S

G. Lettieri Virtualization

Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S

2
0
1
9
-1
0
-2
6

Virtualization

Why virtualization?

Why don’t we just change S? It’s software, isn’t it?
Unfortunately, software may come in forms that are very hard to change:

• huge blobs of machine language;

• very large set of interacting applications and libraries;

Anyways, sometimes we do change S : this is called paravirtualization and

we will examine it later.

Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S

2
0
1
9
-1
0
-2
6

Virtualization

Why virtualization?

The T hardware may not be available because:

• it no longer exists (historical emulation);

• it does not exist yet (e.g., simulation of new hardware done
internally by hardware producers, so that they can start writing and
debugging the software while the hardware is still being assembled)

• it never existed at all (where is the Java Real Machine?)

• we are already using it for something else (e.g., we have installed
Linux on our PC and we want to run some Windows application at
the same time).

Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S

2
0
1
9
-1
0
-2
6

Virtualization

Why virtualization?

Even if T is in principle available, V may be a cost-effective solution: less
expensive, but still offering sufficiently good performance.
Modern machines come with a lot of hardware resources (many CPUs, large
memories, . . .). It may be difficult for a single server to effectively utilise all
these resources, so it makes sense to partition them among several virtual
machines, each running a different server. This is clearly less expensive
than having a separate machine for each server, even if performance may
be penalised a bit (running inside a virtual machine has a performance
cost).

Replacing many machines with a single one also reduces operating costs

(space, energy, heat, failures, . . .).

Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S

2
0
1
9
-1
0
-2
6

Virtualization

Why virtualization?

Independently from considerations of availability and cost, the fact that
virtualization replaces some hardware with some equivalent software of-
fers more flexibility in the management of the resources and opens the
possibility for new functionality:

• ease of deployment: installing a new virtual machine may be a
simple matter of choosing a few options from a menu

• dynamic provisioning: easily adding/removing persistent storage,
memory, processors

• improved utilisation, by multiplexing the available resources among
the active users

• live migration: migrating an entire running system from on physical
machine to another

• using applications that run on different OSes, on the same desktop.

Why virtualization?

We don’t want to change S

and one or more of:

Hardware T is not available;
V is less expensive than T
V is more flexible than T
V offers a good protection model for S

2
0
1
9
-1
0
-2
6

Virtualization

Why virtualization?

In the last scenario we are not necessarily concerned with availability, cost
or flexibility: we want to run several applications on the same hardware
and we want to be able to precisely control the way they are allowed (or
disallowed) to interact.
Hardware usually gives a clear and well defined interface between sepa-
rate modules. Two different machines can only communicate through the
network that interconnects them, for example, and each machine can ac-
cess the network only through a network adapter, which has a well defined
interface made of registers and shared memory.
Since virtualization typically has to reproduce these interfaces, we can
leverage them to implement the isolation we need.

Note that there is an overlap here with what OSes traditionally are already

meant to provide. Indeed, OS-based solutions alternative to virtualization

are pushed forward in this area (containers, jails).

Why virtualization? (2)

Useful also when T = H:

S S

V

T T

V adds a layer of indirection between S and T .

G. Lettieri Virtualization

Why virtualization? (2)

Useful also when T = H:

S S

V

T T

V adds a layer of indirection between S and T .

2
0
1
9
-1
0
-2
6

Virtualization

Why virtualization? (2)

The motivations involving cost, flexibility and protection can be summa-
rized by noting that they make use of the new layer of indirection that V
interposes between the software S and the hardware T .

This is the reason why it may make perfect sense to introduce V , even

when T and H are exactly the same.

How to virtualize?

We are going to examine several techniques:

emulation (Bochs, original JVM)

binary translation (QEMU, recent JVMs)

hardware-assisted (KVM, Virtualbox)

paravirtualization (original Xen, virtio)

G. Lettieri Virtualization

The Small Scale Experimental Machine (1948)

Figure: A modern replica of the SSEM, aka “Baby”, at the Museum of
Science and Industry, Manchester. (credit: Wikipedia)

G. Lettieri Virtualization

The Small Scale Experimental Machine (1948)

Figure: A modern replica of the SSEM, aka “Baby”, at the Museum of
Science and Industry, Manchester. (credit: Wikipedia)

2
0
1
9
-1
0
-2
6

Virtualization

The Small Scale Experimental Machine (1948)

We will write an emulator for the SSEM or Baby machine of Manchester.
This is (arguably) the very first Stored Program computer, completed the
21 June 1948 at the University of Manchester under the direction of F.C.
Williams and Tom Kilburn.
Stored Program means that the program is input and stored in an internal
memory, and only then obeyed. Once in memory, it can be read at high
speed and it can also modify itself (a feature often used in early times).
The Stored Program concept originated in the USA within the ENIAC
group, lead by J.P. Eckert and J. Mauchly. It was then disseminated in a
draft paper by J. von Neumann and during the very first computer course,
in the summer of 1946.

The main obstacle to the actual implementation of the stored program

idea was to build a device which could store a sufficiently large number of

digits and operate at electronic speed. The ENIAC group was working on

mercury delay lines, invented by Eckert. Williams and Kilburn came up

with a different idea.

The SSEM CRT output

Figure: The CRT output showing the memory contents as a matrix of
32×32 big/small dots (credit: Wikipedia)

G. Lettieri Virtualization

The SSEM CRT output

Figure: The CRT output showing the memory contents as a matrix of
32×32 big/small dots (credit: Wikipedia)2

0
1
9
-1
0
-2
6

Virtualization

The SSEM CRT output

They decided to make computer memories from CRT’s, which were already

used in radars. The screen of the tube is used as a matrix of dots, each

in one of two possible configurations, to store a bit. A bit can be read

by trying to change it (a destructive read): if a current is produced, then

the stored bit was different from the one we had tried to write. The

current was observed using a metal grid that covered the screen. Since the

cannon could be deflected to read and write from any desired location in

a relatively constant time, this was a RAM. The memory content had to

be periodically refreshed, so it was actually a DRAM.

The SSEM CRT output

Figure: The CRT output showing the memory contents as a matrix of
32×32 big/small dots (credit: Wikipedia)2

0
1
9
-1
0
-2
6

Virtualization

The SSEM CRT output

The tube that shows the contents of memory (the one in the picture) is not
the one actually used for storage: that one had the metal plate covering
it, and was also protected from interferences. However, the display tube is
receiving the same signal as the memory one. Note that this was the only
output device in the machine. Input was carried on using a set of switches
to select a location in memory, and a keyboard to turn on or off each bit
in the selected location.

The Baby was actually built only to test the memory tube (later known

as Williams Tube) and was deliberately a very simple machine, for which

(apparently) only three programs were ever written (one of them by A.

Turing). Once it worked, it was soon expanded into the more practical

Manchester Mark I computer.

The SSEM ISA (1)

0 31

Mem

0

1

31

24

A

0 31

CI

0 31

G. Lettieri Virtualization

The SSEM ISA (1)

0 31

Mem

0

1

31

24

A

0 31

CI

0 31

2
0
1
9
-1
0
-2
6

Virtualization

The SSEM ISA (1)

The machine has 32 memory locations 32 bits wide. Each location can
store either an instruction or a number. Numbers are integers represented
in 2’s-complement.
The machine has only one register, the accumulator A.
CI is the program counter. It is always incremented by 1 before fetching
an instruction. Since it starts at 0, the (default) entry point is at address
1.

Note the peculiar way of representing the numbers with the least significant

bit on the left. The CRT also shows the memory contents in this way.

The SSEM ISA (2)

0 12 13 15 31

addr opcodeopcode

opcode mnemonic effect

0 JMP CI ← Mem[addr]
1 JRP CI ← CI + Mem[addr]

2 LDN A ← −Mem[addr]
3 STO Mem[addr] ← A

4,5 SUB A ← A−Mem[addr]

6 CMP if A < 0, CI← CI + 1
7 STP halt

G. Lettieri Virtualization

The SSEM ISA (2)

0 12 13 15 31

addr opcodeopcode

opcode mnemonic effect

0 JMP CI ← Mem[addr]
1 JRP CI ← CI + Mem[addr]

2 LDN A ← −Mem[addr]
3 STO Mem[addr] ← A

4,5 SUB A ← A−Mem[addr]

6 CMP if A < 0, CI← CI + 1
7 STP halt2

0
1
9
-1
0
-2
6

Virtualization

The SSEM ISA (2)

Note that the accumulator only had a subtracter and that reading from
memory reverses the sign. This was done to spare electronic circuits at
the expense of execution time (and program storage): you can still do
additions via a + b = −(−a− b). E.g., to have a + b in A starting with a
in Mem[20] and b in Mem[21] we can do:

A ← −Mem[20] read −a in A
A ← A−Mem[21] compute −a− b in A

Mem[22] ← A temporary store of −a− b
A ← −Mem[22] read a + b back into A

Note that the conditional branch (opcode 6) just skips a single instruction
if the test is true (another 1 will be added to CI before fetching the next
instruction).

Note, finally, that the unconditional jumps (opcodes 0 and 1) are always

indirect.

The emulator (1)

i n t 3 2 t Mem[3 2] ;
i n t 3 2 t A ;
i n t 3 2 t CI ;

void e x e c () {
f o r (; ;) {

/∗ advance CI ∗/
CI++;

/∗ f e t c h th e n e x t i n s t r u c t i o n ∗/
i n t 3 2 t PI = Mem[CI] ;

/∗ decode t he i n s t r u c t i o n ∗/
i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

G. Lettieri Virtualization

The emulator (1)

i n t 3 2 t Mem[3 2] ;
i n t 3 2 t A ;
i n t 3 2 t CI ;

void e x e c () {
f o r (; ;) {

/∗ advance CI ∗/
CI++;

/∗ f e t c h th e n e x t i n s t r u c t i o n ∗/
i n t 3 2 t PI = Mem[CI] ;

/∗ decode t he i n s t r u c t i o n ∗/
i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

2
0
1
9
-1
0
-2
6

Virtualization

The emulator (1)

We use int32 t which, if available, is guaranteed to be a 32 bit integer

represented in two’s-complement (C99 standard).

The emulator (2)

/∗ e x e c u t e the i n s t r u c t i o n ∗/
switch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 : /∗ below ∗/
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : return ; /∗ t e r m i n a t e s e m u l a t i o n ∗/
}

}
}

G. Lettieri Virtualization

The (amended) first program
1 00011000000000100000000000000000 LDN 24
2 01011000000001100000000000000000 STO 26
3 01011000000000100000000000000000 LDN 26
4 11011000000001100000000000000000 STO 27
5 11101000000000100000000000000000 LDN 23
6 11011000000000010000000000000000 SUB 27
7 00000000000000110000000000000000 CMP
8 00101000000001000000000000000000 JRP 20
9 01011000000000010000000000000000 SUB 26

10 10011000000001100000000000000000 STO 25
11 10011000000000100000000000000000 LDN 25
12 00000000000000110000000000000000 CMP
13 00000000000001110000000000000000 STP
14 01011000000000100000000000000000 LDN 26
15 10101000000000010000000000000000 SUB 21
16 11011000000001100000000000000000 STO 27
17 11011000000000100000000000000000 LDN 27
18 01011000000001100000000000000000 STO 26
19 01101000000000000000000000000000 JMP 22

20 10111111111111111111111111111111 -3
21 10000000000000000000000000000000 1
22 10000000000000000000000000000000 1
23 00000000000000000011111111111111 -262144
24 11111111111111111100000000000000 262143

G. Lettieri Virtualization

The (amended) first program
1 00011000000000100000000000000000 LDN 24
2 01011000000001100000000000000000 STO 26
3 01011000000000100000000000000000 LDN 26
4 11011000000001100000000000000000 STO 27
5 11101000000000100000000000000000 LDN 23
6 11011000000000010000000000000000 SUB 27
7 00000000000000110000000000000000 CMP
8 00101000000001000000000000000000 JRP 20
9 01011000000000010000000000000000 SUB 26

10 10011000000001100000000000000000 STO 25
11 10011000000000100000000000000000 LDN 25
12 00000000000000110000000000000000 CMP
13 00000000000001110000000000000000 STP
14 01011000000000100000000000000000 LDN 26
15 10101000000000010000000000000000 SUB 21
16 11011000000001100000000000000000 STO 27
17 11011000000000100000000000000000 LDN 27
18 01011000000001100000000000000000 STO 26
19 01101000000000000000000000000000 JMP 22

20 10111111111111111111111111111111 -3
21 10000000000000000000000000000000 1
22 10000000000000000000000000000000 1
23 00000000000000000011111111111111 -262144
24 11111111111111111100000000000000 262143

2
0
1
9
-1
0
-2
6

Virtualization

The (amended) first program

The program finds the greatest proper divisor b of a number a. Initially,
word 23 must contain −a and word 24 must contain a − 1 (first factor
to try). The program tries each potential factor from a − 1 to 1 in turn.
Division is implemented by repeated subtraction (words 6–8).
When the program halts (word 13) we have b in word 27 and −b in word
26.

The original program has been lost and then reconstructed from memory.

Moreover, this is an amended, slightly improved version.

Running the first program

. . . about 130,000 numbers were tested, involving some 3.5
million operations. The correct answer was obtained in a
52-minute run. (F.C. Williams, T. Kilburn, “Electronic
Digital Computers”, Nature, Vol. 162, p. 487, September
25, 1948.)

G. Lettieri Virtualization

Running the first program

. . . about 130,000 numbers were tested, involving some 3.5
million operations. The correct answer was obtained in a
52-minute run. (F.C. Williams, T. Kilburn, “Electronic
Digital Computers”, Nature, Vol. 162, p. 487, September
25, 1948.)

2
0
1
9
-1
0
-2
6

Virtualization

Running the first program

The emulator is available at
http://lettieri.iet.unipi.it/virtualization/mbaby.tgz

Clearly, we are not emulating execution time.

http://lettieri.iet.unipi.it/virtualization/mbaby.tgz

A formalization

Model both T + S and V + S as State Machines:

〈T -state,T -next〉
〈V -state,V -next〉

Define interp : V -state → T -state (interpretation)

Agree with O that she will only look at T -states
(either directly from T or from V through interp)

Require that V -next preserves the interpretation.

G. Lettieri Virtualization

A formalization

Model both T + S and V + S as State Machines:

〈T -state,T -next〉
〈V -state,V -next〉

Define interp : V -state → T -state (interpretation)

Agree with O that she will only look at T -states
(either directly from T or from V through interp)

Require that V -next preserves the interpretation.

2
0
1
9
-1
0
-2
6

Virtualization

A formalization

Let us try to generalize what we have done.
The idea is to let the T system run and take snapshots at some instants.
Then we work with descriptions of these snapshots. The descriptions do
not contain all the things that can be observed in the system, but only
some features we are interested in. The interval between two consecutive
snapshot must last for sufficiently long as to observe a different state,
but we are free to choose any interval that lasts longer than that (thus
jumping over intermediate states). Therefore, our sequence of descriptions
is an abstraction of the real system. It is this abstraction that we want to
reproduce.
We are assuming deterministic state machines for now: T -next is a func-
tion T -next : T -state → T -state (and the same goes for V -next).

There are several ways to model “final” states. We choose to have

T -next(s) = s whenever s is final.

A formalization: T -state

0 31

Mem

0

1

31

A

0 31

CI

0 31

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

T + S

G. Lettieri Virtualization

A formalization: T -state

0 31

Mem

0

1

31

A

0 31

CI

0 31

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

T + S2
0
1
9
-1
0
-2
6

Virtualization

A formalization: T -state

What do we put in each T -state?

• First of all, it depends on what the observer can see or is interested
in. E.g., the observer may want that a given set of programs
(maybe all possible programs) produce the exact same output as in
the original machine. In the SSEM example, the output is the state
of the memory when the programs stops (opcode 0x7), therefore the
observer should at least be able to see the memory contents when
the machine stops.

• Then, we may need to include other details. The idea is that from
each snapshot description we should be able to predict the next one.
This is why we also add A and CI.

Note that the state includes the actual contents of the registers and the

memory. For convenience, we consider the state of the machine immedi-

ately after the increment of CI.

A formalization: T -state

0 31

Mem

0

1

31

A

0 31

CI

0 31

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

T + S2
0
1
9
-1
0
-2
6

Virtualization

A formalization: T -state

What we put in the description determines the level of detail/abstraction
of our emulation. In the SSEM example we have included the accumulator,
the program counter and the memory, but we have left out many other
things. For instance, the SSEM was a serial machine, processing one bit
at a time, but we have not put an indicator of “the current bit within the
word” in the state.

As an additional example, we could have put the state on/off of each

vacuum tube in the virtual-state. Then, our emulation would have been at

the logic level. We have omitted these details from the state because we

“feel” that they are not needed, if we only want to reproduce the memory

contents. This feeling can be justified more rigorously.

A formalization: T -transitions

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

T -state

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 10. . . 011111111111111

0 31

CI 0100000000000000. . .

0 31

T -state

T -next

G. Lettieri Virtualization

A formalization: T -transitions

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

T -state

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 10. . . 011111111111111

0 31

CI 0100000000000000. . .

0 31

T -state

T -next

2
0
1
9
-1
0
-2
6

Virtualization

A formalization: T -transitions

What we do in the transitions determines a further level of abstraction:

how much do we want to let the T -state change before we take another

snapshot? In the SEEM we have considered the full execution of single

instruction as a step.

A formalization: V -states

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

G. Lettieri Virtualization

A formalization: V -states

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}2

0
1
9
-1
0
-2
6

Virtualization

A formalization: V -states

The V -state is the state of our emulator program, including the contents of

all variables (here written in the comments) and the current execution point

(here marked by the double arrow). In the example, we are considering the

moment in time between the increment of CI and the assignment to PI.

A formalization: V -state interpretation

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

interp

G. Lettieri Virtualization

A formalization: V -state interpretation

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

interp

2
0
1
9
-1
0
-2
6

Virtualization

A formalization: V -state interpretation

The equivalence between a virtual-state and a target-state is given by an
interp map, such that

interp : V -state → T -state

(answering the question: “What T -state does this V -state is equivalent

to?”). Note that each V -state is equivalent to just one T -state, but each

T -state may be equivalent to several V -states, i.e., we do not require

interp to be 1-to-1. For simplicity, however, we do require interp to be

onto: the virtual system must have a way to represent any target state.

A formalization: V -transitions

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;

i n t 3 2 t PI = Mem[CI] ;
⇒

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

. . .

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

V -state V -state

V -next

G. Lettieri Virtualization

A formalization: V -transitions

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;

i n t 3 2 t PI = Mem[CI] ;
⇒

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

. . .

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

V -state V -state

V -next

2
0
1
9
-1
0
-2
6

Virtualization

A formalization: V -transitions

A V -next transition generally involves several transitions in our emulation

program. We only consider a new V -state when the program state is

again interpretable as a T -state. In our example, this only happens when

the execution returns to the point between the increment to CI and the

assignment to PI. What happens in-between does not have to correspond

to anything in the target system: the observer will not see the intermediate

states, and we are free to do anything we wish, as long that the “stepwise

correctness” property holds.

A formalization: stepwise correctness

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 10. . . 011111111111111

0 31

CI 0100000000000000. . .

0 31

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u r n ;
}

}
}

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

t1

T -next

t2

V -next

v2

interp

v1

interp

G. Lettieri Virtualization

A formalization: stepwise correctness

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 0000000000000000. . .

0 31

CI 1000000000000000. . .

0 31

0 31

Mem

0

1

31

0000000000000000. . .

0011000000000001. . .

0000000000000000. . .

24 1. . . 100000000000000

A 10. . . 011111111111111

0 31

CI 0100000000000000. . .

0 31

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0
i n t 3 2 t CI ; // 1

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

i n t 3 2 t Mem[3 2] ; // 0, 0x100C, . . . ,
// [24] 0x3FFFF, . . . , 0

i n t 3 2 t A ; // 0x3FFFF
i n t 3 2 t CI ; // 2

vo id e x e c () {
f o r (; ;) {

CI++;
⇒

i n t 3 2 t PI = Mem[CI] ;

i n t 3 2 t opcode = (PI & 0 xE000) >> 1 3 ;
i n t 3 2 t addr = PI & 0x1FFF ;

sw i tch (opcode) {
case 0 : CI = Mem[addr] ; break ;
case 1 : CI = CI + Mem[addr] ; break ;
case 2 : A = −Mem[addr] ; break ;
case 3 : Mem[addr] = A ; break ;
case 4 :
case 5 : A = A − Mem[addr] ; break ;
case 6 : i f (A < 0) CI = CI + 1 ; break ;
case 7 : r e t u rn ;
}

}
}

t1

T -next

t2

V -next

v2

interp

v1

interp

2
0
1
9
-1
0
-2
6

Virtualization

A formalization: stepwise correctness

Assume the target system starts in a T -state state t1. We find a V -state
v1 whose interpretation is t1 (there must be at least one, since interp is
onto). Assume T -next(t1) = t2. Then V -next must be implemented such
that V -next(v1) is a state v2 whose interpretation is exactly t2.
We start with “equivalent” states (t1 and v1), we end up (after a single
step in both machines) with two new equivalent states (t2 and v2). If
this property holds for any starting states, then the equivalence will be
preserved for the entire execution.

Since O is only permitted to look at T -states, she will not be able to

distinguish the target system from the virtual system.

