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1 Introduction

To mount a successful ROP attack, the attacker must know or guess the absolute
addresses of the ROP gadgets in the memory of the victim process. One line
of defense, therefore, is to make these addresses very hard to guess. This is
the idea behind the Address Space Layout Randomization (ASLR for short)
mitigation: load program segments at random addresses, so that an attacker
cannot possibly know them without (hopefully impractical) brute-forcing.

Note that, like stack canaries and NX, this is yet another mitigation: we are
not trying to eliminate bugs, just mitigate the effects of their exploitation. Like
all other mitigations, ASLR has limitations and it is not the final solution to
the problem.

2 Position Independent Code

In general, binary code and data cannot be loaded at random addresses without
modification. For example, consider the following amd64 assembly instruction
(Intel syntax):

mov rax, [myvar]

where myvar is some label in the .data section. When the source file is
assembled and linked, the myvar symbol will be mapped to a memory address,
say 0x406020, and the instruction becomes

mov rax, [0x406020]

which, in the final binary code, corresponds to the bytes
48 8b 04 25 20 60 40 00

We can see that the address 0x406020 is written in the instruction itself (starting
from the 4th byte, in little endian). This means that myvar cannot be loaded
at a different address, unless the instruction is patched. Patching the code,
however, is undesirable, because it limits or completely prevents the sharing



of the loaded .text sections among the processes that are running the same
program. It also slows down the loading of programs.

An alternative is to generate code that does not assume to know the address
of myvar statically, but computes it at runtime using information provided by
the loader. There are basically two models that are used, often in combination.
We will explore them in turn.

2.1 Relative addresses

Continuing with our example, the linker can allocate myvar at a statically
known offset from a “base address” chosen by the loader. The loader then
communicates the base address by storing it in an agreed-upon register.

If we use this solution, the above instruction should be changed to something
like

mov rax, [rbx+myvar_ offset]

where we have assumed that rbx is the agreed register containing the base
address. This solves the problem, but at least one register, such as rbx, must
be reserved for this purpose and cannot be used for general computation, or
it must be saved and restored very often. An important special case is when
myvar is at a known offset from the instruction pointer, since this register is
already unavailable for general computation. In amd64 the instruction becomes

mov rax [riptmyvar]

Note that the assembler allows us to use the label of myvar in this case instead
of its offset: the assembler and/or the static linker will calculate the offset of
myvar from rip and put it in the instruction.

The above rip-relative addressing is not available on 32 bit x86 systems. The
same effect can only be achieved by first loading eip into a general register—a
process called “thunking”. Thunking can be implemented with the following
two instructions:

call here
here: pop ebx

The only purpose of call is to store eip on top of the stack so that the next
instruction can pop it into ebx. However, this breaks the pairing of call/ret
instructions and confuses the branch predictors inside modern processors, so a
slightly more expensive solution is used:

call thunk

thunk: movl ebx, [esp]
ret




We call a function that immediately stores the contents of the top of the stack
(i.e., the rip saved by the call) into a register and then returns.

2.2 Table of pointers

In this alternative solution, our myvar can be loaded at an address that is
independent of all other addresses. The linker creates a table of pointers that is
filled by the loader at runtime. One entry of the table contains the address of
myvar, and the code must load this address first, whenever it wants to access
myvar.

This solution is much more expensive than the one in Section 2.1 and it is
only used when necessary. For example, if myvar is defined in an independent
module (e.g., in a dynamic library), not even its offset is statically known. As
another example, even if the offset is known, it may be too large to fit into the
instruction encoding (this is a common problem on amd64). Finally, it may
be the case that independently loaded modules may redefine myvar and all
accesses should now be redirected to this new definition. This is the process of
“interposing” and is a required feature of dynamic libraries. A table of pointers
is used for all these cases.

Let us see how the access to myvar is implemented in this case. Assume that
rbx now contains the address of the pointer table. The following instructions
can be used to access myvar:

movqg rcx, [rbx+myvar_entry_offset]
movqg rax, [rcx]

First we to load myvar’s pointer from the table into a temporary register and
then load myvar indirectly through this register. Note that we also need to
know the address of the pointer table, so that we can load rbx. Typically,
relative addresses are used for this access.

In the ELF environment, the pointer table is the GOT. It is created by the
static linker at a constant offset from the code, so that rip-relative addressing
can be used to access it. The static linker also reserves the GOT entries for
any entity (such as myvar) that needs them, and patches the entry offsets into
the binary code. Finally, the static linker prepares a set of relocations (in the
.rela.got and .rela.plt sections) to let the dynamic loader fill the GOT
with the final addresses.

From the above description, it should be clear that Position Independent
Code does not come for free, at least on the x86/amd64 architectures. The gcc
compiler will only generate it if explicitly requested with the —fpic or —fPIC
options (both do the same thing on amd64,/x86).

3 Address Space Layout Randomization

One of the goals of ASLR is that is should be implemented in a non-disruptive
way: if possible, we should be able to enable it on pre-existing binaries. In all



cases, the easiest randomization to implement is simply to randomly select the
base address of each segment, with no intra-segment randomization, since that
would require much more disruptive changes to existing systems. For example,
only the base load address of the C library is random, while all the offsets within
the library are constant. Note that this compromise simplifies the implementa-
tion, but leaves the offsets known to the attacker, who can extract them from
the library file.

Let us now review the segments that make up a process’ virtual memory and
see which one of them can probably be loaded/created at a random base address
and still be expected to work. In a typical Linux (or Unix-like) environment,
we have:

e segments loaded by the kernel from the executable ELF file (i.e., those
containing the .text, .data, .bss sections and so on);

e the heap (a region of memory created by the kernel and managed by
userspace libraries);

e the stack (created by the kernel);

e dynamic libraries (loaded by the dynamic loader, using memory-mapping
system calls);

e other objects automatically provided by the kernel (e.g., the VDSO in
Linux);

Dynamic libraries are probably the safest: they are already loaded at addresses
which are unknown at compile time, and for this reason they are already com-
piled as PIC and should not make any assumptions about absolute addresses.
The stack should also be safely created at a random address, since programs
should only access it via the stack pointer. How the heap is used depends heav-
ily on the userspace library used to manage it. Applications usually only access
the heap only through a library that provides, for example, the malloc () and
free () functions, or the new and delete operators. The application should
not make any assumptions about the absolute values of the addresses returned
by these libraries. If the heap libraries themselves make no assumption about
where the heap actually is, then the heap can safely be created at a random
address. The kernel objects are very system-specific. In Linux, the VDSO is
implemented as a standard ELF dynamic library, so it can be safely randomized
without any additional effort.

This leaves the segments of the main executable itself. These can only be
randomized if the program was compiled as PIC, which is usually not the case.
As a compromise, early implementations of ASLR skipped randomizing of the
main executable, which was loaded at a known address chosen by the static
linker. However, this was a serious weakness, since the main executable contains
pointers to the other modules at known addresses (e.g., in the GOT itself), and
thus an information leak bug in the executable can easily reveal the addresses of
the dynamic libraries. From there, code reuse attacks become very much easier.



However, there are other limitations in the implementation of ASLR. Load-
ing the segments at random addresses fragments the virtual memory, and this
can cause problems for segments that can grow at runtime (this is true for the
stack and the heap), or for segments that are dynamically loaded, such as the
dynamic libraries. The virtual memory space may end up in a state where there
is no room to load the next segment, or no room to expand the stack and/or
the heap. The problem is worse in 32b systems. A number of compromises are
usually implemented to overcome this problem: the available address space is
a-priori divides into regions, and each region is allocated to a type of segment
(the main executable, the heap, the libraries, the stack, the kernel objects, ... ).
Segments are randomly allocated only within their own region, with enough
room at the end if they need to grow. Libraries are loaded in order in their
region, with at most a random offset between them. Regions are implemented
by fixing the higher part of the virtual base addresses. For example, code is
always loaded starting at address 0x000055XXXXXXX000. The last 12 bits of
the load address are also typically zero, to preserve intra-segment alignments
and also to allow the sharing of the underlying physical pages between processes
that have loaded the same segment at different (random) virtual addresses. The
Xs n the example above are the remaining random bits. In 32 bit systems, there
are very few random bits left, opening the door to brute-force attacks.

Another limitation, common to Unix-like systems, is that the randomization
is only performed when a new program is execve ()ed. New processes are
created by fork (), and the semantics of this syscall require that the virtual
memory of the new process be an exact copy of the virtual memory of the parent.
This weakens ASLR protection for forking servers, since information obtained
from one child process can be used to attack all other children.

4 Position Independent Executables

For ASLR to be fully effective, the executables themselves should be loaded at
random addresses. This would require compiling all programs with —fPIC, but
system vendors have been unwilling to do this, because of the perceived cost of
PIC.

However, this cost is much higher than it needs to be. When a compilation
unit (a source file that produces an object file) is compiled with —£fPIC, all
non-static references to global data will go through the GOT, and all calls to
non-static functions will go through the PLT. This includes data and functions
defined in compilation units that are later linked into the same executable, and
even data and functions defined in the same compilation unit that contains
the data access or function call. This is because PIC is intended for shared
libraries, and these must allow for interposition. Using PIC for an executable,
where interposition is not possible, is indeed overkill.

The situation changed with the introduction of Position Independent Ex-
ecutables (PIE for short). PIE is a new compilation option that implements
position independence tailored for executables. All data and function accesses



are implemented using rip-relative addressing schemes. The GOT and the PLT
are only used for data and function accesses that are truly external to the exe-
cutable, such as calls to functions defined in the C library.

In the gcc compiler, PIE can be enabled with the —pie option. Conversely,
if PIE is enabled by default, it can be disabled with the —no-pie option.

5 Implementation in Linux

ASLR in Linux is implemented in the way sketched above. The main executable
(if compiled with —pie), the heap, the libraries, the stack and the kernel objects
are loaded/created in a random location within their own region. The relative
order of the regions is fixed and follows the traditional order. Some of the most
significant bits of each region are fixed and the start address of each region is
page-aligned (the 3 least significant hexadecimal digits are 0).

There is no randomness within a single ELF file (main executable or dynamic
libraries): all the segments contained in the same ELF file are loaded “as a unit”,
with only the load addresses chosen at random (within the correct region). This
means that offsets within the ELF file can be obtained from the binary, and a
leak of any address in an ELF file will reveal all the addresses in that file. In
addition, the offset between dynamic libraries is also fixed. This means that a
leak of an address in one library will reveal the load addresses of all libraries. In
fact, what is actually randomized is just the mmap () “base address”, i.e., the
first address where mmap () starts looking for space to fit the required mapping.
Since the dynamic loader uses mmap () to map the dynamic libraries into the
process address space, this translates into a random base address for the first
library, which in turn shifts all the others. Recall that the dynamic loader itself
is mapped into the process address space for the entire life of the process. The
loader is typically compiled with —pie and loaded at a random address by the
kernel.

Linux implements some intra-segment randomness for the stack segment: in
the execve () system call, the kernel pushes a random number of zero stack-
lines between the argument and environment strings at the bottom of the stack
and the argv/environ arrays at the top.

If the main executable is neither PIC, nor PIE, it is be loaded at the virtual
addresses stored in its ELF program table. If the executable is PIC or PIE, the
program table only contains offsets from the (unknown) load address.

ASLR can be enabled and disabled globally and on a per-process basis.
There is a global parameter, that can be manipulated by writing to the

/proc/sys/kernel/randomize_va_space

pseudo-file. A value of 0 disables ASLR completely. A value of 1 enables it for
everything except for the heap (this is needed for some legacy versions of the
GNU libc that assumed the heap started right after the .bss). A value of 2
enables ASLR for the heap as well.



Every linux process has what is called a “personality”, which is a set of con-
stants and flags that determine how it runs. One of these flags is ADDR_NO_RANDOMI ZE,
which can be set to disable ASLR, for this process (and its children). The flag can
be set programmatically by using the Linux-specific personality () system
call, or from the command line using the setarch utility. This utility is mainly
used to select the reported “architecture” of a process (e.g., 1386 or x86-64), but
it can also be used to set personality flags. However, the architecture argument
is mandatory. To change a flag without changing the architecture you can call
it in this way:

setarch $(uname -m) -R some-program

The $ (uname -m) command substitution returns the currents architecture, so
that setarch leaves it at its current value. The -R flag disables ASLR before
executing some-program. Since the personality is inherited through fork ()
and execve (), you can run a shell with setarch to start a session where all
commands will run with ASLR disabled.

Note that you cannot disable ASLR for setuid/setgid programs this way:
the kernel will reset the “dangerous” flags to their system defaults when it it
finds that it needs to change the effective ids of a process.



