
2. Unix

Unix was not developed with security, in any realistic
sense, in mind.

D. Ritchie, On the security of Unix, 1975

In this book we will mostly use Linux. Linux is based on Unix, which is a completely different thing.
It is important to set the record straight.

Unix was developed at AT&T Bell Labs in the late ’60s by Ken Thompson, soon joined by Dennis
Ritchie. It was a personal project that Thompson started on a PDP-7, when Bell Labs pulled out of the
MULTICS project. It was then ported to a PDP-11 and enjoyed great success, first within the Bell Labs
themselves and then at many universities and companies. The versions of Unix produced by Bell Labs
are now called “Research Unix” and are numbered according to the version of their manual, starting
with V1. The last well know Research Unix version is V7 from 1979; after that, and until the late
’1990s, most people used a version of Unix that derived from either System V, a commercial version of
Unix developed by AT&T, or BSD (Berkeley Software Distribution), a free version of Unix maintained
by people at the University of California Berkeley (UC Berkeley). Both were based on research Unix
code, extended in incompatible ways. The POSIX standard is (one of several) standards that try to
define what every Unix system should look like.

A lawsuit was started in 1992 by AT&T against UC Berkeley, claiming that the latter had no
right to use Unix code. Meanwhile, two important things happened: Richard Stallman had started
the GNU (GNU’s Not Unix) project in 1983, with the goal of rewriting Unix from the ground up to
create a Unix-like system free of all legal problems. The GNU project produced many of the userspace
commands, starting with the C compiler, but it never managed to materialize the kernel. This very
important missing piece was finally created when Linus Torvalds announced his personal kernel project,
which eventually became Linux, in 1991. By putting together Linux, the GNU software and a lot of
other open source software (such as the Vim editor and the X Window System), we can now have
several complete and free Unix-like systems.

The BSD people finally succeeded in rewriting their software and freeing it from any dependence
on Unix. The BSD system survives today in FreeBSD, OpenBSD, NetBSD and some other variations.

Bell Labs did not stop at V7 Unix, producing other less well-know versions up to V10, and
developing “Plan 9 from Bell Labs” (a reference to the trash sci-fi movie Plan 9 from Outer Space)
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Figure 2.1 – The structure of Unix

and “Inferno”, where the Unix ideas were developed without the need to maintain compatibility with
ancient decisions. Today, Linux also includes ideas from Plan 9, such as the clone()primitive, which
replaces the old fork().

2.1 The structure of Unix
You are probably already familiar with Unix, so we will move very quickly. For our purposes, one of
the most important features to keep in mind is that no program in Unix is magic, except the kernel (see
Figure 2.1). Only the kernel can do things that the other programs cannot. In particular, the shell is
not magic: everything the shell does, you can do in your own programs, and you can even replace the
default shell with another one. Not even sudo is magic: it only allows you to become root temporarily
thanks to the set-uid feature. Moreover, this feature is not specific to sudo: any executable can have
the set-uid bit set at the discretion of its owner (or the administrator).

The kernel implements a number of primitives in the form of system calls. Programs such as the
shell, ls, cat, sudo, and so on, perform their tasks using these primitives. When you reason about
what is possible and what is not, you only have to think about the primitives, not the programs: to read
a file, cat must open() it, just like any other program that reads a file.

The original Unix was admired for its elegance, since the set of primitives was very small (a modern
Linux system, unfortunately, implements hundreds of primitives). The system implements processes,
which are the entities that execute programs, and files, which are automatically expanded sequences of
bytes organized in a hierarchy of pathnames (the file system). Processes are handled by the fork(),
execve(), exit()and wait()primitives. Files are handled with the open(), read(), write()
and close()primitives.

The kernel keeps track of a number of properties for each process. Among them are:
• the process identifier (a small number which is reused when a process terminates);
• a real and an effective user identifier, and a real and effective group identifier.

R Later Unix-derived systems and modern Linux also implement a set of additional group
identifiers, so a process can belong to many groups.

• a current working directory
• a table of open files.

The kernel also remembers, stored in the file system inodes, a set of attributes of each file and directory.
Among them are:

• the file type (file, directory, symbolic link, device node)
• the ids of the file’s owner and group;
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• the permission bits (read, write, execute permissions for the file’s owner, for the file’s group, and
for other users)

• the set-uid and set-gid flags.
These are generically called process or file “metadata” in Figure 2.1. Only the kernel can access this
state directly.

2.1.1 Process primitives
The fork()primitive is the only way to create a new process. The child process is a copy of its parent
and, in particular, all of the process attributes mentioned above are copied to the child process (except,
of course, the process identifier). In particular, the new process will have the same uid and gid as
its parent, and will share the same open files. The executed program is also the same: the fork()
primitive will return different values to the parent and the child, so the program can take different
branches and let the two processes perform different actions.

The execve()primitive is the only way to execute a new program. The first argument of the
primitive is the path of a file, which must be executable by the calling process (according to the file’s
permissions and the process’s effective uid and gid). The process remains the same: same id, same
open files, same current working directory, same real uid and gid (the effective ones may change
because of the set-uid and set-gid feature, see below). However, all its memory is replaced by the
contents of the file. Execution resumes at the file’s _start symbol. The execve()primitive takes
two more arguments, which are two arrays of C strings, with each array terminated by NULL. The code
in _start (which comes from the standard C library) will use the first array to create the argc and
argv parameters of main, while the second array is used as the set of the environment variables of
the process, pointed to by the global environ variable.

If the set-uid bit of the file is set, execve()changes the effective uid of the process to the uid of
the owner of the file. The same goes for the set-gid bit and the effective gid. The real uid and gid do
not change.

Processes terminate when they call the exit()primitive. A process can wait for any of its children
to exit by using the wait()primitive. A small integer passed to exit(), can be received by wait()
and used as a means for the child process to communicate errors or special conditions to its parent. By
convention, a value of 0 means that all was well.

The uid and gid of a process can also be changed using the setuid()and setgid()primitives
which behave differently when called by the root user (effective uid 0) and normal users (effective
uid different from 0). If the effective uid of the calling process is 0, setuid()will accept any value
and set both the real and effective uids to it (and similarly for setgid()). Normal users can only call
these primitives when they are essentially no-ops (setting the ids to the value they already have), or (by
set-uid/set-gid programs) to set the effective ids back to the real ones.

2.1.2 File primitives
We will cover only the most important features, assuming that you are already familiar with a Unix-like
file system.

Files must be opened before they can be used. The open() primitive takes a path as the first
argument and a mode (read and/or write) as the second. It checks if the calling process has the proper
permissions to open the file in that mode (again, using the effective uid/gid and the file permissions). If
successful, it finds the first free slot in the process open-file table, stores there a pointer to an in-kernel
data structure describing the open file, and returns the index of the slot. This index (file descriptor) can
be passed to the read()and write()system calls to sequentially read and write bytes to and from
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the open file. The process should close() the files when it is done with them, mostly because the
open-file table has a finite size, but the kernel will automatically close any open files when the process
terminates.

If so instructed, open()can also create the file if it does not exist. The original design used a
different primitive for this, creat(), which is still available today.

Directories must be created and deleted using the mkdir()and rmdir()primitives. Existing
directories are opened and closed with open()and close(), like regular files, but you cannot use
write(), and you can (no longer) use read()on them, since their content is system specific. The
standard primitive to read directories is getdents(), but directories are best accessed using library
functions (opendir(), readdir(), closedir()).

Finally, a process can change its own current working directory using the chdir() primitive,
passing the path of the new directory as an argument.

2.1.3 Interpreting paths
All of execve(), open()and chdir()always interpret their first argument—a filesystem path—in
the same way:

• if it begins with /, it is an absolute path starting from the root of the file system;
• if it does not begin with /, it is a relative path starting in the current working directory of the

process.
Note, in particular, that no PATH variable is taken into account by execve(): PATH is handled in
userspace before calling execve()(see Section 3.2).

Any character can be part of a file or directory name, except 0 and /. This includes whitespace,
even newlines, and control characters like backspace.

2.2 A didactic reimplementation of some Unix programs
Unlike the original Unix code, the source code of modern libraries and commands, even the simplest
ones, is huge and hard to read. Nevertheless, source code is very useful for understanding what is really
going on in the system, how primitives are used and which program is responsible for which feature.

The mynix package contains a very simple rewrite of some standard Unix programs. The only
purpose of the exercise is to show how things fit together without distracting details. The only thing
that is assumed is the kernel—everything else is rewritten.

You can download the package here:

https://lettieri.iet.unipi.it/hacking/mynix-3.1.zip

Once unzipped, you obtain a mynix-3.1 directory with the following subdirectories:
src contains the sources of all the commands
lib contains the sources of all the library functions
util contains a few scripts to build and run the programs

For many programs (sh, ls, login, . . . ) there are several sources numbered sequentially. Each
version improves the previous one, typically by adding a single new feature.

The system should run on any sufficiently recent version of standard Linux distributions, such as
Ubuntu or Kali. You can of course run Linux in a VM, but even WSL2 should work. Moreover, the
sources include assembly for both Intel and ARM CPUs, so you should be able to run the system also
in a Linux VM running on a Mac M1/2/. . . .

The easiest way to compile everything is to run:

https://lettieri.iet.unipi.it/hacking/mynix-3.1.zip
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$ util/install

as a normal user. This creates a root directory containing a minimal Unix file system. Individual
programs can be run as, e.g.:

$ root/bin/sh0

You can also run a “standalone” system which uses only the programs in src, but you need to be
in sudoers and have a proper entry in /etc/subuid and /etc/subgid. Moreover, xterm and
uidmap must be installed in your Linux distribution. If these conditions are met, you can run

$ util/start

as a normal user. You will be asked for your sudo password. The script will start a few xterms, each
one emulating a terminal connected to the mynix system. Then, it will run the init program to spawn
getty on the terminals. You should see the “login:” prompt on each one of them.

R You can follow the process described in Section 2.2.1 by reading src/init.c, then src/getty.c
and finally src/login1.c.

The initial passwd file defines a couple of normal users (user1 and user2) and the root user. Passwords
are not set, so you can login by just typing enter at the password prompt. Once you have logged in, you
can use passwd to set the passwords.

When several versions of the same program exist (e.g., sh0, sh1, etc.), the default one is the
highest numbered one. So, for example, /bin/sh is actually a link to /bin/shA. You can select a
different default one when you start the system, e.g.:

$ util/start sh=bad2sh

will start the system with /bin/sh pointing to /bin/bad2sh.
Type ctrl+C on the window where utils/start is running to stop the system.
The number of terminals can be tweaked by editing src/ttys and then running util/install

again. Edit src/passwd to add/remove users, followed by util/install. Note that the install
script does not delete the previous file system.

Finally, the programs can also be compiled using the system libraries, instead of the custom library
in lib. Just enter the src directory and type make followed by the name of the program that you
want to build (or just make to build them all). This should work even on a Mac M1/2/. . . without any
VM, but some programs that use Linux specific features (such as ps) will not be compiled.

2.2.1 How things fit together
From a Unix access control point of view, you must always remember that what matters is the effective
uid and gid of the processes, as checked by the kernel when they invoke primitives. The programs
are not important: exactly the same ls program is run by normal users and by root, but the set of
directories that can be listed depends on who is running ls. More specifically, it depends on the
effective uid and gid of the process that execve()’d the /bin/ls file.

So, how do processes get the effective uids and gids of users? We can follow the boot process
of mynix to have a clear view. It mimics, in a simplified way, the boot process of traditional Unix
systems. When Unix boots, the kernel creates a process with id 1, both real and effective uid and gid set
to 0 and no open files. The process executes the init command, which must exist and be executable.
The Unix system is running on a large computer somewhere, and there are several terminals connected
to it.
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For example, in the picture at the beginning of this chapter, we see a pair of Teletype ASR 33 terminals
connected to the PDP11 running Unix. An uncharacteristically shaved Ken Thompson is sitting at the
first one, with Dennis Ritchie standing next to him.

The available terminals are listed, one per line, in a /etc/ttys file created by the administrator
(ttys stands for teletypes). In this file, init forks and executes the getty command, passing the
name of the teletype as an argument (via the second parameter of execve()). It then waits endlessly
for one of its children to exit. Whenever a child exits, init wakes up and spawns a new getty for
the corresponding terminal. You can take a look at src/init1.c to see how this can be done using
the available system calls, and nothing else. However, instead of the expected execve()we see this
in the function that spawns getty:

21 execl("/bin/getty", "getty", gettys[i].tty, NULL);

We are not calling the execve()system call directly. Instead, we use execl(), a C library function
that is a little easier to use. You can find the sources in lib/execl.c. The function does some extra
processing and then calls the system call (we know it has to call it: there is no other way to run a
program). The first argument of execl()is exactly the same as execve(), and in fact execl()will
pass it as is. The execl function is variadic, i.e. it takes a variable number of arguments, which in
this case are C strings. You can take a look at lib/execl.c in mynix to see how this works. The
function collects these strings, starting with the second argument until it finds NULL. It creates an array
of pointers to these strings. This array then becomes the second argument of execve(), and then
the argv of the new program. We follow the convention that the first element of argv must be the
program name. As for the last execve()argument, the array pointing to the environment variables,
execl()will simply pass the one from the calling process (this last part is actually done by execv(),
see lib/execv.c in mynix). At this point the environment is still empty.

The getty process thus starts with uid and gid set to zero and no file open. It does whatever is
necessary to put the teletype device into a usable state, then it opens the corresponding device file
three times, once in read-only mode and twice in write-only mode. Here are the relevant lines in
src/getty.c:

21 fd0 = open(buf, O_RDONLY);
22 fd1 = open(buf, O_WRONLY);
23 fd2 = open(buf, O_WRONLY);

(where buf is the path of the device received as an argument.) Since there were no open files before,
and the open()primitive always uses the first free slot in the file descriptor table, the device goes
into file descriptors 0, 1 and 2. By convention, these are the standard input, standard output and
standard error files for programs started from this terminal: any descendant process will inherit these
file descriptors, unless one of its ancestors explicitly close()es them. The getty program will then
print “login:” to file descriptor 1:

26 write(fd1, "login: ", 7);

and starts reading from file descriptor 0:

27 n = read(fd0, buf, 9);

R Traditional usernames were limited to 8 characters, but we read 9 bytes to account for the newline.
The lines after 27 (not shown) check that the newline is actually there and replace it with the
string terminator, to leave a proper C string in buf.
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When a user comes to the terminal and enters her name, getty will execve() the login program,
passing the entered username as an argument:

34 execl("/bin/login", "login", buf, NULL);

Now the process (still the same one spawned by init) starts to run the login program. It still
has its uids and gids set to zero, and its fds 0, 1, and 2 pointing to the terminal where the user has typed
in her name. Let’s take a look at the sources in src/login1.c. The program prints “password:”
to file descriptor 1, then reads from file descriptor 0. It needs to do some ioctl()first, so that the
terminal doesn’t echo the password to the terminal printer, where it would remain there for everyone to
see. This is done by the getpass()) library function (in lib/getpwnam.c):

19 pass = getpass("Password: ");

Once it gets the password, it opens and reads the /etc/passwd file (prepared by the administrator),
looking for a line starting with the username. This is traditionally done in another library function,
getpwnam()(see lib/getpwnam.c).

22 if ( (pw = getpwnam(argv[1])) == NULL )

The function returns a pointer to a “struct passwd” structure, with one C field for each colon-
separated field in the /etc/passwd file. If getpwnam()finds the user, login checks the password,
and if they match, it calls

34 setgid(pw->pw_gid);

and

39 setuid(pw->pw_uid);

Since login is still running as root, these calls set both the real and effective gids and uids of the
process those of the logged-in user. After that, it moves to the home directory of the user:

43 chdir(pw->pw_dir);

and finally executes the shell:

45 execl(pw->pw_shell, "-sh", NULL);

R The dash in the first argument (argv[0]) is a conventional of telling the shell that it is being
called by login. The shell will use this fact to read some initialization script that should be only
be run at login time.

Login also sets some environment variables, which are then inherited by the shell (see src/login2.c
for some examples).

When the shell runs, it will still have file descriptors 0, 1 and 2 pointing to the terminal opened
by getty and the uids and gids set by login. From now on, all the programs started by the shell
will inherit this setting, and, if the uid is greater than zero (a normal user has logged in) there will be
no way to arbitrarily change the uid and gid since setuid()and setgid()are no longer available.
Only by execve()ing set-uid/set-gid programs can the uids and gids be changed, but these programs
will only perform safe actions (or so the administrator hopes).

When the shell exits because the user logs out, init will wake up and respawn getty on the
same terminal.
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R The shell is still running in the child process initially forked from init, since only execve()
has been called since then. This is why login is able to understand that it needs to respawn
getty.

Exercise 2.1 Can we swap setgid()with setuid()above? And chdir()with setuid()?
Can we put the chdir()after the execl()? ■

2.2.2 The simplest UNIX program

- nano? Real programmers use emacs.
- Hey, real programmers use vim.
- Well, real programmers use ed.
- NO, real programmers use cat.

Rundall Monroe,
https://xkcd.com/378/

The cat program is probably the simplest Unix program that still manages to be useful in a variety of
situations. When run without arguments, it copies its stdin to its stdout. The src/cat1.c version
just does this:

9 int main()
10 {
11 int n;
12 char buf[4096];
13
14 while ( (n = read(0, buf, 4096)) > 0)
15 write(1, buf, n);
16
17 return 0;
18 }

Notice how the program uses file descriptors 0 and 1 without open()ing them: they are still the ones
that were opened by getty.

If we run the program, it waits for a line of input, which is also echoed to the terminal as we type,
prints it when we hit enter, and then starts over, until we type an EOT.

If we use shell redirection (see Section 3.5) we can send the output of cat to a file:

$ cat >newfile

This is about the simplest “editor” available in Unix (and the only one available in mynix).

2.2.2.1 On terminals

Note that, while cat is waiting for your line, you can edit what you have typed before hitting enter:
you can delete the last character, the last word (Ctrl+W) or the whole line (Ctrl+U). Where is this
feature implemented? Since we have only called read(), it must be implemented by something that is
active during its execution. But read() is a system call, so line editing must be implemented either in
the kernel, or in the terminal (emulator) itself. We cannot be more precise than this without adding a
bit of history: old terminals were very simple and did not provide any line-editing functionality, so it
had to be implemented in software. For a long chain of compatibility requirements, this is still true

https://xkcd.com/378/
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today. In fact, this kind of line editing is implemented in the TTY module in the kernel, attached to the
driver that talks to the (emulated) teletype device. The TTY module has a fairly complex set of options,
which can be inspected and set using the stty(1) utility (or, more precisely, using a set of system
calls also used by stty). You can print the list of the current options with stty -a. Many options
are devoted to the details of the serial communication with the tty device and are mostly meaningless
today; some options specify the action to be taken when special ASCII values are entered from the
keyboard: some values cause a signal to be sent to the terminal’s foreground process group, and others
are used for line editing. The erase action removes the last input character and should be mapped to
the “^?” ASCII value, which corresponds to DEL.

R The “^c” syntax is used to display unprintable, or control, ASCII values, i.e., the first 31 values
and the last one (7f , DEL). The idea is to flip bit 0x40 to get a printable character, then prepend
that character with “^”, which stands for 0x40⊕ . . .. Since the ASCII code of “?” is 3f , “^?” is
0x40⊕3f = 7f , i.e., DEL.

The ASCII code of DEL is 7f because ASCII was designed for paper tape: to erase any character, you
could punch all seven holes.

Note that, for many keys, typing Ctrl+x will also toggle bit 0x40 of x so you can also enter DEL by
typing Ctrl+? instead of the key mapped to DEL in your keyboard (probably backspace). This is also
the way you can enter “^C” (ASCII ETX, usually mapped to the SIGINT signal) and the other values
which are not otherwise available on the keyboard. For this reason the “^x” syntax is often pronounced
“control x”.

This is reminiscent of how the Ctrl key was implemented in the Teletype ASR 33. However, in the ASR
33 the Ctrl key always resets bit 7 instead of toggling it. The Shift key instead toggled bit 5 (0x10), so if
you shifted ‘1’ (ASCII 31) you got ‘!’ (ASCII 21) and so on. Many of the keytop pairs that we see on
our modern keyboards come from old mechanical typewriters. The ASCII committee deliberately chose
codes that differed by only one bit (bit 5) for these symbol pairs, precisely to allow for the implementation
of the shift key as found on the ASR 33 device. Due to other constrains, however, the committee was
only partially successful, and some typewriter pairs could not be preserved. The distinction between
bit-paired and typewriter-paired keyboards has persisted to this day.
When terminals evolved more capabilities, like a bidimensional screen, they introduced escape sequences
to embed control commands in the stream of ASCII characters exchanged with the computer. These
sequences have been then standardized by ANSIa. ANSI escape sequences start with ESC (ASCII 1B)
and some variable sequence of printable characters, typically starting with “[”. For example, if the
computer sends “ESC[A” to the terminal, it will move the cursor up one line.
New keys, like the arrow keys, also send escape sequences to the computer. For example, the up-arrow
key sends “ESC[A”, i.e., the same sequence that moves the cursor up when received from the computer.
Now, if we start 1-basic and hit the up-arrow, we see “^[[A”. This is the echo (sent by the TTY
module in the kernel) of the escape sequence sent by the terminal (emulator). By default, the TTY
module echoes control characters in the same way explained above: “^[” stands for 0x40⊕5B = 1B,
which is ESC. Note that the program reading from the terminal will receive the true sequence, not the
one which is echoed. You can check this if you run cat, hit the up-arrow a few times and then press
enter. Then cat will wake up and send the received characters back at the terminal and the cursor will
move up.

ahttps://en.wikipedia.org/wiki/ANSI_escape_code

https://en.wikipedia.org/wiki/ANSI_escape_code
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2.2.3 Directories and inodes
The src/ls[1-7].c files contain increasingly complex implementations of the ls utility, designed
to show various properties of directories and inodes. The simplest implementation, src/ls1.c, only
prints the names of the entries in the current directory. Its code is as follows:

12 int main()
13 {
14 DIR *dir;
15 struct dirent* ent;
16
17 if ( !(dir = opendir(".")) ) {
18 perror(".");
19 return 1;
20 }
21
22 while ( (ent = readdir(dir)) ) {
23 printf("%s\n", ent->d_name);
24 }
25
26 return 0;
27 }

The implementation uses a pair of functions defined in lib/opendir.c and lib/readdir.c,
rather than calling the system calls directly. Directories are opened with open(), just like normal files—
opendir() just adds the allocation of the DIR object, which contains a buffer used by readdir().
However, the file descriptor returned by open()cannot be used with read()(and certainly not with
write()): if we have read permission on a directory, we can call the getdents() system call.
This system call can return one or more variable-lenght “struct direct” data structures. The
readdir() library function used in line 23 is easier to use, since it internally buffers the entries
obtained by getdents()and returns them one by one. The dirent structure contains at least the
name (the one printed on line 23) and the inode number. On some systems, including Linux, it also
contains a d_type field that encodes the type of entry (regular file, directory, device node, . . . ). If we
run ls1, we may notice a few things:

• the entries are not returned in alphabetical order: this must be done by ls itself;
• all entries are returned, including those that start with “.”.

The “.” entries are hidden only in the sense that ls doesn’t show them by default: they are just regular
entries for the kernel. The file src/ls2.c adds this behavior to our ls: we just need to skip entries
whose d_name starts with a dot, unless the user has explicitly asked for them by passing the -a option.

File src/ls3.c adds the -i option, which prints the other information that is always available
in dirent, i.e. the inode number. All other information about the entry, such as owner, group, mode,
size and so on, is stored in its inode. File src/ls4.c adds a simplified version of the -l (long
listing) option. To get the additional information we need to call stat()on each d_name found in
the directory. Note that we need search (x) permission on the directory to pass the name of an entry to
stat().

The ls4 binary prints the inode information as-is. The other task ls has to do is to make this
information more readable. One thing that we may notice is that the inode only contains the numerical
uid and gid of the file owner. This is generally true: the kernel only knows about these numerical
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ids—all symbolic names are handled in userspace and are just conventions. The file src/ls6.c
prints out the inode information using the conventions we are used to. Note in particular the following
function:

169 char* pretty_print_owner(uid_t u)
170 {
171 static char owner[11];
172 struct passwd *pw;
173
174 if ( (pw = getpwuid(u)) != NULL )
175 return pw->pw_name;
176
177 snprintf(owner, 11, "%d", u);
178
179 return owner;
180 }

The function converts a numeric uid to the corresponding username, if found, otherwise it returns a
string representing the uid itself. It uses the getpwuid()library function (lib/getpwuid.c) to
look up the uid, similar to the getpwnam() function used by login. In both cases, the functions
consult the /etc/passwd, which acts as a database mapping uids to usernames, and therefore needs
to be readable by everyone.

R You can try removing read permissions from /etc/passwd: both ls and ps will loose
their ability to display usernames and fall back to numerical ids. Group names are stored in
/etc/group. If this file is readable, the tools will still be able to display symbolic group names.

2.3 Is Unix secure?
“On the Security of UNIX”1 is a short paper by D. M. Ritchie, first published in the 6th edition of “The
UNIX Programmer’s Manual” (1975) and then adapted for the 7th edition (1979). The main message
of the paper is that

UNIX was not developed with security [ . . . ] in mind.

The paper lists several examples to support the above statement. Most of what Ritchie says is still true
today, in some form.

2.3.1 Abuse of system resources
The first two examples deal with denial of service problems caused by overuse of system resources:

Here is a particularly ghastly sequence guaranteed to stop the system:

: loop
mkdir x
chdir x
goto loop

(a) V6 script

while : ; do
mkdir x
chdir x

done

(b) V7 script

1http://www.tom-yam.or.jp/2238/ref/secur.pdf

http://www.tom-yam.or.jp/2238/ref/secur.pdf
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This four-line script attempts to create an arbitrarily deep directory structure, and will only stop when
either the i-node table is full or all disk blocks have been used. The mkdir-chdir sequence allows
the paths passed to the commands to be kept short: trying to create x/x/x/. . . in one go would hit
path size limit before doing any damage, while trying to create many files in the same directory would
be stopped prematurely by the directory size limit.

The V6 script uses Thompson’s shell syntax: the colon introduces a label and goto jumps to it. The
implementation is interesting. Thompson’s shell could only execute scripts by redirecting its standard
input. The “goto label ” statement was actually an external command that used seek()on its own
standard input file pointer, looking for a line starting with a colon and the string label. Since the file
pointer is shared between the shell and its children, after goto the shell would go back and read the
command that followed the “: label ” statement. The colon itself was another external command that
did nothing and returned 0 (success). The goto command has disappeared, but the colon has remained
as a built-in command in modern shells, where it is used either as a fast true (the V7 script shows an
example of such usage), or when you are only interested in expanding its arguments for their side effects.

The second example exhausts system resources (either swap space or process table slots) by creating
an excessive amount of background processes (the syntax used is the same as today):

For example, the sequence

command&
command&
command&

if continued long enough will use up all the slots in the system’s process table [ . . . ]

V6 UNIX would either panic (i.e., crash) or become unusable in such circumstances. V7 UNIX
mitigated the problems caused by the second example by introducing limits on the number of processes
that a user can create; modern Unix and Unix-like systems do the same. Ritchie, however, duly notes
that this is not sufficient and the system can still become essentially unusable, or even crash, if these
processes use too many resources.

2.3.2 File permissions problems
Ritchie then goes on to explain file permissions.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction. Here the degree of security seems (almost) adequate theoretically[.]

Ritchie explains the now-familiar rules for checking user/group/other permission, and the special cases
for directories. He also introduces the set-UID/set-GID feature, using a motivating example that is
much nicer than the ones commonly used today, typically based on passwd:

The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game’s sponsor
can be allowed unrestricted access to the file lest they manipulate the game to their own advantage.
The solution is to turn on the set-UID bit of the game program. When, and only when, it is invoked
by players of the game, it may update the score file [but] ordinary programs executed by others
cannot access the score.

There are nonetheless a few problems he sees in this area:
1. The existence of the super user (aka root):
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[ . . . ] there is a “super user” who is able to read any file and write any non-directory. The
super-user is also able to change the protection mode and the owner UID and GID of any
file and to invoke privileged system calls. It must be recognized that the mere notion of a
super-user is a theoretical, and usually practical, blemish on any protection scheme.

2. Default permissions are too liberal:
The first necessity for a secure system is of course arranging that all files and directories have
the proper protection modes. Unfortunately, UNIX software is exceedingly permissive in this
regard; essentially all commands create files readable and writable by everyone.

3. The permissions on directories are not intuitive:
[ . . . ] a writable file in a read-only directory may be changed, or even truncated, though
not removed [ . . . ] it is possible to delete a file if one has write permission for its directory
independently of any permissions for the file.

All of them are still true today, but they are not at the same level of importance. Problem 2 can be fixed
in some cases by following Ritchie’s advice:

[ . . . ] if one wants to keep one’s files completely secret, it is possible to remove all permissions
from the directory in which they live, which is easy and effective[.]

In the V7 version of the paper, Ritchie mentions the (then) recently introduced umask as a better
solution for problem 2. The default value of umask set by login removes write permissions for
others, and this also makes problem 3 much less visible.

R Many Linux distributions also remove group write permissions from the default umask. However,
many still allow read permissions for group and others; this may be a problem in a multi-user
system, if users don’t change the defaults.

Problems 1 is the most dangerous, and it has gotten worse: the number of “privileged system calls” that
the root user may invoke has increased over the years and is now overwhelming. This is a problem
when we are forced to run a program as root because the program needs one of these capabilities. For
example, to give a web server the right to open port 80, we must also give it the right to wipe out the
entire filesystem.

2.3.3 Passwords
Ritchie then moves on to the topic of passwords. He says that here UNIX behaves better than most
other systems of the time, since

[p]asswords are stored in an encrypted form which, in the absence of serious attention from
specialists in the field, appears reasonably secure, provided its limitations are understood.

This allowed the passwd file to be world-readable, so that it could also be used as a database mapping
usernames to uids (replacing an older uids file). This database is used, e.g., by ls, ps, chown and
so on.

The encrypted-passwords idea was suggested by M. V. Wilkes in ’68, but come to Unix via Multics,
where it was developed in the aftermath of a funny incident in CTSS (the precursor of Multics). CTSS
stored passwords in plain text, in a file readable only by administrators, like early versions of Unix. One
day, two administrators at MIT were editing the message-of-the-day file and the password file, without
knowing about each other. Since the editor program always used the same name for temporary files, the
two files were accidentally mixed up. Until the system was stopped (by exploiting another bug to force it
to crash) all users logging into the system were greeted with everyone’s passwords in clear text.
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However, Ritchie points out that a world-readable passwd file opens the door to brute-force/dictionary
attacks:

[ . . . ] 67 encrypted passwords were collected from 10 UNIX installations. These were tested
against all five-letter combinations, all combinations of letters and digits of length four or less, and
all words in Webster’s Second unabridged dictionary; 60 of the 67 passwords were found.

So, users must choose strong passwords. This is even more true today, of course. However, to help
prevent brute-force and dictionary attacks the encrypted passwords have now been removed from
passwd, which must remain world-readable for compatibility, and are now stored in the shadow file,
which is readable only by root.

Ritchie also mentions an old trick that works on UNIX too:

[ . . . ] write a program which types out “login: ” on the typewriter and copies whatever is typed to
a file of your own. Then invoke the command and go away until the victim arrives.

This is still true today, and it’s not much of a problem only because we no longer log into our systems
from public-access terminals. Windows NT is safer in this regard: the Ctrl+Alt+Del key combination
cannot be intercepted by user programs and provides a “trusted path” from the user to Windows itself.

2.3.4 Set-UID and Set-GID programs
Then Ritchie’s comes back to the very important topic of set-UID/set-GID programs (his own invention,
and the only UNIX patent). First, he notes that set-UID/set-GID programs must not be writable by
attackers (a problem related to how permissions work):

For example, if the super-user (su) command is writable, anyone can copy the shell onto it and get
a password-free version of su.

This is a general note: the permissions of a file (including the set-UID and set-GID flags) are stored in
its i-node: they don’t change when you write into the file.

More importantly, he notes that set-UID/set-GID programs must be

[ . . . ] careful of what is fed into them.

This is still extremely important, and we will spend some time on the attacks that target this very feature
of UNIX(-like) systems. Ritchie introduces an example that is no longer directly applicable, but is still
instructive (Ritchie himself repeats it in the V7 version of the paper, even if it was already “obsolete”
by then):

In some systems, for example, the mail command is set-UID and owned by the super-user [setuid-
root in modern jargon, ndr]. The notion is that one should be able to send mail to anyone even if
they want to protect their directories from writing.

This may be abused to violate privacy, since

[ . . . ] anyone can mail someone else’s private file to himself[,]

and also integrity:

[ . . . ] make a file with a line like one in the password file which allows one to log in as the
super-user. Then make a link named “.mail” to the password file in some writable directory on the
same device as the password file (say /tmp). Finally mail the bogus login line to /tmp/.mail; You
can then login as the super-user, clean up the incriminating evidence, and have your will.
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To understand the examples, we need a few explanations. The V5 mail command takes a letter and a
list of person strings as arguments. To send “someone else’s private file” to himself, Ritchie could just
type:

% mail path-to-the-file dmr

(“%” is the user prompt in the V5 and V6 shells.) For the second example, we need to read the V5
mail(1) man-page carefully:

A person is either a user name recognized by login, in which
case the mail is sent to the default working directory of
that user, or the path name of a directory, in which case
mailbox in that directory is used.

So, Ritchie is suggesting to operate as follows (using mailbox instead of .mail, as the manual
says):

% ln /etc/passwd /tmp/mailbox
% mail bogus /tmp

In this way the contents of bogus will be prepended to /etc/passwd. One can write the following
into bogus, before “mailing” it:

dmr:encrypted-password:0:1::/usr/dmr:/bin/sh

It is the zero UID that grants super user powers, not the username.

R The mail command also prepended the sender’s name and a “postmark”, so the passwd file will
contain an incorrectly formatted line after this attack—apparently login would not be confused
by it and would simply skip the offending line.

As Ritchie implies in the V7 version of the paper, the V7 mail command is not vulnerable to either
attack. He doesn’t say why this is the case, but we can note the following:

1. V7 mail doesn’t accept a letter argument, it can only read the letter from standard input;
2. in V7 mail all person arguments must refer to existing users, not directories.

Point 1 solves the privacy problem, since now you can only send files that you can already read (see
also Exercise 3.10). However, V7 UNIX actually exacerbated the problem with set-UID/set-GID
programs with the introduction of environment variables, as we will see. The V7 version of Ritchie’s
paper doesn’t show any awareness of this fact yet.

Ritchie’s description of the attacks doesn’t exactly apply to any officially released version of mail, at
least as described in the respective manuals. Only V6 uses .mail for the mailbox, but V5 was the last
to have a letter argument.
The ability to read the letter from standard input was added to mail in V3, presumably to make it usable
in pipelines. Until V5, this behavior was optional, selected if you passed only one argument, interpreted
as person. This syntax, induced by the need to avoid ambiguity with the other use, was a bit limiting, so
the decision to drop the letter argument in V6 may also have been motivated by usability considerations.

2.3.5 Untrusted filesystems
Finally, Ritchie mentions a problem with filesystem mounts:

Once a disk pack is mounted, the system believes what is on it. [ . . . ] a mounted disk with garbage
on it will crash the system; one of the files on the mounted disk can easily be a password-free
version of su; other files can be unprotected entries for special files.
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The only thing that might need an explaining is the reference to “unprotected entries for special files”.
Ritchie is referring to the special device nodes usually found in /dev, but which can actually be created
anywhere. In Linux, a device like /dev/sda gives low-level access to the blocks of the first hard disk.
Access to this device (and others like it) is usually restricted to root: a user who can read from this
device can essentially see the entire contents of the file system (including blocks belonging to deleted
files that have not yet been recycled), bypassing all other permission checks; a user who can write to
/dev/sda can make arbitrary changes to the filesystem. Now, since the power of /dev/sda comes
only from the major and minor numbers written in its i-node, a specially crafted disk could very well
contain an i-node with the major/minor pair of /dev/sda, or of any other hard disk, with a permissive
mode. A user who can mount this disk will then get unrestricted access to any other disk.

The V1 manual included the phrase “This call should be restricted to the super-user” in the BUGS
sections of the mount and umount entries—another step towards the overpowered root user we see
today. These calls are now privileged, but PC users still need a way to mount filesystems, if they want
to use their pen-drives or virtual disks and so on, so the system may contain suid-root programs or root
daemons that will call mount()on their behalf. Modern Linux kernels, however, allow you to specify
“mount options” such as nosuid and nodev which are explicitly aimed at the types of threats hinted
at by Ritchie: nosuid will not allow set-UID/set-GID binaries in the mounted filesystem, and nodev
will not allow special device nodes.


