
3. How a Unix shell works

hacker: n. [. . .] 1. A person who enjoys exploring the
details of programmable systems and how to stretch
their capabilities [. . .]

The Jargon file

Hackers know very well how things really work (the real ones, at least). We need to acquire a similar
level of knowledge, and we start with the most important Unix tool: the shell.

The shell is used to run other programs and define their parameters, environment and open files. It
is also a parser, interpreting and rewriting what we type at the command line in various complex ways.

We will try to understand what a shell does by incrementally building a simple one. A note of
caution, however: while we will try to mimic the behavior of a real POSIX shell as closely as possible,
we will not try to be complete, efficient, or even compatible with the standard, much less with any
existing shell.

We will use the code that can be downloaded from here:

https://lettieri.iet.unipi.it/hacking/esh-1.0.zip

The code has been organized as a git repository, with each commit adding a single new feature. Once
you have unzipped the file, you can enter the esh-1.0 directory and run

$ git log --oneline

to see a list of all the commits. Each commit has been tagged for ease of reference. You can easily see
the changes introduced by each commit using git. E.g., to show the changes introduced by 2-path, you
can run

$ git show 2-path --

This shows the differences between the 2-path shell and its immediate predecessor. You can look at the
full source of any version of the shell by adding :esh.c after the tag. E.g., to obtain the sources of
the 7-env shell, just run:

$ git show 7-env:esh.c

https://lettieri.iet.unipi.it/hacking/esh-1.0.zip

26 Chapter 3. How a Unix shell works

1 #include <sys/wait.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <unistd.h>
5
6 #define MAX_LINE 1024
7
8 int main()
9 {

10 char buf[MAX_LINE];
11 int n;
12
13 while ((n = read(0, buf, MAX_LINE)) > 0) {
14 buf[n - 1] = ’\0’;
15
16 if (fork()) {
17 wait(0);
18 } else {
19 execl(buf, buf, NULL);
20 perror(buf);
21 exit(1);
22 }
23 }
24 return 0;
25 }

Figure 3.1 – The simplest shell

If you run

$ make revisions

you will obtain the sources and the corresponding executable for each revision of the shell as separate
files in the current directory.

3.1 The simplest shell (tag: 1-basic)
Figure 3.1 shows the simplest shell imaginable. It is a program that cyclically reads a line of text
from its standard input (file descriptor 0) and tries to execute a program with that name. The program
is executed in a new process, while the parent process, which is still running the shell, waits for its
termination. It uses the process primitives described in Section 2.1.1.

If this is the login shell, file descriptor 0 will still point to the teletype device node opened by
getty and inherited first by login and then by the shell (Section 2.1.5). Therefore, the user will be
able to type commands on the terminal where she has logged into. The commands executed by the
shell will also inherit the files opened by getty, and will therefore accept input from, and write output
and errors to, the same terminal.

The shell has also inherited its uids and gids, this time from login. The real ids will also be

3.1 The simplest shell (tag: 1-basic) 27

inherited by the shell’s children. The effective ids will be inherited too, unless a child execve()s
a program that has the set-uid and/or set-gid flags set. In the normal case these flags are not set, and
therefore the command will be executed with the credentials of the current user. The same reasoning
applies recursively to any other process that the command itself might create.

Note that read()will also give us the newline character that ends the line typed by our user. We
replace it with the null character, to get a C string.

R Here we are assuming that the user types less than MAX_LINE characters including the final
newline; we’ll ignore this issue until Section 3.6.

Now let us focus on the function we use to execute the program. We are not calling the execve()
system call directly. Instead, we use execl(), a C library function that is a little easier to use. The
function does some additional processing and then calls the system call (we know it has to call it: there
is no other way to run a program). The first argument of execl()is exactly the same as in execve(),
and in fact execl()will pass it as-is. The execl function is variadic, i.e., it takes a variable number
of arguments, which in this case are C strings1. The function collects these strings, starting with the
second argument until it finds NULL. It builds an array of pointers to these strings. This array will then
become the second argument of execve(), and then the argv of the new program. We follow the
convention that the first element of argv must be the program name, so we pass buf twice Remember,
however, that only the first is interpreted by the kernel as a path, while the second is just copied into the
process memory and made available via argv[0].

As for the last execve()argument, the array pointing to the environment variables, execl()will
simply pass the one from the calling process. The new process, therefore, will see the same environment
variables as the shell (this latter part is actually done by execv(), see lib/execv.c in mynix).

Now let’s go to our home directory and start our minimal shell, then type /bin/ls and press
enter. We should see the contents of the directory. We can type the full path of other commands, such
as /bin/ps, or press Ctrl+D to send an EOF and cause our mini-shell to terminate (since read()
will return 0).

Now remember how execve()interprets its first argument, the path of the new program to execute,
and try to guess what will happen if we start our minimal shell and then type ls (followed by Enter)
assuming that the current directory is still our home.

Did you guess right? execve()fails and we get a “no such file” error. This is because the PATH
variable is not used, execve()gets the string “ls” as its first argument, and this represents a relative
path starting from the current directory (since it does not start with /). The current directory will
(probably) not contain an executable file called ls, and therefore the kernel will not be able to find it.
To confirm this, we can exit from our mini-shell (Ctrl-D), copy the ls program to our current directory
(to avoid confusion, let’s call it myls):

$ cp /bin/ls myls

Then run our mini-shell again. This time, typing myls will work.

Exercise 3.1 Note that, while in 1-basic, you can edit the command line before hitting enter:
you can delete the last character, the last word (Ctrl+W) or the whole line (Ctrl+U). Where is this
feature implemented? ■

1You can take a look at lib/execl.c in mynix to see how this works.

28 Chapter 3. How a Unix shell works

Exercise 3.2 The wc command stands for Word Count: if run without arguments, it prints the
number of lines, words and characters received from its standard input. What happens if you type
/usr/bin/wc immediately followed by Ctrl+D? Why would this happen? ■

Exercise 3.3 Close 1-basic and create a script text file containing any shell command, make
it executable (chmod +x script), restart 1-basic and try to run the script. What happens?
Why? ■

Exercise 3.4 Do as in Exercise 3.3, but add a line with #!/bin/sh at the very top of the script
file. What happens now? Why? ■

Exercise 3.5 If you try to use more advanced editing keys than those mentioned in Exercise 3.1,
such as the arrow keys, you get only strange characters in response. What are these characters?
Why don’t the keys work as expected? ■

3.2 Using PATH (tag: 2-path)
Now let’s add the PATH variable into the picture. All we have to do is replace execl with execlp
in Figure 3.1.

The execlp()function works much like execl(), and it must call execve()to ask the kernel to
run a new program (there is no other way, remember). Therefore, it needs a path to the new executable,
to pass it as the first argument to execve(). As a convenience, the function is able to search for a
program in the set of directories listed in the PATH variable (separated by colons). This way the user
is not forced to always type the full path of each command. More specifically, it works like this: to
get the path of the executable, the function appends its first argument to each one of the paths listed in
PATH in turn (adding a “/” in between, if necessary) until it finds an existing executable file with the
resulting path. If the list of directories is exhausted and no executable file is found, the function returns
with an error2.

However, there are occasions when the user wants to execute a program that is not in any of the
directories listed in PATH. To accommodate for this use case, the function introduces a distinction
between commands and paths: if its first argument contains no slashes, then it is a command; otherwise,
it is a path. Only commands need to be converted to paths using PATH, while paths are passed directly
to execve()without any further processing.

Now let’s start our modified mini-shell in our home directory and let’s type /bin/ls (a path) and
then ls (a command) as before. This time both strings work: the first one is passed as-is to execve()
and the kernel interprets it as an absolute path that successfully leads to the ls program. The latter
one also works because the PATH variable most likely contains the /bin directory, and therefore
execlp()will succeed in finding the ls program when it tries the /bin/ls path.

Now, assuming that myls is still in our current directory, let us type myls and, before hitting enter,
let us try to guess whether it will work or not.

This time we get an error. And why is that? Because the myls string is classified as a command,
since it contains no slashes, and therefore execlp()will look for it in the directories listed in PATH,
and only there. The current directory is, most likely, not listed in PATH, and therefore execlp()will
not be able to find our program.

2Check lib/execlp.c in mynix for the full story.

3.3 Splitting the command line (tag: 3-words) 29

Note that the above behaviour is caused by a corner case in the classification operated by execlp():
strings without slashes are legitimate paths according to the kernel (they are relative paths), but they are
commands according to execlp(). Since execlp()runs first, its interpretation wins.

If we want to use PATH and still be able to run a program that lives in the current directory we have
a few options:

• use a path that leads to our program and contains a “/”;
• add the current directory to PATH.

The first method causes execlp()not to recognize the string as a command and pass it directly to the
execve()system call. A common trick is to type ./myls—a redundant path that has the required
slash and is completely equivalent to “myls” as far as the kernel is concerned.

The latter can be done in many ways. Of course you can add the absolute path of any directory to
PATH, but you can also add relative paths to it. Adding the “.” path will cause the execlp()function
to also look for files in the current directory (essentially recreating the “./myls” path by itself).

Perhaps little known, but implicit in the above description, is the fact that execlp()will look
in the current directory even if PATH contains an empty path: it will not concatenate anything to the
input path, will not add a / since there is nothing to separate, and therefore will get the same path as
before. If PATH contains an empty path and we type myls, execlp()will also try to pass myls
to execve(), which will find it. An empty path exists if PATH starts or ends with a colon, or if it
contains at least two colons with nothing in between.

Exercise 3.6 Assume that the current directory contains a subdirectory called utils that contains
an executable called exe. Now we type

utils/exe

into 2-path. Will it work? Does it depend on the contents of PATH? ■

Exercise 3.7 Do as in Exercise 3.3, but using 2-path instead of 1-basic. What happens now?
Why? ■

3.3 Splitting the command line (tag: 3-words)
Now let us use 2-path and try to type “ls -l”. Will it work?

No, the kernel will look for a program called “ls -l”, which most likely does not exist (but it
could have existed: remember that spaces are allowed in file names).

The splitting of what we typed into the name of the command and its arguments will not happen by
magic. Go through what we have said until now, and try to find the place where we said that something
splits a string into words: you will not find it, because it does not exist.

Splitting the command line into words is one of the main tasks of the shell. The first word becomes
the first argument to execve(), possibly after PATH processing. All the words (including the first
one) are assembled into the array passed as the second argument. Figure 3.2 shows the main function
of the 3-words shell, which implements the processing we have just described. If you compare it
with the shell in Figure 3.1 you will see that we have added a couple of function calls between the input
of the command line and the creation of the new process. The first function is getwords(), that splits
the line into words using whitespace characters as separators. For each word found, the function fills an
element of the words array of word_t descriptors; then, it returns the number of words it found. If
there are no words (the line consisted only of whitespace) we can continue with the next line of input;

30 Chapter 3. How a Unix shell works

1 #include <sys/wait.h>
2 #include <ctype.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <unistd.h>
6
7 #define MAX_LINE 1024
8 #define MAX_WORDS 10
9 #define MAX_ARGS 10

10
11 typedef struct {
12 char *w;
13 } word_t;
14
15 int getwords(char *buf, word_t words[]);
16 int buildargv(char *argv[], word_t words[], int nwords);
17
18 int main()
19 {
20 char buf[MAX_LINE];
21 int n;
22 word_t words[MAX_WORDS];
23 char *c_argv[MAX_ARGS + 1];
24 int nwords;
25
26 while ((n = read(0, buf, MAX_LINE)) > 0) {
27 buf[n - 1] = ’\0’;
28
29 nwords = getwords(buf, words);
30 if (!nwords)
31 continue;
32 buildargv(c_argv, words, nwords);
33
34 if (fork()) {
35 wait(0);
36 } else {
37 execvp(c_argv[0], c_argv);
38 perror(c_argv[0]);
39 exit(1);
40 }
41 }
42 return 0;
43 }

Figure 3.2 – A shell that splits the command line into words

3.4 Shell builtins (tag: 4-builtin) 31

otherwise, we build the c_argv vector from the array of words, using the buildargv()function.
The getwords()and buildargv() functions are defined at the bottom of the esh.c file in the
repository, and just contain some strings and pointers manipulations.

R Rather than having two distinct functions, one for word-splitting and the other to build c_argv,
we could have done everything in a single step. However, we will see in a moment (Section 3.5)
that some input words are not passed to the command, so it is cleaner to keep the two tasks apart.

The first element of c_argv (c_argv[0]) and a pointer to c_argv itself are then passed to
execvp(). This is another “exec” variant that invokes the execve()system call under the hoods.
Like execlp(), it uses PATH on its first argument and copies the parent environment to the child.
Unlike execlp(), though, it does not build the argv vector by itself and just uses its second argument
as-is.

Now, if we run our new shell and type “ls -l”, we will see the long listing of the current directory.
We can pass any number of arguments (well, up to MAX_ARGS) to any command, and everything will
(mostly) work.

Note how the shell only splits the line, but the meaning of the resulting words (besides the first one)
is entirely up to the commands. They receive them in the argv parameter of their main function and
they can do whatever they want with them. It is only by convention that many programs (but by no
means all of them) understand arguments starting with “-” as an option, or a single “-” as the standard
input file, and so on. One needs to check the documentation of each command to learn these details
when needed. Since many commands where invented while the conventions had not yet been fixed, and
others were invented by different groups of people in the long history of Unix, you will find a lot of
inconsistencies.

Exercise 3.8 — catdash. Try to solve challenge catdash. This challenge uses 3-words as the
system shell, only slightly modified to print a prompt. You have to print the “-” file and you only
have cat (source in /usr/src/cat.c). ■

3.4 Shell builtins (tag: 4-builtin)

These peculiarities are inexorably imposed upon the
shell by the basic structure of the UNIX process control
system. It is a rewarding exercise to work out why.

K. Thompson, D. Ritchie, Unix manual V2

Now that we can pass arguments to commands, let’s try to use cd to change the working directory.
Assume that the current directory contains a subdir subdirectory (create it if it doesn’t). Let us start
3-words and type

cd subdir

Will it work?
No, 3-words will look for a cd binary to execute, but there is no such binary in the file

system. Such a program would have to call the chdir() system call, but this system call only
changes the current working directory of the process calling it. That is, it would change the cur-
rent working directory of the child process that the shell would have created to run cd. The shell
itself would continue to use its old working directory, and we would have accomplished nothing.

32 Chapter 3. How a Unix shell works

If you guessed wrong, it might make
you feel better to know that Ritchie
and Thompson made the same mis-
take when they added multiprocess-
ing support to Unix. Before that,
there was a cd command (it was ac-

tually called chdir). The command
stopped working when they imple-
mented fork(), and they were con-
fused by it, at least for a whilea.

aSee page 6 of the paper on Unix
evolution on Dennis Ritchie’s home page

(https://www.bell-labs.com/
usr/dmr/www/.)

For cd to work, the shell must call the chdir()
system call by itself. The 4-builtin shell does
it, and you can see the necessary differences with
“git diff 4-builtin^!”. The only difference
with 3-words is that after the call to buildargv()
the first element of c_argv is compared to the
“cd” string. If the strings match, 4-builtin calls
chdir()without creating a new process; otherwise, it
continues as before.

The commands that are executed directly by the
shell are called “shell builtins”. Whenever a command
needs to affect the environment of the shell itself, so
that it can be inherited by all later commands, we need
a shell builtin. Other common builtins are umask and
ulimit. Over time, shells have acquired other builtins
that were not necessarily needed, because it is more
efficient to run something in the shell than to spawn a
new process each time. For example, the simple echo
utility is a builtin in most shells. For another example,
the “:” nop become a shell builtin very early (the V4 shell already had it). Another reason for adding a
builtin is to take advantage of the greater knowledge that the shell may have about the current state.
For example, pwd (print working directory) is also implemented as a builtin in many shells because,
unlike the external command, the shell can remember when it has traversed a symbolic link and can
display it in the path. If you want the external program instead, you can always invoke it by typing its
full path (e.g., /bin/echo or /bin/pwd). More precisely, it is the presence of a slash in the string
that disables the builtins, as well as PATH and aliases (which we will not discuss).

Exercise 3.9 Implement the umask builtin (help umask) and compare it with the one in
4-builtin.2. You can limit yourself to the octal output and input syntax. ■

3.5 I/O redirection (tag: 5-redir)
Input and output redirection is one the first shell features implemented by Thompson: it had been
available for many months even before V1 come out. The design of the Unix basic system calls make it
very simple to implement: assume you want, say, ls to write its output in a file, instead of printing it on
the terminal; then, in the child process created by the shell, before calling execvp(), you close(1)
and open()the file: the kernel will pick the first unused file descriptor, which will be the 1 we have
just closed, essentially replacing the standard output file of the process. Since execvp()will then
replace the program, but not the process, ls will write into the file, without even knowing about it.
Note how the mechanism will work with all the programs that honor the stardard input/standard output
convention, and we have achieved this without adding any new system call.

We implement this idea in our next shell, 5-redir. We adopt a simplified syntax, similar to the one
used in the earliest versions of the Thompson shell: input redirection is obtained by writing a word
like <file and output redirection with a word like >file. These must be words, i.e., they should not
contain any space (not even between the < and > operators and the filename) and must be separated by
whitespace from the other words. The implementation is then very simple. First, we add a field type
to the word descriptor. Then, in the main process:

https://www.bell-labs.com/usr/dmr/www/
https://www.bell-labs.com/usr/dmr/www/

3.6 Scripting (tag: 6-intr) 33

1. getwords()first assignes the “normal” type to each word it finds;
2. we then call a new getredirs()function that scans the words array and changes the type to

“redirection” for the words that start with either < or >;
3. buildargv()now picks only the words that still have a “normal” type.

In the child process, a new function redirect()searches the array of words for those of type “redi-
rection”, and performs the necessary close()and open()system calls before the call to execvp().

Note that to implement the >file redirection when file doesn’t exist, the shell must be able to create
a new file given only the path. This is only possible because of the radically simple notion of files
introduced by Unix: all files are just sequences of bytes, so we don’t need to specify the type; the size
grows automatically as we write to it, so we don’t need to specify it beforehand; owner and group
are implicitly obtained from the creating process. However, there is still some information that the
shell doesn’t have: in particular, the open()system call wants to know the initial read/write/execute
permissions for the owner, group, and other users. This is a situation common to most Unix programs
that need to create a file and are only given a path by the user; historically, they have always preferred
ease of use over security and have simply given all relevant permissions to everyone. This is what we
did in our shell—we just removed “x” permissions, since we expect files created in this way to contain
data rather than code. This “liberal” default behaviour is the third problem with Unix file permissions
that Ritchie mentioned in his “On the Security of UNIX” paper (see Section 2.2). The V7 version the
paper mentions the introduction of umask()(see Exercise 3.9) as a partial mitigation to this problem.

Exercise 3.10 The > operator clears the file if it already exists (option O_TRUNC). The shell in V2
UNIX (1972) introduced the >> operator that appends output to the file if it exists. Try to implement
this feature and then compare your solution with the one in 5-redir.2 ■

R Today we implement feature like >> by passing flags to open(), but Research UNIX never
introduced these flags: the UNIX shells just use creat(), lseek(), and open()as needed.
However, the flags approach is not just for convenience: it ensures that these actions are performed
atomically.

Exercise 3.11 Assume that you have to write something in a file f where you have no write
access. You are listed among the sudoers, so you try

sudo echo something >f

buy you still get a permission denied error. Why? How can you solve your problem? ■

3.6 Scripting (tag: 6-intr)

Buffered IO was, and still is, a necessary evil.

M. D. McIlroy, A Research UNIX Reader

Since the shell is a program like any other, we can call it recursively. If we redirect its standard input
from a file in which we have placed some shell commands, the new shell will execute them one by one
without further intervention. This gives us a (somewhat limited) scripting capability, without adding
any new ad hoc mechanisms to the system. This was also the way scripting was implemented in the
pre-V7, minimalist Thompson shell.

However, if we try this with the shells that we have built so far, it will not work. The reason is
that we have assumed that each read()call will always return exactly one line. However, this is only

34 Chapter 3. How a Unix shell works

true if we are reading from a terminal configured for line processing (and the line fits into the input
buffer). This assumption fails especially if we call read()on a file: the system call will just try to fill
the buffer, without stopping at newlines. The shells that we have written so far are not prepared for this.

To always get exactly one line from standard input, whether it points to a terminal, a file, or
something else, we can use the stdio library function fgets(), which is what we do in our next shell,
6-intr. Unfortunately, there is a catch: the stdio library does its own buffering in userspace, to reduce the
number of read()system calls and improve performance. This means that, if standard input is a file,
our shell will get one line at a time from fgets(), but fgets()itself will still read blocks of bytes
from the underlying file. This is a problem when the shell spawns another command that also needs to
read from standard input: some of the bytes intended for the command may already have been eaten up
by fgets()by the time the command runs (see Exercise 3.12). The simplest solution to this problem
is to always read only one byte at a time from standard input, either by calling read()directly, or by
disabling buffering on standard input: this is the purpose of the “setbuf(stdin, NULL)” call in
the 6-intr sources.

3.6.1 Interactive vs non-interactive
Our shell can now be used either “interactively” or to run scripts. Shells actually try to understand when
they are being used interactively, and change their behaviour slightly to be more human friendly. For
example, shells print a prompt when they are waiting for input in interactive mode. A simple strategy
for inferring that there might be a human being on the other end of stdin is to check if it is attached
to a terminal: this can be detected because there are some ioctl()system calls that only apply to
terminals, and will fail if used on anything else. The library function isatty()uses this trick to
determine if a file descriptor points to a terminal. The 6-intr.2 shell revision uses this function to set
an interactive global flag, which is then checked by getcmd() to decide whether a prompt is
needed or not. Note that the prompt changes based on the effective user id of the process running the
shell: $ for normal users and # for root.

Interactive mode also differs from non-interactive mode in the way the shell handles input errors,
such as nonexistent commands or syntax errors. In interactive mode, a diagnostic is usually printed, but
the error is otherwise ignored. In non-interactive mode, however, the shell stops executing the script.
The idea is that the human user can correct the error and retry, while the script cannot. The 6-intr.3
shell implements this behavior. Note that our shell doesn’t look at the value returned by the commands
it spawns, and therefore doesn’t handle errors in their execution. This is also essentially true for real
POSIX shells, unless the user has explicitly set a shell flag (“set -e”).

In place of this, BSD introduced a
very complex and un-Unix “job con-
trol” feature in the kernel and in
the shell; this was later adopted by
POSIX and is now implemented in
all modern shells.

Another difference between interactive and non-
interactive mode is in the way the shell handles termi-
nal interrupts. If you type Ctrl+C in any of the shells
that we have developed so far, the shell will terminate.
This is not the expected behavior of an interactive shell:
in fact, when running interactively, shells should ig-
nore SIGINT (the signal the kernel sends by default
when we type Ctrl+C) and SIGQUIT (sent by Ctrl+\).
This behavior is implemented in 6-intr.3. Note that the
shell restores the handlers for these signals in the child
process, so we can abort a misbehaving command and return to the shell prompt.

3.7 Environment variables (tag: 7-env) 35

Exercise 3.12 Remove the “setbuf(stdin, NULL);” line from the 6-intr sources and recom-
pile the 6-intr shell. Write a file script containing the following lines:

cat
hello

Execute this first with a standard shell, e.g. by running bash <script, then run ./6-intr
<script and try to understand what is going on. If you are feeling adventurous, try to repeat the
experiment with more “hello” lines at the bottom of the script. ■

3.7 Environment variables (tag: 7-env)
Now consider shell’s support for environment variables, such as PATH and HOME. Environment
variables where added in V7, when Steve Bourne rewrote Thompson’s shell to make it more suitable
for programming.

These variables can be used to personalize the user’s environment or to remember values across
program executions. From the kernel’s point of view, environment variables are just another set of
strings that execve()must copy into the process’s memory. Everything else about them is just
convention, from their syntax to their meaning.

• Syntactically, these strings should be of the form variable=value, where variable should look
like an identifier, starting with a letter or underscore and then containing only letters, numbers
and underscores. However, the kernel does not check that any of these rules are actually followed:
it just copies null-terminated strings, whatever they are. The C library assumes that these
conventions are followed, and provides some functions to work with them: getenv() to get the
value of a variable given its name, setenv() to create a new variable or, optionally, overwrite
an existing one, and unsetenv(), to remove a variable completely.

• Semantically, some of these variables have meanings that are understood by most Unix programs.
PATH is an obvious example, since its meaning is embedded in the C library functions that are
used to run programs. Another example is EDITOR, which users can set to their preferred editor.
Programs that need to spawn an editor should look at this variable and start the user’s preferred
editor. However, nothing in the system enforces these rules, and each program is free to ignore
any environment variable or assign a different meaning to it.

The most important thing to remember, if you really want to understand how environment variables
work, is that they are local to each process, and that they originally come from the parent of the process.
Unix users often forget this because environment variables look like a “global” thing. This illusion is
created by the fact that most programs simply pass to their children the environment that they have
received from their parent. This behavior is encouraged by the C library, where most exec* variants
(including the ones that we have used so far) copy the current environment under the hood (i.e., they
pass the current value of the environ pointer to execve()). This illusion breaks if you want to
change the value of a variable, or create a new one. This change is only visible in the current process
and in its future children: you cannot change the environment of another process, since you cannot
(normally) write to its memory.

Shell support for environment variables comes in two forms:
1. the shell maintains an environment that can be passed to its children, and provides some syntax

for updating it;
2. the shell can “expand” the value of a variable as it parses the command line.

36 Chapter 3. How a Unix shell works

The latter is a form of macro processing: some text is replaced by other text, often without regard to the
syntax of the resulting command line.

Supporting environment variables is the most complex addition to our shell. We add it a bit at a
time.

3.7.1 Updating the environment
The shell 7-env implements point 1 above, with the following syntax. To assign a value to an
environment variable, use

variable=value

Again, the whole assignment must be a word: it must be delimited by whitespace and it cannot contain
spaces (not even around the “=” operator)

R Unlike the analogous limitations in Section 3.5, these ones apply also to modern shells, but see
Section 3.8.

You can have more than one assignment on a single command line, separated by spaces. The assign-
ments change the environment of the shell and of all subsequent commands. As a special case, if
you write a command on the same line as the assignments, only the environment of that command is
updated. To delete one or more variables use the new builtin unset followed by the names of the
variables.

Bourne’s shell initially looked for as-
signments in all the words of the com-
mand line, but this conflicted with
some commands (like dd) that use
the assignment syntax for their own
arguments.

The implementation is simple: after getredirs(),
and before buildargv(), we call a new function
getvars(). Just like getredirs(), the new func-
tion scans the array of words looking for the ones that
match the above syntax (an identifier immediately fol-
lowed by =). It marks the matching words as “assign-
ments”, so that buildargv()will skip them (since it
only picks “normal” words). Unlike getredir(), it
stops at the first non-matching word. The new function
assignvars() rescans the array of words looking
for those with type “assignment” and performs the assignments using setenv(). The buildargv()
function now returns the number of elements it has put into c_argv. If the array is empty,
assignvars() is called in the main process, otherwise it is called in the child process, to affect only
the environment of the spawned command. Note that there is no need to change the call to execvp(),
since this function will copy the current environment under the hoods.

R POSIX shells behave a little differently than our own, distinguishing between shell and environ-
ment variables. Assignments to non-existent variables, for example, create only internal shell
variables, which are not automatically copied to the child environments. To add a shell variable to
the environment passed down to children, you have to export it, unless the -a flag is set, in
which case all variables are exported automatically. Our shell behaves as if -a had been set.

In a real system the environment starts empty when init is run, but then other programs can add
variables to it. For example, login adds the HOME variable set to the path of the home directory
read from the /etc/passwd file (see src/login2.c in mynix). The shell inherits this variable
and uses it as the default path for chdir()when you type cd without an argument (this is also
implemented in our shell).

The shell itself can provide default values for the variables that are essential to its operation (e.g.,
PATH, IFS, PS1, PS2, . . .).

3.8 Quoting (tag: 8-quote) 37

3.7.2 Variable expansion
To expand the value of a variable, use $variable, followed by a space or a non-alphanumeric character
anywhere on the command line. The expansion replaces the $variable string with the value of variable
if it exists, and with nothing otherwise.

The implementation is conceptually simple, but string manipulation in C is cumbersome and
error-prone, so we implement it in two sub-steps (7-env.2 and 7-env.3). Unlike all the manipulations
that we have done so far, variable expansion can increase the number of characters we have to store
in the input buffer, so we must be careful not to overflow it. In the first step we simply ignore this
problem, and in the second step, we fix it.

The 7-env.2 shell calls a new function expandall() after getvars() and before calling
buildargv(). The new function passes each word to expandword()for possible expansion. The
function expandword()produces the expanded version of the word: it scans each character in the
word string and copies it to a new buffer, unless the character is a $ followed by an identifier: in that
case, the function skips the identifier in the source string and places the (possibly empty) value of the
corresponding variable in the new buffer (with the help of the function expandvar()). Note that $
can be anywhere in the word, not just at the beginning, and that you can have more than one expansion
in the same word. Expansion can also occur in words of the type “redirection” or “assignment”. Also
note that the output of the expansion is not re-scanned for more expansions.

For simplicity, expandall()internally creates a new array of words (tmpwrd) and a new buffer
tmpbuf, and copies them over the original ones using the utility function updatewords().

As anticipated, expandword() doesn’t check for possible overflows in the dst buffer. The
6-env.3 shell fixes this by introducing a “struct obuf” that contains a pointer to a buffer and a
counter of the available space in it. New characters must be added to the buffer only using the new
oput()and oputs()functions, that turn into NOPs if there is not enough room. The avail field
can be checked at any time: if we find it negative we can signal an error to the user.

Exercise 3.13 Assuming that X doesn’t exist yet, try to guess the output of

$ X=aaa echo $X

■

3.8 Quoting (tag: 8-quote)
We have introduced a few characters that are used by the shell itself and are not passed to the commands:
whitespace separates words, with newline terminating commands; “<” and “>” at the beginning of
words are used for redirection; “$”, when followed by an identifier, is used for variable expansion; a
“=” occurring in a word may turn it into a variable assignment. These are called shell metacharacters.
We may know from experience that we can pass these characters to commands by quoting them, but
where is the quoting implemented? Create a file with a space in its name using your normal shell, e.g.:

touch "a space"

Then start our latest shell, 7-env.3, and try to run some command on the file you just created, e.g.:

cat "a space"

We get errors from cat, which cannot find the “"a” and “space"” files. This is because single and
double quotes, as well as backslashes, are more metacharacters that are parsed by the shell, but our
shell doesn’t know how to do it yet. When we have issued the touch command, your normal shell

38 Chapter 3. How a Unix shell works

has recognized the quotes and has passed “a space”, as a single string and with the quotes removed,
to the touch program (in argv[1]). Our shell, on the other hand, has treated the “"” characters as
normal characters: it did not use them to protect the space between “a” and “space” and it did not
remove them from the command line.

The quoting metacharacters are single (’) and double (") quotes and backslash (\). Backslash
removes the special meaning of the following character3, while single quotes remove the special
meaning of all the characters up to the first single quote. Double quotes are a bit more complex: they
remove the special meaning of all the following characters up to the first double quote, except for
backslash, but only if it is followed by one of a few special characters.

R The full set includes another backslash, double quotes, dollar and newline; in the first revision we
will only consider other backslashes and double quotes.

Don’t think of quotes as defining “strings”, like in most programming languages: for the shell,
everything is already a string by default. You need quotes only when you have to stop the shell from
interpreting some of its metacharacters. Moreover, you can have quotes even in in the middle of
words. For example, the word a"$"c becomes the single word a$c after quote processing. Quoting
characters that have no special meaning has no effect: the strings "abc", a"bc", a"b"c or even
""abc and abc"" are all equivalent to abc.

If you really need to put a single
quote in a single-quotes string, you
can do as follows: ’don’"’"’t
do this at home’. Of course
this is cheating, since you are actu-
ally just concatenating three strings
(’don’, "’" and ’t do this
at home’), none of which contains
single quotes within single quotes.

Why three metacharacters for quoting? The back-
slash is convenient when you need to protect just one
metacharacter, while the quotes are convenient when
you need to protect several of them in a row. Moreover,
since the quoting characters are themselves metachar-
acters (interpreted by the shell and then removed from
the input), you need a way to quote them when needed.
You can quote the backslash with another backslash.
In the earliest shells backslash had no special meaning
inside quotes, so you could not use it to put quotes in-
side quotes. However, you could quote single quotes by
putting them in double quotes and vice versa. Over time
the double quotes have acquired some special behavior:
now you can put a double quote within double quotes using backslash ("\"") but you cannot do the
same with single quotes

The 8-quote shell implements the quoting mechanism. Immediately after receiving a line of
input from getcmd(), we pass the input buffer to the new function quote(). The function allocates
a new buffer tmp, then scans each character of the input buffer, looking for quoting metacharacters.
Non-quoting characters are simply copied to the tmp buffer, while quoting metacharacters are used
to copy a “quoted” version of one or more characters, according to the rules outlined above. To
implement the “quoted” version of characters we steal the idea from the original Thompson shell:
we mark the characters by setting their most significant bit (see the QUOTE constant that is or-ed to
characters). The quote()function then replaces the input buffer with the tmp buffer. Now, quoted
spaces, dollars, and so on, will be hidden from the eyes of getwords(), getredirs(), getvars(),
and expandall(), and will reach buildargv()untouched. Finally, before actually passing the
argument vector to the commands (either builtin or external), we use the function unquoteall() to
remove all the quote markings. The trick is nice and should clarify what quoting means, but note that it
only works in a pure ASCII world, since otherwise the character’s most significant bit would not be

3Except when the character is newline, see Exercise 3.17.

3.9 Other features 39

available (we say that our shell is not “8 bits clean”).
With this modifications in place, our new minishell correctly understands strings like “"a space"”

and our previous example works.

Exercise 3.14 Explain the differences (if any) among these commands:

$ echo "Hello World"
$ echo Hello World
$ echo "Hello World"
$ echo Hello World

■

Exercise 3.15 Now that we have quoting, can we solve the problem in Exercise 3.8 by typing, e.g.,
cat ’-’? Explain. ■

Exercise 3.16 Many groups at Bell Labs tried to extend the Thompson shell before Ritchie and
Bourne decided that UNIX needed an official new one that could subsume them all. In particular,
the PWB shell by John Mashey allowed for expressions like $v to be expanded within double quotes.
The expansion is disabled if the dollar is preceded by backslash. Try to implement this feature and
compare it with the solution contained in 8-env.2. ■

Exercise 3.17 What if we hit enter before closing a single- or double-quotes string? A real shell
will wait for a continuation line, printing its secondary prompt (“>” by default in the Bourne shell)
if it is interactive. The same happens if we hit enter immediately after a backslash, either within
double quotes or not, but with a difference: the backslash and the newline are removed from the
input buffer. Try to implement these features and compare your solution with the one in 8-env.3.
■

Exercise 3.18 The POSIX shell mandates some peculiar behavior for words that expand to nothing,
like $X when X is either undefined or null: the word should not be included in the argument
vector passed to commands. However, if the original word contained any quoting character (in any
position), then the (empty) word should be retained. E.g., if we type

$ echo hello ’’ $NONEXISTENT $NONEXISTENT""

then echo should receive hello in argv[1], an empty string in argv[2] (coming from the ”
word) and another empty string in argv[3] (coming from the last word). Try to implement this
feature and compare your solution with the one in 8-quote.4. ■

3.9 Other features
A real shell will have many other features. Some are easy to implement, while others are much
more complex. The 9-fields* shells implement some more string processing and will be used in
Chapter 4. Some other features are implemented in the src/sh?.c files in mynix. For example,
it is the shell that prints “Segmentation fault”, by looking at the status value returned by wait()
(src/sh1.c). “Background jobs”, i.e., processes that run in the background while the shell accepts

40 Chapter 3. How a Unix shell works

new commands, are easily implemented by skipping the wait()if the user has terminated her command
with a “&” (src/sh2.c). A more general scripting facility is easily obtained by accepting a script
name from the command line and then using it as input instead of stdin (src/sh4.c). The same shell
also implements the “-c cmd” option, which allows the shell to execute the commands contained in
the “cmd” argument. It is the shell that expands filename wildcards such as “*” and “?” (src/sh5.c
and src/sh6.c). It is also the shell that creates pipelines of commands, using essentially the same
trick as in I/O redirection (src/sh7.c). A few more extensions are collected in src/sh8.c (||
and && operators), src/sh9.c (subshells) and src/shA.c (final touches).

