
4. Exploiting environment variables

Now let us play the role of an attacker. We assume that we have a normal account on a Unix system,
and we want to escalate our privileges—possibly “become” root. By this we mean that we want to be
able to run programs of our choice in processes with an effective uid of 0. Our ultimate goal is to get a
“root prompt”, the “# ” prompt that the Bourne shell prints out when running as root.

Since we are a normal user and our uid is greater than zero, the login program will call
setuid(uid)when we log into the system. This uid will be inherited by our shell. Assuming
that we cannot tamper with the system up to this point, and that the kernel is working correctly, we now
have only two ways to run programs with an uid other than our own:

1. somehow make processes that have inherited a different uid run what we want;
2. somehow make available set-uid programs run what we want.

Both of these methods require that the legitimate owners and/or creators of such processes (case 1)
or programs (case 2) make mistakes. In a properly configured system, we shouldn’t be able to do any
harm: processes owned by other users will run programs that we can’t control, and set-uid programs
will do what they are supposed to do without any interference from us. Unfortunately (for the victims,
but fortunately for the attackers), mistakes are very easy to make, especially in a highly configurable
system that was developed in an environment very different from our own: a small circle of people
where everyone knows everyone else.

4.1 Exploiting PATH

Suppose we want user u to run a program of our own choice, let us call it p. When user u types a
command like c at her shell prompt, the shell will search a set of directories, depending on the contents
of u’s PATH variable, for a file called c. If we can control either u’s PATH variable, or the contents of a
directory that comes before the one containing c in the search list, we can make u involuntarily execute
our own p when she wants to execute c: just rename p to c and copy it into the controlled directory.
The victim’s shell will find our fake c before the legitimate one and execute it, using u’s credentials of
course.

For this attack vector to work, however, we need u to make some mistake. We normally have no
way of influencing the contents of u’s PATH variable, whose value is set in the chain of processes that
leads from init to her shell, which we assume is out of our reach. Moreover, if u’s PATH variable
only mentions directories that we cannot write to, such as /bin, /usr/bin, and so on, our attack

42 Chapter 4. Exploiting environment variables

options are zero.
However, if we boot our PDP-11, log in as root in our freshly installed Unix V7 system, and type

“echo $PATH”, our Teletype ASR 33 will print out the following:

:/bin/:/usr/bin

By default, the root user has an empty path in her PATH (did you notice the first colon?) What’s more,
this empty path comes before the other directories. This means that whenever the system administrator
types a command at her prompt, her shell will look for a matching executable file in her current directory
before looking anywhere else.

The old PATH=:/bin:/usr/bin
default was a deliberate choice. In
the earliest Unix implementations,
Thompson’s shell searched for ex-
ecutables first in the current direc-
tory, and then in the /bin direc-
tory: the idea was that users where
expected to be programmers, and
would want to run their own pro-
grams, created in their own directory;
/bin was searched after the user’s
directory, to avoid accidentally hid-
ing user programs with homonymous
system programs. In V3, the shell
also tried /usr/bin after /bin:
this new directory was introduced
when the available space in /bin
was exhausted (in fact, the V3 man-
ual calls the /usr/bin files “over-
flow” programs—V4 hides this bit
of history and tries to repurpose
/usr/bin as a place for “lesser
used” programs, presumably because
it was searched for last). When envi-
ronment variables were introduced in
V7, the Bourne shell generalized the
search for executables with the PATH
variable, following the example of
the PWB shell; the default value was
chosen to reproduce the old behavior.

If root has not changed the default, this is the mis-
take we need. Now all we have to do is put our attack
payload (the program that we want root to run) into the
directories where we have write access (hour home, or
/tmp), give it the name of some common utility (ls,
find, cat or whatever), and wait for root to cd there
and execute the payload for us unnoticed.

A possible payload is the following:

cp /bin/sh /home/attacker/hello.c~
chmod u+s /home/attacker/hello.c~

We make a copy of the shell with a filename that looks
like something else (like the swap file of some editor)
and set the set-uid flag on it. Remember that these
commands will be run by root. Therefore, hello.c~
is now a shell that gives root access to anyone who runs
it.

Exercise 4.1 — badpath. Try the above attack in the
badpath challenge. Be careful: if something doesn’t
work as expected, root may find out what you are up to.
■

The attack is a bit risky, since an “ls /tmp” from
a safe directory, an “echo *” from /tmp, an explicit
call to “/bin/ls”, and so on, will easily make the
administrator suspicious, and an “ls -l /tmp/ls”
will also reveal our name as the owner of the script.
However, it can be very effective as a step in a longer
privilege escalation chain—we may have stolen the
account of another regular user (e.g., by guessing their
password) and created the script using that intermediate
victim’s credentials.

4.2 Exploiting setuid programs
Now let us try to exploit the second possible attack vector: vulnerable set-uid programs. These
programs must be written very carefully and, as a rule, they should not trust anything coming from the

4.2 Exploiting setuid programs 43

outside: command line arguments, environment variables, open files, directories writable by untrusted
users—the list is unfortunately very long.

Set-uid programs are the favorite targets of attackers with login access to a Unix system (also
known as local attackers), and we will examine their possible vulnerabilities in several chapters of the
book. Here we examine some vulnerabilities that are mostly of historical interest. However, they are
helpful in introducing the topic.

Suppose a novice programmer writes a set-uid program that uses the system()library function,
such as:

BUG #include <stdlib.h>
int main()
{

// stuff
system("grep something somefile");
// other stuff

}

The programmer needed a functionality similar to that provided by the grep utility, so she decided
to reuse grep itself. The problem is not grep: it could have been anything. The problem is that the
system(cmd)works by fork()ing a process and making it run

/bin/sh -c cmd

The shell will parse cmd according to its usual rules, including using PATH to look for grep. Now,
however, the attacker has a major advantage over the scenario in section 4.1: the shell created by
system()will inherit the environment of the setuid program; unless the programmer explicitly cleans
it up, the setuid program’s environment will be the one inherited from the parent process, i.e., the
attacker’s shell.

Exercise 4.2 — bad0suid. Exploit the above idea to obtain a root shell in the bad0suid challenge.
■

Exercise 4.3 — bad1suid. The bad1suid challenge contains a setuid binary with a different kind
of vulnerability. Try to obtain a root shell from it too. ■

Notice how vulnerabilities in set-uid programs are much better, from an attacker’s point of view,
than vulnerabilities like the one we examined in Section 4.1. In the “dot in PATH” vulnerability, there
are many things that are not under the control of the attacker, who just has to wait for them to happen
by accident: root (or another user) must have put the dot in her PATH, she has to cd into the directory
where the attacker has planted the trap, she has to execute the fake command. Errors in the attack
payload can also render the attack ineffective, and the attacker must wait for the entire sequence of
events to occur again, which also increases the chances of getting caught. Vulnerable set-uid programs,
on the other hand, are an attacker’s dream: she can control essentially the entire execution environment,
and she can run them at will.

4.2.1 Exploiting the IFS variable
Now suppose that the inexperienced programmer tries to patch the vulnerability in the following way:

#include <stdlib.h>

44 Chapter 4. Exploiting environment variables

int main()
{

// stuff
system("/bin/grep something somefile");
// other stuff

}

Since /bin/grep is a path, the shell will not use the PATH variable. Also, since the path is absolute
and only traverses directories writable only by root, it must lead to the real grep utility.

Let’s put on our attacker hat again. While thinking of ways to exploit the new program, we type the
following into our V7 shell:

$ IFS=,
$ ls,-l

Perhaps surprisingly, our teletype starts printing the long listing of the current directory. What we
have done is to change the value of the IFS variable, which contains the characters that the shell
uses as field separators (IFS stands for Internal Fields Separator). After parsing the command line
into words and operators, the shell examines each word for possible expansions (e.g., processing
$variable expressions) followed by field-splitting. The latter processing uses IFS to split words into
fields, which then become the actual arguments used to execute a command. The default value of IFS
is 〈space〉〈tab〉〈newline〉, but now we have changed it to a comma. This splits “ls,-l” into “ls”
and “-l”, resulting in a normal call to the ls program with the -l option. The 9-fields revision of
the elementary shell of Chapter 3 supports IFS. The processing is implemented in a new function
fieldsplit() that is called by expandall()on every normal word, after expandword()has
finished.

Exercise 4.4 — bad2suid. Abuse IFS to get a root shell from the vulnerable setuid program in
the bad2suid challenge. This challenge uses a shell (bad2sh) that uses IFS the way the Bourne
shell did: all the characters in IFS are equivalent to whitespace. You can see the code in the 9-fields
revision of the elementary shell. ■

POSIX mandates a different behavior for IFS. In particular, point 3 of Section 2.6.5 of the standard
says:

[. . .] The term “IFS white space” is used to mean any sequence (zero or more in-
stances) of white-space characters that are in the IFS value (for example, if IFS contains
〈space〉〈comma〉〈tab〉, any sequence of 〈space〉 and 〈tab〉 characters is considered IFS
white space).

a. IFS white space shall be ignored at the beginning and end of the input.
b. Each occurrence in the input of an IFS character that is not IFS white space, along

with any adjacent IFS white space, shall delimit a field [. . .].
c. Non-zero-length IFS white space shall delimit a field.

The 9-fields.2 revision of the elementary shell implements the necessary changes in the function
fieldsplit(). With these rules, the attack you used in Exercise 4.4 will not work.

Exercise 4.5 — bad3suid. The bad3sh used in the bad3suid challenge implements IFS process-
ing by following the POSIX rules above. Nonetheless, you can still obtain a root shell from the

4.3 Countermeasures 45

bad3suid program (this is based on a real attack!). ■

4.3 Countermeasures
The story above takes place in 1979. How effective are these types of attacks today?

Countermeasures have been introduced with more secure defaults and some tweaks to the behavior
of the most security-sensitive utilities. In most cases, however, users and programmers still need to be
very careful.

4.3.1 Default value of PATH
Default initialization scripts and programs no longer put the current directory in PATH, nor do libraries
provide an unsafe PATH if the variable is not explicitly set, as they used to do. If users really want to
keep the current directory in their PATH, they should very carefully ls directories like /tmp before
cd-ing into them. Putting the current directory last in PATH can also help, but it’s not foolproof either:
the attacker can put an sl in /tmp and wait for a user to mistype. Much better is not to put “.” or
empty paths into PATH at all, and just use the “./” trick when we want to run a program that lives in
the current directory.

Note, however, that the current directory may also enter PATH unintentionally. Empty paths can
appear in PATH as a result of expanding undefined environment variables. Suppose you have installed
a subsystem that puts its executables in a non-standard directory (a very common occurrence). You put
the path to that directory in a variable, then expand that variable into your PATH in some of your shell
initialization scripts:

mybin=/opt/mysubsys/v0.1/bin
lots of other stuff
PATH=$mybin:/usr/local/bin:/usr/bin:/bin

Some time later you uninstall the subsystem, delete the line that creates mybin, but forget to remove
$mybin from the assignment to PATH. Now you have an empty path in your PATH.

4.3.2 IFS according to POSIX
Shells still implement IFS, but they use it in a much more restricted way. The 9-fields.3 revision of the
elementary shell contains an implementation that adheres more strictly to what POSIX says. First of
all, the shell must reset the value of IFS when it starts (section 2.5.3 of the standard). Second, field
splitting must be applied only to the portions of the words that result from a previous expansion (point
2 of section 2.6 of the standard). For example, in a string like “a,b,$X”, only the characters (if any)
that result from the expansion of $X should be scanned for IFS separators. Assume that X=c,d and
IFS=,: then field splitting of “a,b,$X” will produce two fields: “a,b,c” and “d”. As a further
example, the “ls,-l” string of Section 4.2.1 will not be split at all, since no expansion is called for.

4.3.3 Privilege drop
There is also a more general line of defense, that is implemented in all modern shells. If we try these
attacks on a modern system, we will find that the resulting set-uid shell will not give us root access. For
example, consider the PATH attack of Section 4.1, where we tried to create a set-uid shell disguised as
a normal hello.c˜ file. After successfully running the attack, we can confirm that the set-uid flag is
set on hello.c˜, but when we run it we do not get the root prompt. If we run the id program we
will see that our uid is still the unprivileged one that we already had. When they start, many shells

46 Chapter 4. Exploiting environment variables

(including bash and dash) call getuid()and geteuid()to get the real and the effective uids of
the process that is running them. If the two uids are different, the shells will call seteuid() to reset
the effective uid back to the real one. To implement this mitigation in our shell, we should add the
following code to main(), before the program does anything else:

seteuid(getuid());

(And similarly for the effective and real group).
This mitigation is intended for set-uid programs that call system(). In fact, set-uid programs

should never call system(), because shells, especially the modern ones, are large and complex
programs with possibly many little-understood quirks and unexpected behavior. Here are just a few
examples:

1. up to version 4.2-208, bash function names allowed the “/” character in them; an attacker could
therefore easily redirect a system("/bin/cmd")by defining a /bin/cmd function;

2. up to version 4.4, bash “xtrace” feature would expand PS4 before executing any command;
xtrace can be set in SHELLOPTS and PS4 can execute the attacker’s payload using command
substitution.

If an external program is really needed, it is better to use one of the exec*()functions without going
through a shell. If a buggy set-uid program calls system()anyway1, the shell will use the above
mitigation to drop privileges and prevent harm.

In the case of the PATH attack of Section 4.1, on the other hand, the above mitigation is just a
minor inconvience for the attacker. Remember that the shell is not magic, and the attacker can create
her own shell, one that does not check the uids. Better yet, we can note that sudo is able to give us a
root prompt (“sudo -s” or “sudo -i”), of course if the system configuration allows it. Remember
that even sudo is not magic: it is just set-uid root. So, when we run sudo our real uid is different
from the effective uid. However, sudo is apparently able to hide this fact from any shell and avoid
the privilege drop. How is this possible? The solution is simple: if our effective uid is 0, we can call
setuid()and set the real uid to 0 as well. Now the two ids are no longer different, and the shell’s
check becomes ineffective. This is (essentially) what sudo does before running the shell, and this is
what we can do ourselves. We compile the following program:

#include <unistd.h>
int main()
{

setuid(0);
execl("/bin/sh", "/bin/sh", NULL);

}

and put it somewhere, say in /home/attacker/mysudo. Then we use the following payload for
the PATH attack:

chown root /home/attacker/mysudo
chmod u+s /home/attacker/mysudo

If root is caught in the PATH trap, she will turn our mysudo program into a set-uid program that will
give us a root prompt.

Because it is so easy to defeat the (e)uid check, some shells don’t even try to protect themselves in
the general case. In bash and dash, for example, you can avoid going through the mysudo program

1Or, as we will see later on, is forced to call system()by an attacker exploiting some bug.

4.3 Countermeasures 47

above: create the set-uid root shell and pass it the -p option. The shell will skip the check and give you
the root prompt. The system()use case should still be safe, however, since in this case the attacker
cannot control the options that are passed to the shell at startup.

