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A. AMDé64 SysV ABI

[...] the books of the Big-endians have been long
forbidden, and the whole party rendered incapable by
law of holding employments.

Jonathan Swift, Gulliver’s Travels, I IV

We take a brief look at the Application Binary Interface (ABI), as defined in the System V specification
for the AMD64/x86_64 architecture [59]. The ABI is used throughout the book, particularly in Parts II
and III. Assuming you are already familiar with an ABI (e.g., ARM or RISC-V), we will only focus on
the specifics of the AMDG64 architecture. However, even if you are familiar with this architecture, you
may be accustomed to a different assembly language syntax (e.g. AT&T vs. Intel), so you may still
wish to review Section A.2.

Basic architecture

The basic architecture includes multiple CPUs that share access to memory and I/O address spaces.
Each CPU contains several registers of different sizes. In this book, we will limit our discussion to the
16 integer registers: rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, ..., r15. We also add the
instruction pointer (rip) and the flags register (rflags).

This architecture is the result of a long evolution that has managed to remain largely binary
compatible with its earlier versions, beginning with the 16-bit Intel 8086 processor introduced
in 1979 [62] and continuing with the 32-bit Intel 80386 processor announced in 1985 [46].
AMD introduced the 64-bit extension with the Opteron in 2003 [1], capitalizing on Intel’s
misstep when it tried to move away from this architecture and introduced the completely
different Itanium in 2001 [95]. Intel finally adopted AMD’s architecture with the Nocona in
2004 [51].

\. J

The CPU can interpret a wide range of machine instructions. These instructions are encoded in a
highly complex manner using a variable number of bytes ranging from one to 16. For example, the
instruction “push rax” (see Section A.1.3 below) is encoded with the single byte 50. The lowest
three bits encode the register; 0 is used for rax, 1 for rcx, and so on, with 7 representing rdi. For
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instance, “push rbp” is encoded as 55.

p ) There are several ways in which we can observe the machine encoding of assembly instructions.
However, since we need the pwntools [113] anyway, the easiest approach is to use the included
asm tool, which is invoked as follows:

S asm —-c amd64 ’push rax’

By default, this prints the resulting bytes in hexadecimal (even though octal would be better [43]).

Try “pwn asm” instead of simply asm if the above command is not found.
As only three bits are reserved for encoding the register name, it is not possibile to encode the registers
r8 through r15, introduced by AMD, directly. To encode these registers, the instruction must be
prefixed with the register extension (REX) prefix, which provides space for the missing bit. For example,
“push r9”isencoded as 4/ 51; the least significant bit of 4/ and the three lower bits of 5/ encode the
9 that selects r 9.

Any byte in the 4x form is a REX prefix. In the 32-bit architecture, these bytes encode
“inc register” and “dec register” instructions using a single byte. In 64-bit mode, these
operations must be encoded using multiple bytes.

More bytes are required if the instruction involves constants or memory references (see Section A.2
below).

The address space

Although addresses in the memory address space are nominally 64 bits long, they are actually limited
to 48 bits or 57 bits. This size is selected by a flag in a CPU system register, and for the purposes of this
book we can assume that it is 48 bits. The upper 16 bits are unused and must be all equal to the most
significant used bit (bit 47, counting from 0). Addresses in this form are called normalized. The address
space is essentially split into two parts: a lower part whose addresses start with 0, and a higher part
whose addresses start with 1. A large interval of unusable, unnormalized addresses lies between the
two parts. The CPU raises an exception whenever an instruction tries to use an unnormalized address.
The OS kernel intercepts the exception and terminates the offending process. For example, attempting
to load an unnormalized address into rip will crash the process before rip’s contents are changed.

When written in hexadecimal on 16 digits, normalized addresses must start with four zeros if the
fifth digit is less than 8, and with four fs if the fifth digit is 8 or more. Any other configuration is
unnormalized.

m Example A.1 Address 0xff££e00000000000 is normalized since its fifth digit is e > 8 and its first
four digits are all £. Address 0x7££d50072000 is also normalized. When written on 16 digits becomes
0x00007££d50072000, its fifth digit is 7 < 8 and its first four digitis are all zeros. n

All memory addresses generated by the CPU, whether for fetching instructions or accessing
operands, go through a Memory Management Unit (MMU) configured by the OS kernel when creating
a process. The MMU’s main purpose is to translate the addresses before they access physical memory
or memory mapped devices. This is not observable in Part II, but it becomes important in Part III.

One observable aspect is that every process has access only to the code, data, and stack assigned
to it by the OS kernel. Some addresses (actually, most) are not mapped to anything. Accessing them
causes a page fault, which, by default, crashes the process. Some addresses are mapped but marked as
accessible only by the kernel. In Linux and most other operating systems, this is true for all the mapped
addresses in the higher part of the address space (in our case, all normalized addresses that start with 4
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fs when written on 16 hex digits). Some addresses are marked as read-only. This is true, for example,
for the locations of memory that store instructions and constants.

R ) Initially we make the assumption that any readable location is also executable, i.e., the CPU can
fetch instructions from any readable part of memory. This has been true for a long time in the
history of the Intel architecture. We will revise this assumption in Chapter 9.
These mappings and protections have a page-size granularity, where the page size is usually 4 KiB. For
example, if we know that address Oxab123 is mapped, then we know that all addresses in the range
[0xab000, 0xabfff] are mapped too; moreover they must all be mapped with the same permissions.

Representing memory

Each byte in the memory address space has its own address, and most CPU instructions can read and
update any accessible byte independently. However, instructions can also access memory in larger
units, which Intel calls a word (two bytes), double word (or dword, four bytes) and quad word (or
gword, 8 bytes). The latter is the default and most natural size for a 64-bit processor, and it is also the
implicit size used when manipulating the stack.

The fact that the most natural size is not called word is, of course, an effect of the history of
the architecture and the need to preserve compatibility with its earlier versions.

Since the qword is the preferred size for accessing memory, it make sense to represent memory as an
array of rows, each containing eigth bytes. Each row is aligned to eight, meaning it contains the 8 bytes
whose addresses have the same quotient when divided by eight (or, in other words, the bytes whose
addresses differ only in the lowest three bits).

p ) For the sake of simplicity, we also talk about 32-bit machines in Chapter 8. In those cases, we
organize memory into rows of four bytes each. However, the rest of the conventions remain the
same.
While this “array of rows” representation is mostly uncontroversial, we must now make two choices
that may confuse those accustomed to a different convention.

e What is the order of the rows? Do the addresses increase by going up or down?

e What is the order of the bytes in each row? Do the addresses increase by going left or right?
Throughout the book, we will order the rows so that addresses increase by going down. Note that
important documents, including the ABI specification itself, use the opposite convention. However, if
we place lower addresses above, the stack top is actually at the top of the stack. Additionally, memory
containing code can be read most naturally from top to bottom. Data structures, such as C st ructs,
have their fields ordered in the same way that they are declared. Most importantly, this is how memory
appears in the debugger, which settles the issue for us.

However, the order of bytes in each row is more controversial, and our choice is sometimes
unnatural. Specifically, we will order the bytes of each row such that the addresses increase from right
to left. Again, this is mostly forced upon us by the way the debugger shows memory, particularly the
stack and the heap, when organizing it in qwords. Since AMDG64 is little-endian, the lowest address
byte of each qword is also the least significant byte in the qword, and therefore ends up on the right.

You may have heard it multiple times by now, but in case you missed it, the names little-endian
and big-endian come from a paper by Danny Cohen [26]. In the paper, Cohen satirized the
controversies about the best ways to send words on a serial line, by paralleling them to the
silly war between Lilliput and Blefuscu about how to eat hard-boiled eggs (i.e., starting from



A.1.3

242 Appendix A. AMDé64 SysV ABI
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Figure A.1 — Memory representation

the little end or the big end).

Note that our ordering convention has some annoying consequences. Within each row, machine
instructions and character strings are shown backwards. This is especially awkward for strings, so we
try to mitigate the confusion by representing the same part of memory in two ways: right-to-left and
left-to-right. The latter representation uses dashed lines and is labelled “mirrored”. Figure A.1 shows 5
rows of memory, spanning addresses [x,x 4 40), according to these conventions. The representation on
the left is the one we prefer. The “mirrored” representation on the right is used occasionally, particularly
when we are interested in the strings stored in memory. In the diagram on the left, the first byte of
each row is the rightmost one, whereas in the diagram on the right, the first byte of each row is the
leftmost one. The address of the first byte of each row is shown in the middle. A qword with value
0x1122334455667788 is stored at address x, as is the string “This is a string” at address
x+ 16. Note that the qword can be read correctly in the representation on the left, and is shown in
reverse in the mirrored representation on the right. The opposite is true for the string.

In a big-endian architecture we could have used the representation on the right exclusively.
However, big-endianness has gone out of fashion and is not used by any modern CPU
architecture. Things would be different if we were talking of network packet headers, since
the layout of most of them, including those for UDP, TCP, and IP, is big endian.

The stack

The sixteen integer registers are mostly equivalent, but several instructions use a few of them for
specific purposes. The most relevant one for us is rsp, the “stack pointer”, which is implicitly used by
instructions such as push, pop, call and ret (see Section A.2.3 below). These instructions assume
that rsp points to the top of the stack and update it to add (push and call) or extract (pop and ret)
items.

Adding an item to the top of the stack involves subtracting 8 from rsp and then writing to the
resulting address. In our representation, this is visualized as follows:

new item| rsp

rsp

for fter
before push/call afre

Extracting an item from the top of the stack involves reading from the address stored in rsp and then
adding 8 to rsp. This can be visualized as follows:



A.2

A.2.1

A.2 Intel Assembly syntax 243

old item | £rsp

rsp

before affer
pop/ret

The rsp register can point anywhere, and the instructions that use it don’t care as long as the
corresponding memory is readable and, in the case of push and call, also writable. Conversely, keep
in mind that the stack is just memory and there is no obligation to access it exclusively through rsp.

Besides its implicit use by the aforementioned instructions, rsp can be used as a general-purpose
register. It can be the source or a destination register in mov, add, sub, etc., and it can also be used as
a base register in instructions that access memory (Section A.2.1.1).

Intel Assembly syntax

We make a quick tour of the things that we might encounter in the course, without any pretense of
completeness.

Operational instructions

Operational instructions can use one or two explicit operands. Some instructions use implicit operands
exclusively, while others use them in addition to explicit operands.

A typical instruction with two explicit operands is written in assembly as follows:

opcode opy, op,

Where op is either the name of a register, or a memory reference (see Section A.2.1.1 below); op, can
be a register, a memory reference, or a constant. In all cases, the instruction takes its operands from op,
and op, (the contents of the register, the contents of memory, or the constant), and computes a result.
This result is then written in op; (in either the register, or memory). In most cases, the instruction also
computes some additional information about the result and updates the rf 1ags register as an implicit
operand. In all cases, the rip register is incremented by the size of the instruction, thus allowing it to
point to the next instruction. For most purposes, we can assume that this increment is performed when
the instruction starts, meaning that rip is already pointing to the next instruction while the current
instruction is being executed. This is important to know when offsets are added to rip, asin A.2.1.1
below, or when rip is saved, e.g. by call.

m Example A.2 Consider the following instruction

add rax, rdx

This computes the sum of the contents of the 64-bit binary values stored in rax and rdx and replaces
the contents of rax with the result. Furhtermore, it computes a set of flags from the result and updates
the corresponding bits in the rf 1ags registers. Some interesting flags are:

e ZF (Zero Flag): set iff the result is zero;

e CF (Carry Flag): set iff the addition has caused a carry (unsigned overflow);

e OF (Overflow Flag): set iff the addition has caused a signed overflow.
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The 64-bit numbers being added can be either unsigned or two’s complement signed, since the
hardware is the same for both representations. The only difference is in the way overflow is
detected. Accordingly, the CPU computes the CF and OF flags for both cases simultaneously,
and the software must know which to check.

The following instruction uses a constant:

add rax, 0x1122

This adds 0x1122 to the contents of rax (and updates rflags). This instruction is encoded as
480522 1100 00. We can identify the 48 REX prefix and the constant, which is encoded in little-endian
format over four bytes at the end of the instruction. The REX prefix is necessary here because, unlike
push and pop, this instruction defaults to 32-bit operands and the REX prefix switches it to 64-bit
operands. Without the prefix, the resulting 05 22 17 00 00 bytes would encode “add eax, 0x1122”.

The most common operational instruction is mov, that copies the second operand into the first one.
It doesn’t update the rf 1ags register.

Memory references

Memory references can be used for either the first or the second explicit operand, but not both. They
are written as follows:

size PTR [expression]

where size is one of BYTE, WORD, DWORD or QWORD. The expression within the square brackets should
compute a memory address and can take several forms. The most complex form is as follows:

offset + base + index * scale

where offset is an 8-bit or 32-bit signed constant; base and index are two registers; and scale is one of
1, 2, 4 or 8. The addends can be written in any order, and “x 1” can be omitted. The other forms can
be obtained from this one by omitting one or two addends, in any combination.

m Example A.3 The instruction

mov rax, QWORD PTR [0x10 + rbx + rcx =* 8]

computes the expression in the square brackets to obtain an address x, then, reads 8 bytes from memory

starting at address x, and finally, stores the bytes in rax in little-endian order: the byte read from x

goes in the least significant part of rax and the byte read from x + 7 goes into the most significant part.
The instruction

add WORD PTR [0x10 + rbx + rcx * 8], 1

will compute the address x as before. It will then read a 16-bit binary number from addresses x (LSB)
and x+ 1 (MSB), add one to it and store the result in memory at addresses x (LSB) and x+ 1 (MSB).
Finally, it will update rflags.

The address expression can use fewer than three addends and the addends can be written in any
order. For example, consider the instruction:
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63 31 15 7 0

ah al

ax

eax

rax

Figure A.2 — Partial registers

mov QWORD PTR [rbp - 0x18], rdi

The expression “rbp - 0x18” should be interpreted as “~0x18 + rbp + 07, 1i.e., it consists of a
(negative) offset and a base. The “index  scale” addend is omitted and replaced by 0. The instruction
copies the qword stored in rdi in memory, at the address obtained by subtracting 0x18 from the
contents of rbp. The LSB of rdi will go at address x and the MSB will go at address x+ 7. "

There is also a “rip-relative” addressing form, written as follows:

size PTR [rip + offset]

In this case the address is obtained by adding offset to the address of the next instruction (i.e., the value
stored in rip when the above instruction is executed). This is merely an encoding trick designed to
partially overcome the 32-bit limitation of the offset field in the other addressing forms, but it has the
useful side effect of making the instruction position-independent (see B.3.1).

= Example A.4 Consider the following instructions:

0x401000: mov rax, QWORD PTR [rip + 0x101]
0x401007: ret

The first column shows the addresses of the instructions. The first instruction computes the address
x =0x101 4 0x401007 = 0x401108. Then, it reads a qword from address x and stores it in rax.
Assume that x is the address of a variable V which is part of the program. If we load the entire
program at a different address, the mov instruction will still work. For example, assume that we shift all
addresses by 0x500000. In this case, the two instructions above would end up at addresses 0x901000
and 0x901007 respectively. When the CPU computes “rip + 0x101” from the new position, it
obtains 0x101 + 0x901007 = 0x901108 = x + 0x500000—the correct new address of V. n

Partial registers

There is a somewhat limited and irregular support for accessing subsets of the integer registers. AMD
has tried to make it more uniform, but irregularities persist. In general, instructions can access the least
significant byte, word and dword of each register. The names of these subsets are as follows:

e byte: al, cl,dl,bl, spl,bpl,sil,dil, r8b, r9b,..., r15b;

e word: ax, cx, dx, bx, sp, bp, si,di, r8w, r9w,..., r15w;

e dword: eax, ecx, edx, ebx, esp, ebp, esi, edi, r8d, r9d,..., r15d.
The second byte of rax, rcx, rdx and rbx can be accessed using the ah, ch, dh and bh names, but
this is not possible for the other registers. Figure A.2 shows the partial registers of the rax register.
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Writing into a byte- or word-sized subset of a register leaves the rest of the register unaltered, but
writing into a dword-sized subset zeroes out the other 32 bits.

Stack instructions

We can push an item on top of the stack with

push source

where source source can be a constant, a register, or a memory reference. Note that in the special case
of “push rsp”, the value that is pushed on the stack is the value that rsp had before the decrement.
Moreover, if the source is a memory reference that uses rsp in the address expression, the value used
is also the one before the decrement.

We can pop an item from the top of the stack with

pop destination

where destination can be a register or a memory reference. In the special case of “pop rsp”, the final
value of rsp is the value extracted from the top of the stack. If the destination is a memory reference
that uses rsp in the address expression, the value used is the one before the increment.

Control instructions

The most important instructions that can redirect the control flow are conditional and unconditional
jumps, call and ret. Unconditional jumps are written as follows:

Jjmp offset

Where offset is a signed 8-bit or 32-bit constant. The instruction adds offsef to rip. Note that this is
another form of rip-relative addressing, even if rip is not mentioned explicitly.

Jumps can also be indirect, either through a register or through memory. In this case they are
written as follows:

jmp register
jmp QWORD PTR [expression]

Both instructions copy their operand (taken from the register or from memory) into rip. Note that the
address is copied, not added, so these forms of jumps need absolute addresses.
Conditional jumps are written as follows:

JCC offset

Where offset is used as above, and CC is a Condition Code that must be tested on rflags. For
example, jz jumps (adds offset to rip) only if the ZF is set, while jnz does the opposite. The
normal way to set the flags is by using a cmp instruction, whose purpose is to compare two values.
However, the flags are also set by all the arithmetic and logic instructions, and also by other specialized
instructions.

Subroutine calls are supported by the call and ret instructions, that use the stack implicitly
(more precisely, they use rsp implicitly):
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call offset

This instruction pushes rip on the stack, then adds offser to rip.

R ) Since we are going to abuse this stuff a lot, it is helpful to review what the instruction does
more precisely: it subtracts 8 from rsp, stores the current value of rip (which is pointing at the
instruction that follows the call in memory) at the resulting address, then adds the offset to rip.
Execution continues from the new rip.

Indirect calls are also possible, using the same syntax as for indirect jmps:

call register
call QWORD PTR [expression]

Take note of the relative/absolute nature of the addresses involved: “call offser” uses a rip-relative
address for the destination of the jump, but it saves the current absolute value of rip. Indirect calls
need absolute addresses also for the destination of the jump.

Finally, the ret instruction can be used with no explicit operands:

ret

This instruction pops an item from the stack and copies it into rip.

p ) Review it carefully. The instruction copies the qword stored at rsp into rip, then adds 8 to rsp.
Execution continues from the new rip.

Again, since the full contents of rip are replaced, the address stored on top of the stack must be
absolute. If everything works as intended, a ret instruction placed at the end of a subroutine will
recover the address saved by the call that entered the subroutine, and thus will return to the caller.

Labels

In the above instructions, we have used the numerical offsets because this is what is actually encoded
in the instructions. When disassembling a binary, or debugging a program, we may have to live with
these offsets, if the disassembler or debugger has no other information. If symbols are available (see
Section A.4.1.2), the disassembler and the debugger will use them as effectively as possible. If an
address exactly equals the value of a symbol, the tools will display the symbol either instead of the
address, or as a comment. If there is no exact match, the tools will find the nearest symbol and print
expressions such as “main + 0x17”, which can be interpreted as “0x17 bytes after the start of
main”. While these expressions are often useful, they can sometimes be confusing. Remember that
they do not necessarily imply that the address has anything to do with the symbol; it may just be that
the symbol was the first one found when moving backwards from the address.

In the case of rip-relative addressing, the tools typically show the absolute address resulting from
adding the offset to the address of the next instruction, which is usually much more useful than the
plain offset.

When writing assembly code, we can use labels to give addresses symbolic names and then refer to
them using these names. The assembler knows when to use the address as it is and when to compute
offsets from rip based on the instruction at which the label is used.

m Example A.5 Run the following:

S asm -c amd64 ' jmp forward; add rax, 0x1122; forward: push rax’
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rsp
arguments
local variables
saved registers
dynamic link rbp
return address
aligned to 16

Figure A.3 — The standard stack frame

This assembles a sequence of three instructions: a jump to a label called forward, the second add
instruction from Example A.2, and a push instruction. We have defined the forward label just
before the push instruction. Syntactically, the definition consists of an identifier followed by a colon.
The label represents the address of whatever follows its definition. In this case, it is the address of
the “push rax” instruction. The output of the asm command is eb 06 480522 11 00 00 50. We can
visualize it as follows, assuming 0x401000 as an arbitrary address for the first instruction:

0x401000: eb 06 jmp 0x401008
0x401002: 48 05 22 11 00 00 add rax,0x1122
0x401008: 50 push rax

Following the first two bytes (eb 06), we see the encoding of the add instruction from Example A.2
(4805 22 11 00 00) immediately followed by the encoding of “push rax” (50). In this example, the
forward label has the value 0x401008. The first two bytes encode the “jmp forward” instruction:
eb is the opcode and 06 is the number of bytes that the jump instruction must add to rip to skip the
add instruction. The assembler knows that jmp uses r ip-relative addressing, so it has automatically
calculated forward — 0x401002 = 6. Note the result doesn’t depend on the assumption we made on
the address of the first instruction. "

Function calling sequence

We limit our discussion to functions that accept only integer and pointer arguments.

Each function has its own stack frame which has room for local variables, actual arguments, and
control information. The most important piece of control information is the return address. A new
stack frame is allocated on the stack when a function is entered, and is deallocated when the function
terminates. Figure A.3 shows the general shape of a stack frame. From bottom to top, we encounter the
following:

e the return address;

¢ the dynamic link (see below);

¢ (optional) room for saving registers (see the discussion about scratch registers below);

o (optional) room for the variables declared inside the function (local variables);

¢ (optional) room for the first six actual arguments.
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During function execution, the rbp register (also known as the base register or frame pointer) is
reserved as a pointer to the base of the current stack frame. The function accesses its local variables and
its first six arguments using negative constant offsets from the frame pointer, with memory references
suchas “[rbp — offset]”.

The ABI mandates that the address just below the start of the frame or, equivalently, the address
stored in rbp, must be a multiple of 16.

The caller must pass the first six arguments using the registers rdi, rsi, rdx, rcx, r8,and r9,
in this order. Each argument consumes a register, even if the argument is smaller than 64 bits. If the
function accepts more than six arguments, the caller must push the additional arguments onto the stack
in reverse order (the seventh argument is on top, the eight argument is below it, and so on). As with
registers, each argument consumes an 8-bytes stack line, even if the argument is smaller than 64 bits.
These arguments go below the return address and are not considered part of the new stack frame.

If the function returns a value, it should leave it in the rax register.

This seemingly erratic order of registers is the result of numerous experiments and technical
requirements [44]. For example, the first two registers, rdi and rsi, are implicitly used
by the string instructions, such as movs, since 8086 (di stands for Destination Index and
si for Source Index). These instructions are used to optimize common functions such as
“memcpy(dst, src, n)”.If we passthe dst parameter in rdi and the src parameter
in rsi, they are already in the right places for movs. However, note that movs requires the
number of bytes to be copied in rcx, suggesting the use of rcx as the third register in the
sequence. The ABI convention uses rdx instead due to competing constraints.

Prologue and epilogue

The creation of the stack frame begins with the call instruction in the caller. This pushes the return
address onto the stack and yields control to the function. The function then completes the frame with a
standard prologue consisting of the following instructions:

push rbp
mov rbp, rsp

The first instruction saves the base pointer of the caller function and the second one loads the new base
pointer. The previous base pointer is also called the dynamic link, because it is a pointer to the stack
frame that precedes the current one during execution.

The function can freely use a subset of the CPU registers, called scratch registers. These are the six
registers used for parameter passing, plus rax, r10 and r11. The function can use the other registers,
too, but it must restore their original contents before returning to the caller. This is accomplished by
pushing the used registers after the prologue and popping them before the epilogue.

After the prologue and the pushes of the used non-scratch registers, if applicable, an instruction
like this can be found:

sub rsp, n

This instruction allocates n bytes on the stack, making room for the local variables and the arguments.
The ABI does not specify how the function should allocate its variables within this space.

At the end of the function, we find the standard epilogue, which consists of the following instruc-
tions:
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mov rsp, rbp

pop rbp
ret

These instructions restore the state of rsp and rbp and then yield control back to the caller. Sometimes
the first two instructions are replaced by the single 1eave instruction, which accomplishes the same
task.

= Example A.6 Let’s consider the following C code, contained in file foo. c:

long foo(long a, long b) LEE&E_

{
long ¢ = a + b;
return c;

}

int main ()

{
long x = foo(3, 4);
return x;

}

Compile it using the following command:

S gee -o foo —mno-red-zone —-zexecstack —-no-pie -znorelro \
—fcf-protection=none foo.c

R ) The -mno-red-zone option disables the red zone (see Section A.3.2.2 below); the other three
options disable some features that are examined elsewhere in the book: non-executable stack
(Section 9.1), PIE (Section 9.6), RELRO (Section 10.3) and Control Flow Integrity (Section 10.7).

‘We obtain the foo. o file, that we can disassemble as follows:

S objdump -d -Mintel foo.o

The —d option is for disassembly. The —-Mintel option selects the Intel syntax instead of the
default AT&T syntax.

The output contains a lot of code coming from other object files that are automatically linked by gcc.
The part of the output pertaining to the main function should look like this:

000000000040112b <main>:

40112b: 55 push rbp

40112c: 48 89 e5 mov rbp, rsp

40112f: 48 83 ec 10 sub rsp, 0x10

401133: be 04 00 00 00 mov esi,Ox4

401138: bf 03 00 00 0O mov edi, 0x3

40113d: e8 c4 ff ff ff call 401106 <foo>

401142: 48 89 45 f£8 mov QWORD PTR [rbp-0x8], rax
401146: 48 8b 45 f£8 mov rax, QWORD PTR [rbp-0x8]

40114a: c9 leave
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40114b: c3 ret

Let’s review the instructions. We recognize the standard prologue at addresses 0x40112b and
0x40122c. This is followed by a sub instruction that allocates 0x10 (16) bytes. By the time ex-
ecution reaches main(), a lot of code has already been executed, and the stack already contains a lot of
data. For now, we can ignore all of this and assume that main() has been called by _start, the entry
point of the program. Now, let’s examine the effect of these instructions on the stack. Immediately
before executing “push rbp”, the top of the stack contains the return address inside _start, and
rbp (not shown) contains the frame pointer used by _start:

[  retunto start | rsp

The “push rbp” instruction decrements rsp by 8, then stores the current value of rbp:

_start’s rbp rsp
return to _start

The “mov rbp, rsp” instruction initializes main’s frame pointer, by copying the current value of
rsp:

_start’s rbp rsp = rbp
return fo _start

The “sub rsp, 0x10” instruction subtracts 0x10 from rsp, thus allocating space for main’s local
variables:

rbp —0x10 =rsp

rbp — 0x8
_start’s rbp rbp

return to _start

This is the complete stack frame of main, even though we don’t know how the top two stack lines
will be used. Now main starts the function calling sequence for foo. As expected, the next two
instructions load the actual arguments 3 and 4 into the rdi and rsi registers.

The compiler has used instructions that write to the lower 32-bits of rdi and rsi, taking
advantage of the fact that the CPU will zero out the upper bits. In this way it can spare the
REX prefix for these two instructions.

The call instruction pushes the address of the next instruction, 0x401142, onto the stack. This begins
the construction of foo’s stack frame on top of main’s stack frame.

00/00/00/00/00]40] 11]42] rsp

rbp —0x10
rbp — 0x8
_start’s rbp rbp

retfurn to _start

Now execution continues in foo. Let’s take a look at its instructions, in the output of ob jdump:
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0000000000401106 <foo>:

401106:
401107:
40110a:
40110e:
401112:
401116:
40111a:
40111e:
401121:
401125:
401129:
40112a:

55 push rbp

48 89 e5 mov rbp, rsp

48 83 ec 20 sub rsp, 0x20

48 89 7d e8 mov QWORD PTR [rbp-0x18], rdi
48 89 75 e0 mov QWORD PTR [rbp-0x20],rsi
48 8b 55 e8 mov rdx, QWORD PTR [rbp-0x18]
48 8b 45 e0 mov rax, QWORD PTR [rbp-0x20]
48 01 dO add rax, rdx

48 89 45 f£8 mov QWORD PTR [rbp-0x8], rax

48 8b 45 f£8 mov rax, QWORD PTR [rbp-0x8]

c9 leave

c3 ret

7

The foo function begins at address 0x401106. Let’s take another look at the call instruction
in main:
40113d: e8 c4 ff ff ff call 401106 <foo>

From the disassembly, it appears that the call contains the address of foo. However,
examining the bytes that encode the instruction reveals the offset Oxffffffc4, equivalent
to —0x3c in 2’s complement. This is 0x40113d 4+ 5 — 0x401106, i.e., the constant that
must be added to the address of the instruction following the call to obtain the address of
foo. As we anticipated in Section A.2.4, ob jdump computed the resulting address for us.
Furthermore, since ob jdump knows that symbol foo is at that address, it has also correctly
printed the name of the function that is being called.

J

We will now review the instructions of foo. We identify the standard prologue at addresses 0x401106
and 0x401107. Immediately after the prologue at address 0x40110a, we find the instruction that
allocates 0x20 (32) bytes on the stack. These bytes provide storage space for a, b and c. Let’s examine
this in more detail.

The “push rbp” instruction saves the frame pointer of ma in, creating the dynamic link between
the stack frames of foo and main.

The “mov rbp,

The “sub rsp,

main’s rbp rsp
00]00]|00|00]00]40] 11|42
rbp —0x10
rbp — 0x8
_start’s rbp rbp

return to _start

rsp” instruction initializes the stack pointer of foo:

main’s rbp rbp = rsp

00]/00][00|00]00]40] 11|42

_start’s rbp
return to _start

0x20” instruction allocates 32 bytes on the stack:
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rbp —0x20 = rsp

rbp —0x18

rbp —0x10

rbp — 0x8
main’s rbp rbp

00]/00][00|00]00]40] 11|42

_start’s rbp
return to _start

The stack frame for foo is now complete. By looking at the next instructions, we can deduce where
the variables are stored. The instruction at address 0x40110e stores rdi in memory, at address
rbp-0x18. This must be the line reserved for a. Similarly, we can deduce that b is stored at
rbp-0x20. The next three instructions read a and b into the registers rdx rdx, respectively, and
compute their sum in rax.

You may be wondering why the compiler didn’t use the values in rdi and rsi directly. This
is because we didn’t request optimizations, so the compiler translated each instruction without
considering the others.

The instruction at address 0x401121 stores the result of the add at rbp—-0x8; therefore, that must be
c. The next instruction confirms this, since it copies [rbp—-0x8] into rax to return c.

Yes, the sum was already in rax, so this instruction is useless. The compiler will notice this
(and much more than this) only when the optimization passes are enabled.

The stack is therefore as follows:

‘ 00|00]00]00]00]00]00|04] rop — 0x20 =rsp=b
00|00]00]/00]00]00]00] 03| rop — 0x18 = a
8 rbp —0x10
- 00/00/00]/00][00]00|00|07] rbp — 0x8 = ¢
main’s rbp rbp
| 00]00]|00|00]00]40] 11|42
c
-—
o _start’s rbp
| retfurn to _start

Note that one stack line is unused. The compiler has allocated 32 bytes, even if the function only
needed 24 bytes, to keep rsp aligned to 16.

Now we have reached the epilogue of foo. The compiler has used the variant that uses the 1eave
instruction. Let’s decompose this into the equivalent “mov rsp, rbp” and “pop rbp” instructions.
The “mov rsp, rbp” undoes the effect of the “sub rsp, 0x20” (and, in general, of any other
use of rsp by foo) by moving rsp back to where it was when the frame pointer was created:
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main’s rbp rbp = rsp
00|00]|00|00]00]40] 11|42

_start’s rbp
retfurn to _start

The “pop rbp” instruction restores the frame pointer of main:

00/00/00/00/00]40] 11]42] rsp

rbp —0x10
rbp — 0x8
_start’s rbp rbp

retfurn to _start

Now the stack is in the state that it was when we started the execution of foo, immediately after the
call. The ret instruction pops 0x401142 and jumps there. After the ret, the stack frame of main
is again on top of the stack. The next instruction reveals that x is stored at rbp—-0x8:

rbp —0x10 = rsp
00 00 00 00 00 00 00 07| rbp —0x8 = x
_start’s rbp rbp
retfurn fo _start

The top line is unused. The reason is the same as for foo. The instruction at address 0x401129 copies
x into rax, to pass the return value to _start (which will pass it to the kernel). We have finally
reached the epilogue of main, which will dismantle the stack frame and yield control to _start. =

Optimizations
The compiler may simplify the standard prologue and epilogue, and the other instructions described
above, in several ways. Some optimizations are enabled by default, while some others are activated

only when we explicitly ask for optimized code (option —O followed by 1, 2 or 3). Some optimization
have their own options and can be enabled individually.

Omitting the frame pointer

This optimization is enabled by ~fomit-frame-pointer and is also selected by —O1 and higher.
When this option is enabled, the compiler uses rsp as the frame pointer, thus removing the need for
saving, loading and restoring rlop. With this optimization enabled, the standard prologue disappears
and the standard epilogue becomes a simple ret.

However, rsp may need to be adjusted to align it to 16. Moreover, before returning, it needs
to be restored with an add. This can be sometimes avoided if we also use the red zone.

Another useful effect of this optimization is that the rbp register is free to be used for register allocation
(see below).

m Example A.7 This is the disassembly of function foo from Example A.6 compiled with the same
options, plus —~fomit-frame-pointer:
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0000000000401106 <foo>:

401106: 48 83 ec 20 sub rsp, 0x20

40110a: 48 89 7c 24 08 mov QWORD PTR [rsp+0x8], rdi
40110f: 48 89 34 24 mov QWORD PTR [rsp],rsi
401113: 48 8b 54 24 08 mov rdx, QWORD PTR [rsp+0x8]
401118: 48 8b 04 24 mov rax, QWORD PTR [rsp]
40111c: 48 01 dO add rax, rdx

40111f: 48 89 44 24 18 mov QWORD PTR [rsp+0x18],rax
401124: 48 8b 44 24 18 mov rax, QWORD PTR [rsp+0x18]
401129: 48 83 c4 20 add rsp, 0x20

40112d: c3 ret

The standard prologue has disappeared and rsp is restored with an add, since rbp no longer contains
its original value. n

The red zone

The ABI guarantees that each function has 128 bytes available above rsp, called the red zone. If the
function doesn’t call other functions, it can use this space for its arguments and local variables, without
any need to adjust rsp. This optimization is enabled by default, and can be disabled with the option
—-mno—-red-zone.

m Example A.8 This is the disassembly of function foo from Example A.6, compiled using the same
options with the exception of -mno-red-zone:

0000000000401106 <foo>:

401106: 55 push rbp

401107: 48 89 eb mov rbp, rsp

40110a: 48 89 7d e8 mov QWORD PTR [rbp-0x18], rdi
40110e: 48 89 75 e0 mov QWORD PTR [rbp-0x20],rsi
401112: 48 8b 55 e8 mov rdx, QWORD PTR [rbp-0x18]
401116: 48 8b 45 e0 mov rax, QWORD PTR [rbp-0x20]
40111a: 48 01 doO add rax, rdx

40111d: 48 89 45 f£8 mov QWORD PTR [rbp-0x8], rax

401121: 48 8b 45 £8 mov rax, QWORD PTR [rbp-0x8]

401125: 5d pop rbp

401126: c3 ret

Note that rsp and rbp are equal and the instructions at addresses 0x401107, 0x40110a, and so on,
access memory above rbp, and therefore above rsp. This is dangerous in general, since a signal
handler that interrupts this function may use the same memory for its own purposes. However, the ABI
guarantees that signal handlers will use the stack only starting from address rsp—-128.

p ) By “above” we mean “above in the page”, in our memory representation. The addresses are
numerically below rsp.

If we combine the red zone with —fomit-frame-pointer, we obtain:

0000000000401106 <foo>:
401106: 48 89 Tc 24 e8 mov QWORD PTR [rsp-0x18], rdi
40110b: 48 89 74 24 e0 mov QWORD PTR [rsp-0x20],rsi
401110: 48 8b 54 24 e8 mov rdx, QWORD PTR [rsp-0x18]
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401115: 48 8b 44 24 <0 mov rax, QWORD PTR [rsp-0x20]
40111a: 48 01 dO add rax, rdx
40111d: 48 89 44 24 f£8 mov QWORD PTR [rsp-0x8],rax
401122: 48 8b 44 24 f£8 mov rax, QWORD PTR [rsp-0x8]
401127 c3 ret

Now there is no prologue, and the epilogue is just a ret instruction. n

Register allocation

Registers are the fastest storage available to the CPU, so one of the most effective optimization
implemented by compilers is to store values in registers in such a way to minimize accesses to memory.
If register allocation is enabled (—O1 and higher), the compiler will most likely not copy on the stack
the arguments passed via registers, and will use the registers directly.

m Example A.9 If we compile foo. c of Example A.6 with ~01, we obtain the following:

0000000000401106 <foo>:
401106: 48 8d 04 37 lea rax, [rdi+rsix1]
40110a: c3 ret

000000000040110b <main>:
40110b: b8 07 00 00 00 mov eax, 0x7
401110: c3 ret

The foo function has been reduced to a single instruction, besides the necessary ret. The compiler
has used the contents of rdi and rsi directly, as anticipated. Moreover, it has used a trick to combine
the sum and the loading of rax into a single instruction. The 1ea instruction stands for Load Effective
Address and its general form is as follows:

lea register, [expression]

It computes expression just like the instructions that access memory (Section A.2.1.1), but then stores
the result of the expression in register, without accessing memory.

The optimization is even more dramatic in the case of main and it is the effect of many more
optimization passes, besides register allocation: the compiler has inlined foo, noticed that it was
computing a constant value, and then it has replaced the entire call with this value. "

If register allocation is not enabled (as is the case when we compile without any optimization
options), it is very unlikely that the compiler will use any of the non scratch registers, and therefore we
will almost never observe pushes after the prologue and pops before the epilogue.

The ELF format

The Executable and Linkable Format (ELF [14]) is a file format that was introduced in System V and is
now used in by all Linux distributions. ELF is a generic, extensible format which is applied to specific
processors and operating systems via supplementary specifications. In our case, this specification is
included in the AMD64 System V ABI [59].

As its name implies, the ELF format can be used for both executables (type EXEC) and object
files (type REL). It can also be used for other purposes, such as dynamic libraries (type DYN; see
Appendix B) and “core dumps” (type CORE).
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Figure A.4 — The ELF file format

The same ELF file can be viewed in two different ways, one for execution and one for linking (see
Figure A .4).

o In the linking view, the file contains a number of non-overlapping sections. Some sections contain
program parts, such as code or data, while others contain data structures needed by the linker,
such as symbol tables or relocations.

e In the execution view, the file contains a number of segments. Segments consists of a sequence of
contiguous sections and contain bytes that should be loaded into memory to create the initial
state of a process. Some segments may be nested within other segments.

The ELF file contains a section header table, with a section header for each section, and a program
header table, with a program header for each segment. Each header contains the starting offset and the
size of the corresponding section or segment in the file, among other information. One of this tables
may be absent if the corresponding view is not needed. For instance, executables may lack the section
header table, while object files typically lack the program header table. These tables can have a variable
number of entries and can be placed almost anywhere in the file. However, each ELF file begins with a
standard ELF header containing all the necessary information to locate the tables. Figure A.4 shows an
ELF file with four sections and two segments. Segment 1 contains sections 1 and 2, while segment 2
contains only section 3. Section 4 does not belong to any segment.

Linux used to be very lax about verifying the integrity of ELF header fields. For example, you
could place the program headers table within the ELF header itself, as demonstrated in Brian
Raiter’s famous blog post [82]. However, trying to reproduce the same effect on a modern
64-bit kernel yields less impressive results [72].

The ob jdump tool, that we have already used to disassemble the code contained in ELF files, can
also be used to inspect other parts of the file. The preferred tool for doing this, however, is readelf.

= Example A.10 We can examine the ELF header of program foo of Example A.6 with:

S readelf -h foo

The output should be something like this:
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ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 OO OO0 00 OO 00 00 0O

Class: ELF64

Data: 2'"s complement, little endian
Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1

Entry point address: 0x401020

Start of program headers: 64 (bytes into file)

Start of section headers: 10536 (bytes into file)
Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 13

Size of section headers: 64 (bytes)

Number of section headers: 29

Section header string table index: 28

The type of this file is EXEC, meaning that the file contains a program ready to be loaded into a
process for execution. Note the “Start of program headers” and “Start of section
headers” fields. A zero in these fields signals that the corresponding table is missing. This file
contains both tables, even if only the program headers are needed for an EXEC file. The “Number of
program headers” and “Number of section headers” fields have the obvious meaning,
while “Size of program headers” and “Size of section headers” may need some
explanation. These are the sizes of each entry in the respective table. The sizes are stored in the ELF
header to allow for the addition of fields to the entries. In this way, tools that do not know about these
extensions can still be able to find each entry in the table and decode the fields they know. "

Thanks to the name, the magic bytes (aka magic numbers) might seem strange or even
esoteric. However, they are not. Magic bytes are simply a constant that informs applications
and sometimes the kernel what they are dealing with [104]. This constant is usually placed
at the beginning of a file and chosen so that it is unlikely to occur by chance or be confused
with other magic bytes. Unix systems are essentially forced to use this convention, since
files are untyped; their use is documented since v1 (1971). For ELF files, the magic bytes
2—4 (counting from 1) encode “ELF” in ASCII. A list of magic bytes can be found in
reference [118].

\ J

Sections

The sections organize the file contents in a way that is useful for linkers. Each section contains either
parts of the program, or some ancillary information.
Each section header describes a single section and contains the following fields:
Name The symbolic name of the section. Some names are predefined, but users can define their
own sections with arbitrary names.
Type The type of the section. If the type is PROGBITS, the contents are up to the program and
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not formalized by the specification.

Address If the section should be loaded in the virtual memory of a process (flag A set in Flg), this
field contains its virtual address, otherwise it contains zero. Note that this field may also
contain zero because the virtual address is not yet known.

Off (Offset) The offset of the first byte of the section in the file.

Size The size of the section in bytes.

ES (Entry Size) Meaningful only for sections that contain a table of some sort. In that case, ES
is the size of each entry in the table.

Flg (Flags) Miscellaneous single-bit properties of the section. The most important ones are:

A: sections that must be “allocated”, meaning they occupy space in the process’s virtual
memory; X: sections that contain executable code; W: sections that must be writable when
loaded in memory.

Lk (Link) The index of another section, whose meaning depends on the type of this section.
Inf (Information) Additional information whose meaning depends on the sections’s type.
Al (Alignment) Required alignment. The linker must assign this section an address that is a

multiple of Al. A 0 in this field is equivalent to 1.
Intra-file references to sections use the section’s index in the section headers table. See, for example
the Lk field above. The section header table must begin with NULL section at index 0; therefore, index
0 can be used as invalid reference.
Rather than replicating information found in the specification, we will examine some examples.

= Example A.11 For the purposes of the examples in this section, we will compile the file foo2. c,
which contains the following code:

char A1[200] = "initial values"; fe02.¢

const char A2[400] = "constant value";

char A3[600]; /* not initialized =*/

extern char A4[]; /+ undefined */

int main ()

{
A3[0] = A1[0] + A2[0] + A4[0];
return A3[0];

}

The program declares four global arrays: A1, which is initialized; A2, which is constant; A3, which is
not explicitly initialized and will therefore be initialized with zeros; and A4 which, unlike the other
three, is only declared and must be defined in another file.

Since sections are mostly intended for object files, we first create one by compiling foo2.c
without invoking the linker:

S gee —-c —-mno-red-zone -no-pie -zexecstack \
—fcf-protection=none foo2.c

This creates file foo2 . o. Its ELF header is as follows:

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 OO OO0 00 OO 0O 00 OO
Class: ELF64
Data: 2’"s complement, little endian
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Idx Name Type Off Size ES Flg Lk Inf Al
) NULL
(1) .text PROGBITS 0x0040 0x002f 00 AX 0 O 1
(2) .rela.text RELA 0x0460 0x0060 I8 1 11 1 8
(3) .data PROGBITS 0x0080 0x00c8 00 WA 0 O 32
4) .bss NOBITS 0x0160 0x0258 00 WA O O 32
(5) .rodata PROGBITS 0x0160 0x0190 00 A 0 0 32
(6) .comment PROGBITS 0x02f0 0x0027 0/ MS O 0 1
(7) .note.GNU-stack PROGBITS 0x0317 0x0000 00 0 0 1
(8) .note.gnu.property NOTE 0x0318 0x0030 00 A 0 0 8
(9) .eh_frame PROGBITS 0x0348 0x0038 00 A 0 0 8
(10) .rela.eh_frame RELA 0x04cO0 0x0018 I8 1 11 9 8
(11) .symtab SYMTAB 0x0380 0x00cO I8 12 3 8
(12) .strtab STRTAB 0x0440 0x0019 00 0 0 1
(13) .shstrtab STRTAB 0x04d8 0x0074 00 0 0 1

Table A.1: Section headers table from Example A.11

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: REL (Relocatable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1

Entry point address: 0x0

Start of program headers: 0 (bytes into file)
Start of section headers: 1360 (bytes into file)
Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 0 (bytes)

Number of program headers: 0

Size of section headers: 64 (bytes)

Number of section headers: 14

Section header string table index: 13

Note the REL type. There are no program headers because the file is not ready for execution.
We can inspect the section headers with

S readelf -WS foo2.0

Table A.1 contains the output, reformatted for readability. Each line is a section header. We have
removed the Address column, since the sections of an object file do not have addresses yet and all of
those fields show up as zero. The Idx column is the index of the section in the section header table,
not a field of the section header itself. We have included it because sections are often referred by their
index.

The PROGBITS sections are the most recognizable.

e .text (index 1) contains the machine instructions. Its Flg field contains A (the section must be

allocated in the process memory) and X (its contents must be executable).
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e .data (index 3) contains the global, initialized data variables. Array A1 is allocated here, and
the section contains its initial value.
e .rodata (index 5) contains global constants. Array A2 is allocated here.
The .bss section (index 4), with type NOBITS, is special because it occupies no space in the file,
even if its Size field is non-zero. Since it is marked with an A, it will occupy Size bytes of process
memory, and the loader must inizialize it with zero. This device avoids occupying space in the file for
variables that must be initialized to zero, such as uninitialized global variables in C, like our A3 array.

The names .text, .data, .bss, etc., predate ELF and originate from early Unix assem-
blers. The .bss name stands for “Block Started by Symbol”, an assembly pseudo-operation
that Ken Thompson was probably familiar with through its use in the FORTRAN Assembly
Program (FAP) for the IBM 7090. This pseudo-operation “reserve[s] an area of memory
within a program for data storage or working space” [2] and simultaneusly defines a symbol
for its first address. In our case, the symbol is “.bss”.

J

The remaining PROGBITS sections have special uses. We will learn about .note.GNU-stack
(index 7) in Section 9.1.4. The .eh_frame section (index 9) contains information about stack
unwinding.

None of these sections use the ES, Lk or Inf fields. These fields are used by some of the non-
PROGBITS sections that will be examined below. n

String tables

The ELF format contains several strings, including the names of the sections and symbols. These
strings are used in tables such as the section header table and the relocation tables (Section A.4.1.3).
This creates an annoying problem: tables are effective only if all entries are the same size, but strings
have variable lenghts. Setting a maximum length for strings is too limiting if it is set low and wastes a
lot of space if it is set high. The ELF format solves this problem by storing all zero-terminated strings
in a dedicated section with type STRTAB, one after the other. String fields in tables only contain
fixed-width offsets to the start of the string in a STRTAB section.

R ) This refers only to the strings defined by the ELF format itself and not to the strings defined
in our program, such as “initial values” infile foo2.c, which will be allocated in the
appropriate PROGBITS section like any other program data.
Consider for example the section headers table. The Name field is actually only an offset in the
.shstrtab section (Section Headers String Table). The index of the section that contains the section
names is written in the “Section header string table index” field of the ELF file.

m Example A.12 Our foo2. o file contains two STRTAB sections (see Table A.1): . strtab (index
12) and . shstrtab (index 13). The latter contains only the section names, while the first one contains
all other strings (mostly symbol names). They are kept in separate sections because the user may decide
to discard the (typically large) . st rtab section from the final executable, but still keep the (small)
.shstrtab section to support the section headers table.

We can ask readelf to show us an hexdump of any section, for example:

S readelf -x .shstrtab foo2.o0

The output of the command, reformatted and colored for readability, is:
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0x00000000
0x00000010
0x00000020
0x00000030
0x00000040
0x00000050
0x00000060
0x00000070

002e7379
002e7368
2e746578
002e726f
74002e6e
6b002e6e
65727479
616d6500

6d746162
73747274
74002e64
64617461
6£74652e
6£74652e
002e7265

002e7374
6162002e
61746100
002e636f
474e552d
676e752e
6c612e65

72746162
72656c61
2627373
6d6de56e
73746163
70726£70
685f6672

..symtab..strtab
..shstrtab..rela
.text..data..bss
..rodata. .commen
t..note.GNU-stac
k..note.gnu.prop
erty..rela.eh_fr
ame.

The leftmost column shows the offset within the section. The central part shows the bytes stored at
the corresponding offsets. These bytes are organized in 16-byte rows, ordered from left to right, in
the same order as the “mirrored” order defined in Section A.1.2 above. Different colors highlight the
bytes of the strings. The part on the right shows the same lines, but interpreted as ASCII strings. Each
string is colored the same color as its corresponding bytes. The readel f command, like many others,
renders unprintable bytes as dots. This can be confusing in this case, since there are also many actual
dots (ASCII 2e). Note that the first byte of a STRTAB section is always a null byte.

In addition to the generic hexdump, which works for any section, we can ask readelf to print a
STRTAB section as a more useful offset-string table with

S readelf -p

.shstrab foo2.0

The output is as follows:

String dump of section ’.shstrtab’:

.symtab
.strtab
.shstrtab
.rela.text
.data
.bss
.rodata
.comment
.note.GNU-stack
.note.gnu.property

.rela.eh_frame

The offsets on the left are the ones that are used to reference the strings in the section headers.

User-defined sections can also contain strings in the same format as a STRTAB, if they are
marked with the S flag in the Flg field. In the foo2 . o file in our example, this is the case for
the . comment section. The “readelf -p” command can be used to read the strings in
these sections. On the machine where foo2 . o was built, the . comment section contains a
single string with the version of gcc and the name of gcc’s Ubuntu package. The section is
marked with the M (Merge) flag, which has the following effect: at link time, the linker looks
for other sections with the same name and flags in all the other object files and merges them.
This eliminates all duplicate strings, which will likely be effective in this case since the gcc
version will be the same for all the files.
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Symbol tables

The labels that we define in the assembly files become symbols in object files. A symbol is a name that
stands for a number, called the symbol’s value. Most commonly, the value of a symbol is an address,
such as that of a variable or function.

In ELF, every symbol is relative to a section and refers to the address of a byte within that section.
An ELF section with type SYMTAB is a symbol table that maps every symbol to the index of its section
and to its value, plus some other ancillary information.

R ) Some special section indexes are used for special cases that do not fit into this scheme. The most
important special index is UND, for symbols that are not defined in the current file. Another
special index is ABS, for symbols that are just symbolic names for “absolute” values that are not
associated with a particular section.

The address of a byte referred to by a symbol is not known until the linker has created the full program,
ready to be loaded and executed. Until then, the symbol table only provides the offset of the byte within
the section.

Once the linker has created the final program image, the symbols are no longer needed and the
symbol table can be discarded. However, the linker typically keeps the symbol table in the executable
file, since it may be useful for documentation and debugging. You can remove it using the strip
command.

= Example A.13 We can examine the symbol table of our foo2 . o file with

S readelf -s foo2.o0

We obtain the following output

Symbol table ’.symtab’ contains 8 entries:

Num : Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS foo2.c
2: 0000000000000000 0 SECTION LOCAL DEFAULT 1 .text
3: 0000000000000000 200 OBJECT GLOBAL DEFAULT 3 Al
4: 0000000000000000 400 OBJECT GLOBAL DEFAULT 5 A2
5: 0000000000000000 600 OBJECT GLOBAL DEFAULT 4 A3
6: 0000000000000000 47 FUNC GLOBAL DEFAULT 1 main
7: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND A4

The Ndx column indicates the index of the section in which the symbol is defined. Since this is a REL
file, the Value field contains the offset of the symbol in the section. Note that there is a symbol for the
main function, as well one for each of our global variables (A1, A2, A3 and A4). The main symbol
is defined at the start (offset 0) of section 1. According to Table A.1, this is the . text section. A1,
A2, and A3 are at the start of the . data, .rodata, and . bss sections, respectively. A4 is undefined
(special section UND). There is also a symbol for . text, which is defined at the beginning of section 1
(which is indeed . text). The linker uses this symbol to assign an address to the section itself. Finally,
there is an ABS symbol containing the name of the source file.

Note that symbols have a Type and a Size. We can recognize the size of the arrays we declared, but
these fields are rarely used. The Bind(ing) field is important because when the linker searches object
files to find the definition of an undefined symbol, it skips the LOCAL symbols. The Vis(ibility) field
will be discussed briefly in Section B.6. If it contains DEFAULT, we can ignore it.
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As usual, the Name fields contain only offsets into a STRTAB section. In Linux, the index of the
STRTAB section that must be used for this purpose is stored in the Lk field of the . symtab section
header. According to Table A.1, . symtab (index 11) has Lk = 12, which is . st rtab. The same
Table also shows that each symbol table entry is 24 bytes long (ES = 0x18). The Inf field, which is
OS-specific in SYMTAB sections, is the index of the first GLOBAL symbol in the table. This is an
optimization that helps the linker skip all LOCAL symbols during lookup.

The first symbol table entry is always filled with zeros, to represent an invalid symbol. This symbol
also has an empty name, since a zero in the Name field points to the first byte of the STRTAB section,
which is always null.

Symbols can also be examined using the ancient nm tool (nm is short for “names”):

S nm foo2.0

Its output is simpler and therefore more readable. For each symbol, it shows its value, a letter code
and the symbols’s name. The letter code can be “U” for undefined, “t” for text, “d” for data, “r” for
read-only data, and “b” for bss. The letter is lowercase if the symbol is local, otherwise it is global.
The output is sorted by name by default. Pass “~n” is you want it sorted numerically by value. "

Relocations

When the assembler does not know the value of a symbol, it uses a temporary value, usually 0, and
then creates a relocation instruction for the linker. This instruction tells the linker to perform some
simple calculation on the symbol’s value and then modify the bytes produced by the assembler.

In the ELF format, relocations are organized in tables stored in REL or RELA sections. AMD64
only uses RELA relocations, which stand for “Relocation with Addend”, since these relocations use
both a symbol and an addend.

Typically, REL relocations also need an addend; however, this addend is stored in place, i.e.,
in the bytes that need to be patched. This is not always possible in AMD64 because the addend
generally needs to be a 64-bit constant, and most AMD64 instructions only reserve four bytes
for addresses (see Section A.2.1.1). This is why there is a need for RELA relocations that
store the 64-bit addend in the relocation entry itself.

Each RELA section contains relocation instructions for one other section, whose index is stored in the
Inf field of the section’s header.

The I flag in the section header of RELA sections indicates that the Info flag contains the
index of another section (see Table A.1). Tools such as objcopy use this information to
find all references to a section. For instance, “objcopy —R .eh_frame” removes the
.eh_frame section and the .rela.eh_frame section that references it.

Each relocation must specify three pieces of information: the place where the relocation must be
performed, expressed as an offset inside the affected section; the type of the operation to be performed,
drawn from a small set of processor-specific operations; the parameters of the operation, involving
a symbol and a constant addend (and sometimes some implicit operands). The symbol is referenced
using its index in a SYMTAB section. Each RELA section uses a single SYMTAB section, the index
of which is found in the Lk field of the section’s header.

= Example A.14 Table A.1 shows two RELA sections at indexes 2 and 10. Both sections use the
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SYMTAB section at index 11 (Lk = 11), which is . symtab. The RELA section at index 2 is relative

to section 1 (Inf = 1), or section . text, and the one at index 10 is relative to section 9 (Inf = 9), or

section .eh_frame. Note that, by convention, the RELA section is named after the section to which

the relocations apply: section 2 is called . rela.text and section 10 is called .rela.eh_frame.
We can examine all the relocation instructions contained in foo2 . o using the command

S readelf -r foo2.0

The output shows the relocations for .text and .eh_frame. Focusing only on the . text reloca-
tions, they are as follows:

Offset Info Type Symbol Addend
0x007 0x000300000002 R_X86_64_PC32 Al —4
0x017 0x000700000002 R_X86_64_PC32 A4 —4
0x01f 0x000500000002 R_X86_64_PC32 A3 —4
0x026 0x000500000002 R_X86_64_PC32 A3 —4

We omitted the “Symbol value” field, which was always zero. Additionally, we split the “Sym. name +
addend” column into Symbol and Addend.

The 64-bit Info field encodes the information that we can see decoded in the two columns to its right.
In particular, the four most significant bytes contain the symbol index and the four least significant
bytes encode operation type. For example, the first entry contains a 3 in the four most significant bytes
of Info field (note that the two most significant bytes are not shown), which corresponds to symbol A1,
as confirmed by the output of “readelf -s”in Example A.13. The type is 2, which corresponds to
R_X86_64_PC32.

The R_X86_64_PC32 operation, used by all four relocation entries in this example, instructs the
linker to add the Symbol and the Addend, subract the address of the place, and overwrite the place with
the result. The place is assumed to span four bytes and the result is written as a 32-bit 2’s complement
integer, in little-endian format.

For instance, the first entry works on a place that is at offset 7 from the beginning of the . text
section. The linker knows the address of the place (call it p) and the value of the symbol (i.e., the
address of A1; call it a). It computes a —4 — p and then overwrites the place with the result. The
purpose of this computation becomes clear when we examine the place in the . text section that is
being patched. The disassembly around offset 7 contains the following:

4: 0fb605 (00000000 movzx eax,BYTE PTR [rip+0]

The compiler generated an instruction that accesses A1 with rip-relative addressing. However, the
assembler could not compute the required offset (see Section A.2.1.1), because it did not know where
A1 and the instruction would end up in the final executable. Even if both the instruction and the variable
come from the same source file, they exist in different sections (i.e., . text vs. .data), and the linker
allocates each section independently. The unknown offset should occupy the four colored bytes in the
disassembly above. The assembler used a dummy value of 0 and created the relocation instruction for
the linker to patch those bytes once the addresses are known.

A small technical point regarding how this relocation is computed is that the linker does not
disassemble the instructions and does not know where any instruction begins or ends. Therefore, it
cannot actually compute the offset between an instruction and A1. The R_X86_64_PC32 relocation
actually uses the address p of the place, which is the address of the first colored byte in the disassembly
above. However, the assembler knows that the address of the next instruction is i = p +4. This is
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why the relocation contains a —4 addend; the linker will then computea—4 —p=a—(p+4) =a—1i,
which is the required r ip-relative offset. "

Segments

The “segments” view of the ELF file is used to load a program into a process’s virtual memory. The

execve() system call only examines the file’s segments to determine what needs to be loaded.

Each segment is a sequence of bytes in the file. In most cases, they are used to initialize the
corresponding bytes in the process’s memory.
Each program header describes a single segment, and contains the following fields:

Type Each segment has a type that determines its use. The most important type is LOAD, which
describes segments that must be loaded into process memory. Other types are typically
used for segments that are contained within other LOAD segments, and provide information
about the meaning of some of these bytes (we will look as some of these in the examples).

Offset  The offset in the file of the first byte of the segment.

VirtAddr
The virtual address where the first byte of the segment should be loaded into process
memory.

PhysAddr
Unused in Linux. It always contains the same address as VirtAddr.

FileSiz  The number of bytes of the segment that are stored in the file, starting from Offset.

MemSiz The number of bytes that the segment will occupy in memory, starting from VirtAddr. This
size may be larger than FileSize. In that case the loader will have to zero out the additional
bytes.

Flg Flags. Any combination of R (read), W (write) and E (execute). These specify the access
permissions that all the bytes of the segment should have when loaded into memory.

Align The alignment of the segment. The VirtAddr and the Offset must be congruent modulo
Align. A zero in this field means that no particular alignment is required.

= Example A.15 We can create an executable from foo2 . o, the file from Example A.11, by providing
a definition for A4 and then calling the linker. We define A4 in a different source file, a4 . c, as follows:

char A4[1007]; ad.c

We compile a4 . c to obtain a4 . o and then link everything together to create the foo2 executable:

S gece -o foo2 -no-pie -znorelro -zexecstack foo2.o0 a4.o

Note that gcc automatically adds several other object files and a few libraries. In particular, it adds
a file containing the _start symbol, which becomes the entry point of our program. It also adds
the C library. The linker uses the input section information from all these files to build the output
sections of the final executable. In the process, it concatenates together all the sections with the same
name and chooses a base address for each resulting section. This fixes the address of every symbol and
instruction, enabling the linker to apply all the relocations. Finally, the linker assembles the relocated
sections into segments and produces the program headers table. The linker discards the relocation
sections from the output file, but typically keeps the symbol tables, which now contain the final address
of each symbol, for documentation purposes. It also keeps the string tables that contain the names of
the symbols, and the section header table needed to locate the symbol table. The section header table
contains the headers for the output sections created by the linker and documents how each segment has
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SegN  Type Offset  VirtAddr  FileSiz MemSiz Flg Align
(0) PHDR 0x0040 0x400040 0x2d8 0x2d8 R 0x8
(1) INTERP 0x035c 0x40035c 0x0lc 0x0lc R 0x1
(2) LOAD 0x0000 0x400000 0x470 0x470 R 0x1000
(3) LOAD 0x1000 0x401000 0x145 0x145 RE 0x1000
4) LOAD 0x2000 0x402000 0x2cc 0Ox2cc R 0x1000
(5) LOAD 0x22d0 0x4032d0 0x2b8 0x5b8 RW  0x1000
(6) DYNAMIC 0x22e0 0x4032e0 0x190 0x190 RW  0x8
(7) NOTE 0x0318 0x400318 0x020 0x020 R 0x8
(8) NOTE 0x0338 0x400338 0x024 0x024 R 0x4
(9) NOTE 0x223c 0x40223c 0x090 0x090 R 0x4

(10) GNU_PROPERTY 0x0318 0x400318 0x020 0x020 R 0x8
(11) GNU_EH_FRAME 0x21b0 0x4021b0 0x024 0x024 R 0x4
(12) GNU_STACK 0x0000 0x000000 0x000 0x000 RWE 0x10

Table A.2: The program headers of file foo2 of Example A.15

been composed.
We can inspect the program headers of foo2 using the following command:

S readelf -Wl foo

Table A.2 shows the output of the command, reformatted for readability. Each line of the table
represents a program header. The unused “PhysAddr” column has been omitted, and a new column
has been added with the index of the segment. Note that, since the section headers table is still available,
the command also shows which sections are contained in each segment. For example, the command
shows the following for segment 3:

03 .init .text .fini

This indicates that segment 3 contains the . init, .text and . fini sections. The .text section
contains the . text section of foo2. o, as well as other code coming from . text sections in files
added by gcc. The .init and . fini sections also come from these additional files and contain
code that is executed when the program starts and ends.

The most important segments are the four with LOAD type, at indexes 2-5. For instance, the
LOAD segment at index 2 spans bytes at offsets [Offset, FileSz) = [0x0000,0x0470). It should be
loaded at address VirtAddr = 0x400000 and marked as readable (Flg = R). The MemSiz is equal to
the FileSiz, so no additional bytes need to be initialized to zero. The LOAD segments at indexes 3 and
4 can be interpreted similarly. The LOAD segment at index 5 is an instance where FileSiz (0x2b8)
differs from MemSiz (0x548). The extra bytes come from the .bss section, that has been placed at
the end of this segment. The loader must load 0x2b8 bytes, and then initialize an additional 656 bytes
to zero (0x548 — 0x2b8).

Most of the non-LOAD segments are used to specify the contents of subparts of a LOAD segment.
For example, the PHDR segment describes the program header table itself. This segment is contained
within the first LOAD segment. Another example is the DYNAMIC segment, which is used by the
dynamic linker (see Appendix B) and is contained in the fourth LOAD segment. These sub-segments
are loaded into memory as part of the larger LOAD segments; their headers can then be used to retrieve
them inside the containing segments.
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p ) Note that the sections can be used for the same purpose and that some of these sub-segments
coincide with a single section. However, while the program headers table is mandatory for an
executable file, the section headers table is not. Therefore, there is no guarantee that the section
information will always be available.

The INTERP segment relates to dynamic libraries and is described in Appendix B. The NOTE
and GNU_PROPERTY segments contain various metadata. GNU_PROPERTY is an alias for the first
NOTE segment, which it completely overlaps. You can read all NOTE sections with “readelf -n
foo2”. The GNU_EH_FRAME segment is used for stack unwinding at runtime and by debuggers and
other tools that need to display stack backtraces. GNU_STACK is an example of an empty segment. Its
purpose is discussed in Section 9.1.4.

The left part of Figure A.5 shows how the segments of Table A.2 are laid out in the file. The LOAD
segments in the file are colored. Note that the third and fourth LOAD segments almost touch.

As the image shows, the first LOAD segment contains mostly metadata. The second LOAD segment
is the only one with execution permissions and contains the program code. The third LOAD segment
contains read-only data, including data defined in the program, such as the constant A2 array, as well as
data added by the compiler, such as the GNU_EH_FRAME sub-segment. The fourth LOAD segment
contains read-write data, including the A1 and A4 arrays, as well as data added by the linker, such as
the DYNAMIC segment.

Note that most of the file is unused due to the LOAD segments’ large alignment constrains. In
particular, the white space between the first two LOAD segments, and the other one between the second
and third, is wasted space that typically contains zeros.

R ) These alignment requirements do not come from the original sections, which had much smaller
values (see the Al column in Table A.1). They originate from the configuration of the linker itself.
For GNU 14, this configuration is contained in a linker script installed in a standard location
within the file system.
There are also parts of the file that are used but are not covered by segments. For example, the section
header table at the end of the file is excluded since it is not needed at runtime and does not need to be
loaded into memory. Almost all of the space after the fourth LOAD segment contains information, such
as the symbol and the string tables, that the linker has left as documentation, but that is not actually
needed to run the program. To save space, this information can be removed from the file with

S strip foo2

This command preservers the section header table, however. To get rid of that as well, use:

S strip --strip-section-headers foo2

After executing this command, the foo?2 file will end just after the end of the fourth LOAD segment. =

Note that the loader can load a larger portion of the file containing a segment as long as all constrains
are met. In our ABI, we know that memory mappings and permissions have a page-sized granularity.
In fact, the kernel loads an integral number of pages containing each segment.

The “load” is actually implemented by creating memory mappings from virtual pages to blocks of

the file. This process is essentially identical to what can be achieved using the mmap() system

call. Actual loading from the file to memory occurs on demand, driven by page faults.
Additionally, due to limitations in the hardware, the kernel may have to grant a larger set of permissions
than what it finds in the Flg fields. For example, in our MMU, writable implies readable. Most
importantly, we assume that readable is equivalent to executable.
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Figure A.5 — Segments and mappings from Example A.16
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m Example A.16 Consider the segments in Table A.2 again. Figure A.5 shows how the segments are
loaded into virtual memory during an execve(). Dashed lines represent read-only mappings, while
continuous colored lines represent read-write mappings.

To load the first LOAD segment, the kernel creates a read-only mapping from the virtual address
range [0x400000,0x401000) to the file offsets [0x0000,0x1000). This page-sized mapping includes
the actual bytes of the segment at offsets [0x0000,0x0470), as well as other meaningless bytes.

The kernel creates a second mapping from [0x401000, 0x402000) to load the second segment.
This segment should be marked as readable and executable, but we will assume that the kernel marks it
only as readable.

Something interesting happens in the third and fourth segments. To load the third segment, the
kernel creates a read-only mapping from [0x402000,0x403000) to [0x2000,0x3000). Note that this
range also includes the fourth segment, which will therefore be mapped as well, but not at its intended
address (see the first gray region from above in the virtual memory diagram on the right). This range
also includes the upper half of the section header table, which will be mapped as well. The same occurs
with the symbol table, string table, etc., which are stored between the fourth segment and the section
header table.

For the fourth LOAD segment, the kernel creates a mapping from the virtual address range
[0x403000,0x404000) to the file offset range [0x2000,0x3000). In other words, it also maps bytes
that precede the segment in the file. In this case, these bytes include the third LOAD segment. Thus,
besides the intended copy at address 0x402000 a second copy of the third LOAD segment will be
loaded at address 0x403000. The upper half of the program headers table, the symbol table, etc., will
also be mapped again. These unintended copies are harmless, but others may not be. In particular the
code, which is contained in the second LOAD segment, has been isolated into its own page to ensure
that no data byte is marked as executable. The importance of this will become clear in Chapter 9.

While loading the fourth segment, the kernel must also initialize the additional bytes up to the
requested MemSiz to zero. Note that this overwrites part of the second copy of the symbol table.

When we use the st rip command to strip the foo2 binary, as suggested in Example A.15, the
third and fourth virtual memory pages extend beyond the end of the file. The kernel allows this, and the
missing bytes of both pages are initialized with zero. "



