
A. Dynamic Libraries

[...] every major operating system implements them but
that does not mean they are a good idea.

Rob Pike, 9fans mailing list, 2008

Static libraries are just a collection of object files. In Linux, a “.a” file is just an archive of “.o”
files created using the ar(1) command, an ancient archive-management tool that survives today only
for this purpose.

Because of its specialized use, modern GNU ar can also add a symbol index to the archive all by itself.
In the past a separate tool, ranlib, was needed.

During linking, the link editor extracts the object files from the archive as needed and adds them to
the list of files to link. The resulting executable keeps no record of the fact that some objects originally
came from a library (except perhaps in debugging info, if any).

Dynamic libraries attempt to address some of the (perceived) shortcomings of static libraries:
• Objects used in multiple executables (e.g., those extracted from the C library) are copied multiple

times wasting disk and central memory space;
• if a library needs to be updated to fix a bug, all executables built with the old library must be

identified and rebuilt using the new one.
Dynamic libraries solve these problems by having “incomplete” executables that are linked with the
libraries at load time. Now the libraries can now be updated on disk without updating the executables,
and all new processes will automatically pick the updated version.

R As long as the new library has a different filename (e.g., a different version number), running
processes (e.g., server) will not be affected, not even if the old library is deleted (Unix will keep it
around as long as there are running processes that reference it). However, if we want the servers
and daemons to use the new library, we need to restart them.

In addition, the libraries are built and linked in such a way that multiple processes can share almost all of
their contents. The price of all this is slower executable startup times (because of the dynamic linkage,
see Section A.4), slightly slower libraries (because of the way they are compiled, see Section A.3.1)
and, above all, a lot of management complexity due to possible incompatibilities among library versions
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(see Section A.6). Some people (like the go developers) think that the price to pay is too high while
the benefits are either marginal or non-existent (space is not a problem nowadays, and library version
incompatibilities often cause executable updates anyway) and so they only use static libraries. From
a security standpoint, dynamic libraries are both a problem and an opportunity: on the one hand
they introduce a number of exploitable data structures and code (GOT/PLT, writable constructor and
destructor lists, . . . ), but on the other hand, they enable a more effective randomization of address
spaces.

A.1 Basic workflow
Shared libraries are implemented as ELF DSOs (Dynamic Shared Objects), with file names typically
ending in “.so” (for Shared Object). This is a type of ELF file that contains both program and section
headers and, therefore, contains both loadable code and data, as well as relocation information. The
address space of a process can contain the image of an EXE ELF file plus any number of DSOs
(including zero).

DSOs enter at least twice in the lifetime of an executable:
1. at build time or, more precisely, at link time;
2. at load time.

(They can also be used at runtime, by explicitly loading DSOs with the dlopen() function.) At build
time the linker only resolves undefined symbols in the executable and remembers which DSOs define
them. It adds the names of these DSOs to a special .dynamic section in the executable ELF file. The
executable is specially marked so that the kernel can know that, when the program will be loaded, it
will need dynamic linking. Note that it is not the kernel that will do the linking: a userspace dynamic
linker will be called to do the job. For this reason, the executable must contain the filesystem path of
the required dynamic linker in a special .interp section (by writing different paths in this section,
each executable can have its own dynamic linker).

At load time (each time the executable is loaded), the kernel loads the ELF file as usual, but then it
also loads the specified dynamic linker in the same address space, pushes some additional information
on the stack (the auxiliary vector that we mentioned briefly in Section 6.3.1), and finally transfers
control to the dynamic linker. The main purpose of the auxiliary vector is to tell the dynamic linker
where the kernel has loaded the main executable.

The dynamic linker uses the information contained in the .dynamic section and in the auxiliary
vector to:

1. find all needed DSOs and resolve all undefined symbols (recursively);
2. patch the EXE and all the DSOs to link them together;
3. run all the initialization code (“constructors”).

Finally, control goes to the executable entry point.
Without going into further details, we can already make some observations.
• The DSOs found at load time (step 1 above) are not necessarily the same as those identified

at build time. They are not even managed by the same people, since the latter ones belong to
the developers, while the former ones belong to the administrator of the system on which the
executable is running. Great care must be taken to ensure that the two sets of DSOs are at least
compatible.

• The DSOs mentioned in the executable may themselves be dynamically linked, i.e., each of them
may mention further DSOs that need to be loaded (and so on). This can result in the same DSO
being mentioned several times. Usually only one copy of each DSO is loaded. However, it is
possible for multiple versions of the same DSO to coexist, as long as they are named differently
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#include <std io . h>
extern long myvar ;
void f2 ( ) {

myvar++;
p r i n t f ( " l i b x : f2 ()\n " ) ;

}

f2.c

extern void f2 ( void ) ;
long myvar ;
long f1 ( ) {

f2 ( ) ;
return myvar ;

}

f1.c

Figure A.1 – Example files for libx.so

(e.g., by using the version number as part of the name).
• Linking requires patching, i.e., modifying the executable and the DSOs to fix relocatable ad-

dresses: how can the images be shared among several processes, then? The solution is to
isolate all relocatable addresses in a data structure, the Global Offset Table (GOT for short, see
Section A.2.1 below), and code all instructions to either use relative addresses, or fetch absolute
addresses from the GOT (see Section A.3.1). In this way, all the code and all read-only data
sections can be shared by all processes that have loaded the same DSO. Only the writable data
sections and the GOT must be private for each process. Note that this applies to all loaded DSOs
besides the main executable: each one of them will have its own GOT.

• Entire DSOs are loaded, not just the needed object files as in a static library. This seems to go
against the desire to save space. However, on-demand paging comes to the rescue, as it will bring
into memory only the DSO parts that are actually used (another reason to keep all the relocations
in the same place, otherwise the dynamic linker would fault-in many more pages during the
patching phase).

Note that the dynamic linker code and data structures remain there while the executable is running and
can still be used by the runtime support for the lazy-binding mechanism (see Section A.5), by the main
program, which may want to programmatically load dynamic objects at runtime (“man 3 dlopen”),
and, finally, by attackers.

A.2 Building a dynamically linked executable
Let’s see how to create a dynamically linked executable. We will use the files in Figure A.1 as an

example. You can download the example code from

https://lettieri.iet.unipi.it/hacking/dynlib-1.0.zip

Unzip the file and enter the dynlib-1.0 directory. The pre-built/libx.so file contains a
dynamic library built from the files in Figure A.1 (we will see how to do build libx.so in Section A.3).
We can create a program that uses any of the symbols exported by the library (in this example the
symbols are f1, f2 and myvar), e.g.:

#include <stdio.h>
extern long f1(void);
int main()
{

printf("%ld\n", f1());
}

https://lettieri.iet.unipi.it/hacking/dynlib-1.0.zip
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Put the above in a main.c file and compile it to main.o. To link it to the library, we can simply add
the pre-built/libx.so file to the list of files to link:

$ gcc -o main main.o pre-built/libx.so

R Your Linux distribution may have enabled some compilation options that may be a source
of confusion at this point and, for the purpose of the current discussion, are better disabled.
In particular, you should pass the additional flags -no-pie, -fcf-protection=none,
-fno-PIC, and possibly others. The Makefile in the dynlib-1.0 directory contains the
exact commands.

Alternatively, we can have the linker search for the library with this (probably more familiar) command:

$ gcc -o main main.o -lx

Where x is what is left after stripping the lib prefix and the .so suffix. Note that for this second option
to work, the library file must have a name that follows the libname.so or libname.a convention,
and must be placed in one of the directories that the linker automatically looks for. You can add new
directories to the list using the -Ldirectory-path option. The linker will be able to find it with the
following command:

$ gcc -o main main.o -Lpre-built -lx

The linker will recognize the difference between static and dynamic libraries (not based on the names,
but on their actual contents) and act accordingly. If both static and dynamic versions of the same library
are found during the search, the linker will choose the dynamic one, unless -static is passed.

Symbols resolved by dynamic linking go into a .dynsym section, while the relative strings go
into their own .dynstr section. These sections are not removed by strip and go into a loadable
read-only ELF segment, along with other sections related to symbol lookup, relocation, and versioning.
Their contents will be available in memory when the dynamic linker starts (see Section A.4). We can
see the symbols in the .dynsym section with

$ nm -D main

You can check that the dynamic symbols are still there, even if you run “strip main”, while the
“normal” symbols have been removed (“nm main” without the -D option will complain that there are
no symbols). The dynamic symbols cannot be removed, because they are needed by the dynamic linker.

The linker also adds the .dynamic and .interp sections. The .dynamic section contains
information needed by the dynamic linker and is organized as a table of “tag” and “value” entries. The
tags are agreed-upon codes that determine what the value means. One possible tag is NEEDED, and
the corresponding value is the name (actually, its SONAME, see Section A.6) of a DSO containing the
definitions of symbols needed by the object. We can read the .dynamic section of our executable
with

$ readelf -d main

When you run the above command, you should see two NEEDED entries:

0x0000000000000001 (NEEDED) Shared library: [libx.so]
0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

(The first column is the numeric value of the tag.) We can see that our executable needs libx.so and
also the C library, which was added by default by gcc.
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The .interp section is filled with the argument of the -loader option, that gcc passes to the
linker by default when we build a dynamic executable. We can read its contents with

$ readelf -p.interp main

The default interpreter for AMD64 Linux binaries should be /lib64/ld-linux-x86-64.so.2.

A.2.1 The Global Offset Table
Although it is an executable, our main program still contains undefined symbols and relocation
instructions. We can read the relocations with the following command:

$ readelf -r main

In the output of the above command, we should see a few lines that mention printf()and f1(), the
two functions that main.c uses without giving a definition for them:

000000404000 [. . . ] printf@GLIBC_2.2.5 + 0
000000404008 [. . . ] f1 + 0

Only the dynamic linker will know the addresses of these functions, and therefore it will have to patch
these addresses back into the loaded executable image. The first column is the address of the first
byte of the (loaded) binary that should be patched, once the value of the expression in the last column
becomes known. The exact addresses that you read in the first column may differ from those above;
however, if you check the load address of the sections of our executable with

$ readelf -WS main

you should be able to see that the relocation addresses are not in the .text section and are not part
of any call instruction, as we might have expected. Instead, they fall into a section called .got
(.got.plt in recent binaries). This is a section that contains the Global Offset Table, or GOT for
short. The GOT is a table of pointers created by the static linker (not the compiler), that contains an
entry for each undefined symbol in the final executable. These symbols are expected to be defined in
other DSOs, and the code generated by the compiler should not try to access them directly, but rather
access them indirectly via the corresponding pointer in the GOT.

To generate this code, the compiler needs several pieces of information: where is the GOT? what
GOT entry do I need? This information is only available to the static linker, so the compiler prepares
the instructions assuming a dummy value (typically zero), and then creates the proper relocation
instructions for the static linker. We don’t see these relocations in the final executable, since the static
linker has already resolved them, but we can see them if we run “readelf -r” on the main.o file:
this time we will see relocations in the .text section, i.e., in the code generated by the compiler.

With this technique, the code of the final executable will not need any further patching when it
is loaded, just like the code of traditional statically linked executables, and will be shared among all
processes that run the same program. All relocations are restricted to the GOT, which is part of the
private data memory of each process.

R Note that the GOT may be created also for reasons other than dynamic linking, such as to
overcome the addressing limitations of some architectures. For example, depending on the
memory model used, 64b Intel/AMD architectures may require a GOT to address data that can be
located anywhere in the 64b address space. For another reason to have a GOT, see Section A.3.2
below.
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The downside of all this is that accessing data and functions that reside in other DSOs is slightly
more expensive than accessing data or functions that reside in the executable, since the access requires
at least one additional indirection through the GOT. Note that when we use static libraries, the imported
library objects become part of the executable, so accessing their data and functions is as fast as accessing
data and functions defined in the executable itself.

A.3 Building a shared library
Now let’s go back to Figure A.1 and let’s see how we can obtain the libx.so shared library from
those files. To build a shared library we start with a set of object files, just like for a static library. In the
example, these are f1.o and f2.o obtained from the compilation of f1.c and f2.c, respectively.
However, there is a difference in how the object files should be compiled. We explain this difference in
Sections A.3.1 and A.3.2 below.

Once the set of object files is ready, there is another difference in how the final library file is
obtained. In fact, building a shared library is more like building an executable: the set of object files is
assembled into a single ELF file, rather than into an archive. We talk about the process in Section A.3.3
below.

A.3.1 Position Independent Code
Since libraries are meant to be used by any program that may need them—programs that are unknown
at the time when the library is built—, they must be ready to be loaded at any address. However, in
general, binary code and data cannot be loaded at random addresses without modification. Consider the
“return myvar” statement in function f1()in Figure A.1, and assume that the compiler uses the
following AMD64 assembly instruction to copy myvar in the rax register:

mov rax, QWORD PTR [myvar]

where myvar is an undefined symbol.

R gcc will select this instruction if run with -mcmodel=large and -O, otherwise it will prefer
the rip-relative instructions described below.

When the source file is assembled and linked, the myvar symbol will be mapped to a memory address,
say 0x406020, and the above instruction becomes

movabs rax, QWORD PTR [0x406020]

which, in the final binary code, corresponds to the bytes

48 a1 20 60 40 00 00 00 00 00

We can see that the address 0x406020 is written in the instruction itself (starting from the 3rd byte, in
little endian). This means that myvar cannot be loaded at a different address, unless the instruction is
patched. This is normal for a static library, since each program that needs the library will have its own
private, suitably patched copy of the code. In a shared library, instead, patching the code is undesirable,
because it limits or completely prevents one of the selling points of its technology: the fact that the
library can be shared among several processes.

Therefore, object files meant for shared libraries are typically compiled as Position Independent
Code (PIC for short). PIC code does not assume to know the addresses of variables and functions
statically, but computes them at runtime using information provided by the loader. There are basically
two models that are used to implement PIC, often in combination: relative addresses and indirect
addresses. We will explore them in turn.
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A.3.1.1 Relative addresses

Continuing with our example, the static linker can allocate myvar at a statically known offset from a
base address chosen by the loader. The loader then communicates the base address by storing it in an
agreed-upon register, call it the base register. The compiler generates instructions that add the offset to
the base address stored in the base register. If the referenced symbol is in another compilation unit,
the offset may be unknown to the compiler, but the the static linker will be able to patch it into the
code once it has assembled the final image. The complete address will be obtained only at runtime,
by adding the constant offset and the base register each time. The code can be shared among several
processes, since each one of them will have a private copy of the base register.

If we use this solution, the above instruction should be changed to something like

mov rax, QWORD PTR [rbx + myvar_offset]

where we have assumed that the base register is rbx.
The price to pay, beside a probably negligible slowdown due to the new additions, is that at least one

register, such as rbx, must be reserved for this purpose and cannot be used for general computation,
or it must be saved and restored very often. An important special case is when myvar is at a known
offset from the instruction pointer, since this register is already unavailable for general computation. In
AMD64 the instruction becomes

mov rax, QWORD PTR myvar[rip]

R Note that we are using the label myvar, that should stand for the absolute address of myvar, but
this doesn’t mean that the instruction will contain this address. The special syntax myvar[rip]
will cause the assembler and/or static linker to compute the offset of myvar from the rip of the
next instruction. Only this offset will be stored in the instruction. Some assembler uses the more
confusing “[rip + myvar]” syntax here, but the meaning is the same.

This form of rip-relative addressing is not available on 32 bit x86 systems. The same effect can only be
achieved by first loading eip into a general register—a process called “thunking”:

call thunk
. . .

thunk: mov ebx, DWORD PTR [esp]
ret

We call a function that immediately stores the contents of the top of the stack (i.e., the eip saved by the
call) into a register and then returns.

A.3.1.2 Indirect addresses

Another way for the code to access variables and functions whose addresses are unknown at compile
and (static) link time, is to access them indirectly through pointers. In this solution the static linker
creates a table of pointers that is filled by the dynamic linker at load time (or later, see the Lazy Binding
in Section A.5). In our example, one entry of the table will contain the address of myvar, and the code
must load this pointer first, whenever it wants to access myvar.

This solution is more flexible than the one in Section A.3.1.1, since we can load myvar at any
address. However, it is also more expensive. The following instructions can be used to access myvar:

mov rcx, QWORD PTR myvar_entry[rip]
mov rax, QWORD PTR [rcx]
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First we need to load myvar’s pointer from the table into a temporary register (rcx in this case) and
then load myvar indirectly through this register. We have assumed that myvar’s entry in the table
can be accessed using (rip-based) relative addressing, which is typical. We can see how an access
to myvar requires an additional access to the pointer table (of course the compiler can optimize a
sequence of such accesses by storing myvar’s address in a register, but this also increases the pressure
on register allocation).

This more expensive solution is the one that is typically implemented in shared libraries, because
of the additional requirement that we examine next.

A.3.2 Interposing
Libraries should support interposing. This means that any program linking to a library must be able to
redefine any of the symbols exported by the library. Suppose, for example, that we link libx to the
following main program:

#include <stdio.h>
extern long f1(void);
void f2()
{

printf("main:f2()\n");
}
int main()
{

printf("%ld\n", f1());
}

With respect to the main program of Section A.2, we have provided a definition for f2(). Notice in
Figure A.1 that f2() is called internally by f1(). In the final executable, f1()must call the f2()we
redefined, not the one available in the library: the final program should print “main:f2()” instead of
“libx:f2()”, and myvar should not be incremented.

To achieve this effect with static libraries, we can put the definition of each exported symbol in its
own object file, since the linker only extracts the objects that resolve an undefined symbol from static
libraries. Alternatively, we can mark all exported symbols as “weak” (the linker will only pick a weak
symbol if it is otherwise undefined).

R In gcc the latter can be obtained with declarations like “void __attribute__((weak))
f2(void)”. In the symbol table, the f2 symbol will have type WEAK instead of GLOBAL or
LOCAL.

In either case, the call site in f1()will be the target of a relocation and will be filled with the correct
address during the normal linking process. There is no performance penalty at runtime.

Shared libraries are different, as this patching of f1()should now happen whenever libx.so is
loaded by a new process, and this would result in each process having a different copy of the library
code. To avoid this, f1()must not assume to know the address of f2(); instead, it should calculate it
based on private per-process information that is only available at load time. Now, the same pointer table
described in Section A.3.1.2 can also be used to support interposing, since it introduces indirection
between a call site and its target. The dynamic library’s pointer table will have an entry for f2(),
and f1()will call f2() indirectly through this entry. At load time, the dynamic linker will fill this
entry, either with the address of f2()found in the library, or with the address of any f2()found in the
executable.
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Of course, the GOT from Section A.2.1 can also play the role of the pointer table we are discussing.
To enable interposing in gcc, we need to compile object files with the -fPIC option. Note that the
“PIC” in the option name is a misnomer: by enabling interposing we also get PIC, but if PIC was our
only goal, we could have achieved it by less expensive means such as those described in Section A.3.1.1.
See Section 8.6 for why this is important.

To return to our example, we can compile our f1.c and f2.c files as follows:

$ gcc -fPIC -c f1.c
$ gcc -fPIC -c f2.c

R We have used two separate commands to emphasize the fact that these are two separate, indepen-
dent compilations. You can also write “gcc -fPIC -c f1.c f2.c”, but the fact doesn’t
change: gcc will call the underlying compiler two times.

A.3.3 Static link of the dynamic library
The easiest way to create a shared library is to pass the -shared option to gcc when we link together
all the objects of the library. In our example, we issue the following command:

$ gcc -shared -o libx.so f1.o f2.o

The libx.so file that we get is an ELF file of type DYN. We can strip it if we want, but the
information needed by the dynamic linker will not be removed, just like with dynamically linked
executables. Therefore, the exported symbols will always be visible with “nm -D libx.so”.

Note that our shared library will have its own GOT, for the reasons explained in Section A.3.2, but
also to allow dynamic linking to other shared objects. In particular, f2()uses printf(), which is
defined in a different DSO (the C library), and therefore needs a GOT entry to access it. When our
executable is fully loaded, there will be three GOTs in memory: the one coming from the executable,
the one in libx.so, and another one coming from the C library.

A.3.3.1 Constructors and destructors

DSOs (and also EXEs) can have initialization code that is automatically run before the executable
main()function, and cleanup up code that is run during normal execution (when main()returns or
the process calls exit()). The gcc compiler allows the programmer to specially mark any function as
a “constructor” using the __attribute__((constructor))syntax. A pointer to such a function
will be added to the .init_array section, so that a table of function pointers will be automatically
built when the static linker will put together all the .init_array sections contained in all the object
files. This table will be located and walked over by the dynamic linker when the DSO will be loaded
into a process. Something similar is done for destructors, which will be called when the DSO is
unloaded (usually when the program terminates).

A.4 Loading the executable
Loading a dynamically linked executable is an activity that starts in the kernel, when the execve()
primitive is called, and is completed in userspace by the dynamic linker.

A.4.1 The kernel
To load a dynamically linked executable, the kernel first performs the same actions as for any executable,
interpreting the ELF file and loading the loadable ELF sections into memory (actually, creating the page
tables that link virtual addresses to the location of the corresponding pages in the file), then creating
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and filling the stack and so on (see also Section 6.3.1). Then it also loads (in a different part of the
address space) the executable mentioned in the .interp section and pushes the auxiliary vector onto
the stack. Finally, it passes control to the entry point of the interpreter, instead of the executable.

A.4.2 The dynamic linker

The interpreter is a statically linked, position-independent executable. For AMD64 systems it is the
/lib64/ld-linux-x86-64.so.2 dynamic linker mentioned above. This is the case we will
consider.

The dynamic linker uses the auxiliary vector on the stack to locate the executable in the address
space, and in particular its .dynamic section (see Section A.2). It then starts looking for all the
libraries mentioned in the NEEDED tags of the .dynamic section, loading each of them and their
dependencies (recursively). To load the libraries, it actually uses the mmap()system call to map the
needed segments of the library ELF files into the address space of the current process. The libraries
will end up somewhere between the data section and the stack.

The dynamic linker looks for each library in many directories in turn. The set of directories depends
on its own configuration, the configuration of the system, the options built into the executable itself,
and the preferences of the user running the executable (see “man ld-linux” for the details).

The dynamic linker then performs all the relocations found in the ELF files, in particular filling the
GOT tables of the EXE and all loaded DSOs (but see Section A.5 for exceptions). Then it arranges for
the destructors to be called at normal program exit (using atexit()), runs all the constructors, and
finally jumps to the entry point of the executable.

Let’s return to our example. When we try to run our main executable, the dynamic linker will
try to find libx.so and libc.so.6. The latter is not a problem, since it is installed in one of the
default directories that the linker already knows. However, if libx.so is still in the current directory,
the linker will not be able to find it. We can work around this by setting the environment library
LD_LIBRARY_PATH. This variable uses the same syntax as the PATH variable (including its quirks,
such as empty paths that are equivalent to the current directory) and can be used to add directories to
the dynamic linker search path. Therefore, we can run our program with

$ LD_LIBRARY_PATH=. ./main

Exercise A.1 The dynamic linker ignores the LD_LIBRARY_PATH variable when running in
“secure-execution mode”. This mode is entered when the kernel has placed an AT_SECURE tag in
the auxiliary vector, which it does, for example, when the process has changed its effective uid or
gid. Why do you think we need these precautions? ■

Another possibility is to write the search path of the library in the program itself. This is useful for
developers who want to ship their programs with the required dynamic libraries, and don’t want to
make assumptions about the dynamic linker configuration of their users. The gcc compiler and the
Linux dynamic linker support this feature with the RUNPATH dynamic variable, which can be written
in the program by passing the -Wl,-rpath=directories option to the compiler, where directories is a
colon-separated list of directories.

Exercise A.2 — dll1. If not used carefully, this feature can be exploited by attackers. Try to abuse
the RUNPATH of the set-uid dll1 program in the dll1 challenge. ■
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A.5 Lazy binding and the Procedure Linkage Table
Filling a GOT entry requires a non-trivial amount of work from the dynamic linker, which must look up
the corresponding symbol into the EXE and all loaded DSOs until it finds a match (ELF files come with
an hash table of dynamic symbols for just this purpose). However, in each process run it is possible
that many GOT entries will not be actually be used. This is especially true for entries found in the
dynamic libraries’ GOTs: remember, for example, that the entire libc is loaded, even if you only call
printf(). All the libc GOT entries not directly or indirectly used by printf()will not be needed
by your program. For a large program using many dynamic libraries (which may in turn load other
dynamic libraries), the number of these unused entries may add up to a considerable number, so it is
tempting to avoid filling them. The usual technique used to solve this kind of problems is “laziness”:
delay the work until the latest time before it is actually needed and, if it is never needed, the work will
not be performed. Even if most entries are actually needed, laziness can still be useful since it improves
startup time by distributing the work more evenly during runtime.

GOT entries corresponding to functions are first needed when the function is actually called the
first time. Laziness, here, is implemented by letting the code call a stub function instead of the actual
function. The stub function, when called for the first time, calls the dynamic linker (which, remember,
is still there in the address space) to resolve the symbol, then calls the real function. The stub also
makes sure that the next time the code will call directly into the real function. This is achieved using
the GOT: the GOT entries that should point to the imported library functions initially point back to the
stub itself. Once the symbol is resolved, the dynamic linker replaces the entry with a pointer to the real
function.

■ Example A.1 Let’s see this in action in our example. Our main executable calls two external
functions: f1(), defined in libx.so, and printf(), defined in the C library. The linker will prepare
a .got.plt section containing the GOT entries for f1() and printf(). It will also prepare a
.plt section containing the Procedure Linkage Table (PLT for short). The PLT contains the stubs we
mentioned above, one for f1()and another for printf(). The stubs are small functions generated by
the linker itself, with entry points f1@plt and printf@plt. If we disassemble the main executable
and search for the call to f1, we see:

40113a: call 401040 <f1@plt>

The static linker has patched the call instruction and redirected it to f1@plt. We can disassemble
the .plt section of the main executable with

$ objdump -d -j.plt -Mintel main

In the output of the command we can recognize the two stubs (plus some other code above the first
stub, unhelpfully labelled printf@plt-0x10). The code for f1@plt is:

1 401040: jmp QWORD PTR [rip+0x2fc2] # 404008
2 401046: push 1
3 40103b: jmp 401020

The first instruction is an indirect jump through a pointer stored at address “rip (of the next instruction)
plus 0x2fc2”. The disassembler has done the sum for us, and the result is shown in the comment
on the right: the pointer is stored at address 0x404008. Remember the two GOT relocations that we
saw at the beginning of Section A.2.1: this is the address of the entry of the GOT that should contain
the address of f1. This is true in general: each stub has a corresponding entry in the GOT or, more
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push GOT[-2]
jmp GOT[-1]
printf@plt:
jmp GOT[0]
push 0
jmp PLT[-1]
f1@plt:
jmp GOT[1]
push 1
jmp PLT[-1]

PLT of main

-1

0

1

GOT of main
-2
-1
0
1

descriptor of main

_dl_resolve:

. . .

dynamic linker

Figure A.2 – Initial arrangement of PLT and GOT in the example executable

precisely, in that part of GOT that is stored in the .got.plt section. We can see the contents of the
.got.plt section, initialized by the static linker, with:

$ objdump -s -j.got.plt main

the output (edited) is as follows:

403fe8 f83d4000 00000000 00000000 00000000
403ff8 00000000 00000000 36104000 00000000
404008 46104000 00000000

The first column is an address, followed by 16 bytes stored at that address. Each entry of the GOT is a
QWORD (8 bytes), so each line of the output shows two entries. The bytes along the line are grouped by
4 just for readability, but they are not interpreted as integers. This means that we see the QWORD values
reversed: the address stored in the entry at 0x404008 is therefore 0x0000000000401046. This is the
address of the second line of the f1@plt stub above. We can repeat the exploration for printf@plt
and we come to the arrangement shown in Figure A.2. In the Figure we have used some pseudo-C for
the references to the GOT/PLT in the assembly instructions, to make them more readable. We have also
added some negative indexes, both in the GOT and in the PLT: these entries are explained below, in
Section A.5.1. The color of the arrows indicate which linker has written the pointer in the GOT: gray
for the static linker and blue for the dynamic one. The blue pointers are still NULL in the .got.plt
prepared by the static linker: they will be set at load time.

With this arrangement, the first instruction of each stub is essentially a NOP. With Lazy Binding
enabled, this arrangement is not changed by the dynamic linker at load time: the dynamic linker will
ignore (for the moment) the relocations in the .got.plt section, leaving the GOT entries in the state
prepared by the static linker.

Let’s now follow the control flow during the first call of f1, using Figure A.3 for reference. At
run-time, when and if the f1@plt stub is called (step 1 in the Figure), the stub will make the useless
jump to its second instruction (step 2) and continue from there. The purpose of the instructions below
the first jump is to call the _dl_resolve function of dynamic linker and ask it to fill entry 1 of the
GOT of main, i.e. the entry of f1 (steps 3 and 4, see Section A.5.1 below for the details). At this
point, the dynamic linker pops the information pushed on the stack by the PLT stub; this information
directs it to the f1 relocation it had ignored at load time; it resolves the f1 symbol, fills entry 1 of the
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. . .
call f1@plt
. . .

main

push GOT[-2]
jmp GOT[-1]
. . .
f1@plt:
jmp GOT[1]
push 1
jmp PLT[-1]

PLT of main

f1:
. . .
ret

libx

_dl_resolve:

. . .

dynamic linker

1

2

3

4

5

6

Figure A.3 – Control flow during the first call to f1

GOT and finally jumps to f1()(step 5). When f1 returns, the top of the stack still contains the return
address pushed by the original “call f1@plt”, so control will return to the main program (step 6).

Since the GOT has been updated, the next time f1@plt is called, the jump instruction will go
directly to f1()and the control flow will be as in Figure A.4.

R Note that even after the first call, calling f1() still requires a “call f1@plt” (step 1 of
Figure A.4) followed by the indirect jump through the GOT (step 2). If f1()were in a static
library, only a “call f1” would be required.

■

Lazy binding is usually not implemented for GOT entries pointing to global data, probably because
it is not trivial to remove the stub from the code path after the first access.

A.5.1 Calling the dynamic linker
All stubs of our main program end with a jump to address 0x401020, which we have represented as a
jump to the PLT entry at index -1 in the Figures. If we look up address 0x401020 in the disassembler
output we find:

401020: push QWORD PTR [rip+0x2fca] # 403ff0
401026: jmp QWORD PTR [rip+0x2fcc] # 403ff8

This code (generated by the static linker) uses two entries of the GOT stored above the one with index
0 (entries -1 and -2 in Figure A.2). These entries are filled by the dynamic linker at load time: the
second entry (the one used in the jmp) points to the function that implements the symbol lookup
(_dl_resolve in our dynamic linker), and the first entry (the one used in the push) contains a
pointer to a data structure, allocated by the dynamic linker, that describes the EXE or DSO that owns
this GOT. Together with the index passed on the stack by the PLT stub, this information allows the
lookup function to identify the entry that needs to be filled.
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. . .
call f1@plt
. . .

main

. . .
f1@plt:
jmp GOT[1]
push 1
jmp PLT[-1]

PLT of main

f1:
. . .
ret

libx
1

2

3

Figure A.4 – Control flow during the second and later calls of f1

Note that only the dynamic linker knows the address of its own lookup routine and the address
of the data structure describing the EXE or DSO, so the static linker cannot fill these GOT entries.
However, the static linker doesn’t even create relocations for these entries: it just allocates them and
adds the code in PLT[-1] that uses them, tacitly assuming that the dynamic linker will fill them with the
correct addresses.

Exercise A.3 — canary1b. The GOT and the constructors/destructors tables (Section A.3.3.1)
all provide useful writable function pointers that can be overwritten by attackers. Depending on
the type of bug that the attacker is trying to exploit, these pointers may be much more convenient
than the RIP addresses stored on the stack. The canary1b challenge is very similar to canary1
(Ex. 7.6), but overwriting the saved rip is much more difficult. Try to overwrite one of these new
data structures instead. ■

A.6 Versioning
Since dynamic executables and the libraries they depend on may be distributed separately, we face
the problem of versioning, i.e., knowing which version of each library and executable can be safely
dynamically linked.

Libraries may change between releases in at least two ways: by introducing new functionalities
while continuing to support the old ones, or introducing incompatible changes. Version numbers usually
try to reflect this by having a part that changes when new, backward compatible changes are introduced,
and another one that signals incompatible (“breaking”) changes. There is unfortunately no universally
agreed upon standard, but “Semantic versioning” is the most widely adopted scheme. In this scheme,
the version number is decomposed as “major.minor.patch”, where “major” is bumped when breaking
changes are introduced, “minor” for non-breaking changes, and “patch” only for very small changes
such as bug fixes. When an executable (or a library depending on other libraries) is built, we want to
remember the major.minor version of the libraries used, call it M.m. At load time we can accept any
version M.m′.p with exactly the same major version M, a minor version m′ ≥ m, and any patch level
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p. This requirements reflect the fact that our executable may depend on functions not found in older
releases, but it should not be affected by the non breaking changes introduced in more recent minor
releases.

In Linux systems these requirements are partially satisfied using some symbolic links and the
DSOs SONAME (Shared Object NAME) tag in the .dynamic ELF section. For example, when a
library libname with version M.m.p is built, it is tagged with a SONAME libname.so.M.m. The
file system were the program is built will contain the file libname.so.M.m.p and a symbolic link
libname.so pointing to it. At link time, the linker option -lname will cause the linker to look up the
file libname.so and find the symbolic link. The linker will then read the SONAME tag and copy it
into the NEEDED tag of the executable. When the executable is shipped, we can assume that the target
system will contain a libname.so.M.m.p′ library installed, and a libname.so.M.m symbolic link
pointing to it. At load time the dynamic linker will read the NEEDED tag in the executable .dynamic
section and look for a libname.so.M.m file, thus finding the symbolic link. In this way, an executable
built using version M.m.p will be run using version M.m.p′ of libname, thus ignoring the patch level.
The solution is not able to automatically accept a minor m′ ≥ m, but this limitation can be sometimes
overcome by adding more symbolic links.

■ Example A.2 We can add a SONAME to our libx.so library by using the -Wl,-soname= option
when we link the library, e.g.:

$ gcc -shared -o libx.so.1.0.0 f1.o f2.o -Wl,-soname=libx.so.1.0

We have also followed the conventions described above, and named our library with the full M.m.p
version number.

The SONAME is stored as another entry in the .dynamic section of the library: if we run
“readelf -d libx.so.1.0.0” we should see (among other lines):

0x000000000000000e (SONAME) Library soname: [libx.so.1.0]

Now we link the main executable exactly as in Section A.2:

$ gcc -o main main.o libx.so.1.0.0

R Here we have used the full filename for the library, but typical installations will create a symbolic
link from libx.so to libx.so.1.0.0, so that developers don’t need to know the exact
version of the installed library. The symlink is also required to make -lx work.

If we run “readelf -d main” we can confirm that the static linker used the library SONAME
instead of the filename:

0x0000000000000001 (NEEDED) Shared library: [libx.so.1.0]

This also means that, when we try to run the executable, the dynamic linker will look for a file named
libx.so.1.0, which doesn’t exist. We can fix this by creating another symlink to libx.so.1.0.0,
this time from libx.so.1.0. ■

A.6.1 The diamond problem
The hardest problem, however, comes when a system contains executables (or libraries) that depend on
different, incompatible versions of the same library. Even worse, the same executable may depend on
two such versions, e.g., one version directly and another version indirectly, through the dependencies
of some linked library (this is sometimes called the Diamond Problem, since the dependency graph
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looks like a diamond). The former problem can be solved in the previous scheme by having both
library versions installed, with libname.so pointing to the newest one, so that new executables are
built against the latest version, while older executables will find the older library version using the old
SONAME. The latter problem is probably unsolvable, since loading two different versions of the same
library is unlikely to work (think of some global state that should be maintained by the library, or of
some data structure created by one version and passed to the other one).

■ Example A.3 In our running example, both the main executable and the libx.so library use
printf()and therefore need the C library. This didn’t cause any problems, since we linked both of
them with the same version of the C library (the one installed on our system), and therefore the dynamic
linker was able to load the library only once. If, instead, main and libx.so had been linked against
two incompatible C library versions (e.g., with different SONAMEs), both of them would have been
needed, and most certainly they would have clashed at runtime. ■

Linux implements a finer grained scheme that can be used to solve all of the above problems, with
some cooperation from the library authors. Rather than having only per-library versions, linux libraries
can assign a different version to each symbol and they can export several versions of the same symbol,
thus resolving internally any compatibility problem. Versions are assigned to symbols using a “version
script” when the shared library is built (-version-script option of the linker). They show up in
the symbol tables with the “symbol@version” syntax. Each symbol also has a default version, which
uses two at-signs instead of one. The default version is picked by the linker when linking the library to
an executable at build time. The executable thus remembers the version of each symbol it needs. At
load time, the dynamic linker searches the library for the exact version of each symbol.

■ Example A.4 We have already seen this per-symbol versions in Section A.2.1, since the relocation
for the GOT entry of printf actually mentioned the printf@GLIBC_2.2.5 symbol. We can add
per-symbol versions to our library too, by creating a version script, e.g.:

LIBX_1.0 {
global:
f1; f2;

local:

*;
};

Note that the script has other purposes, besides assigning versions to symbols: it can be used to say
which symbols are part of the public interface of the library (global) and which symbols are instead
internal (local). The above script is saying that f1 and f2 are public and all the others are internal.

Note how this allows us to say that myvar is not exported: we wouldn’t be able to say this with standard
C keywords (we cannot declare it static, since it is declared in f1.c and used in f2.c). This features
where added to reduce the startup time of very large programs such as OpenOffice, which used tens of
dynamic libraries with thousands of unnecessary global symbols.

In addition, we are assigning version LIBX_1.0 to all the symbols. The version is an arbitrary
string that will be appended to each symbol. To use the script we put it in a libx.map file and pass it
when we link the library:

$ gcc -shared -o libx.so f1.o f2.o -Wl,-version-script=libx.map
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If we run “nm -D libx.so” we can see that all our symbols have a @LIBX_1.0 suffix. If we link
the main exectuable against our new library, the f1 relocation will also show this suffix. ■


