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In Part I we assume that the programs we use are memory safe and cannot crash or expose their
internal implementation details. The attacks at this level abuse either misconfigurations or programming
mistakes that don’t depend on the language used to implement the commands: they would work the
same, even if the entire system were rewritten in Rust. Nonetheless, we will use C throughout, since
this is still the language of choice for this kind of programs. In the first two chapters we spend some
time in understanding the actual logic of these commands, which can be surprising. We then study the
most common ways by which users can exploit this logic to escalate their privilege.





2. Unix

The system had no name at that point, and (if memory
serves) I suggested, based on Latin roots, that since
Multics provided “many of everything” and the new
system had at most one of everything, it should be
called “UNICS” [ . . . ].

B. W. Kernighan, UNIX: A History and a Memoir, 2019

In this book we will mostly use Linux. Linux is based on Unix, which is a completely different thing.
It is important to set the record straight.

Unix [25] was developed at AT&T Bell Labs in the late ’60s by Ken Thompson, soon joined by
Dennis Ritchie. It was a personal project that Thompson started on a DEC PDP-7, when Bell Labs
pulled out of the Multics project [3].

Nothing happens in a vacuum, and the roots of many Unix features can be traced clearly. It
is well known that Multics (MULTiplexed Information and Computing Service) [11, 6] is
the inspiration for many Unix ideas, but its predecessor CTSS (Compatible Time Sharing
System) [10] is also important. CTSS was used to develop Multics, so all the Bell Labs people
working on Multics were also CTSS users. Indeed, Ritchie wrote that Unix can be considered
“a modern implementation of CTSS” [20]. The developers were also aware of other ongoing
time-sharing research, such as Project GENIE at Berkeley [19], where Thompson did his
Masters.
Many minutiæ, such as syntactic choices and some technical terms, come from pre-existing
non-Time-sharing systems, notably from IBM (CTSS ran on a modified IBM 7094) and, of
course, from DEC. For example, the origins of what is now know as AT&T assembly syntax
goes back to the assemblers of early versions of Unix, which were explicitly based on DEC
assemblers.

Many other Bell Labs researchers started contributing to Unix. The system was ported to a PDP-11
and enjoyed great success, first within the Bell Labs themselves and then at many universities and
companies. The versions of Unix produced by Bell Labs are now called “Research Unix” and are
numbered according to the version of their manual, starting with v1 in 1971. The last well know
Research Unix version is v7 from 1979; after that, and until the late ’1990s, most people used a version
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of Unix that derived from either System V [7], a commercial version of Unix developed by AT&T,
or BSD (Berkeley Software Distribution) [38], a free version of Unix maintained by people at the
University of California Berkeley (UC Berkeley). Both were based on research Unix code, extended in
incompatible ways. Other incompatible versions of Unix came from companies such IBM, HP and
so on. These companies licensed AT&T code and then modified it to port the system to their own
hardware, adding features in the process. In 1988 IEEE released the first version of the POSIX [37]
family of standards, one of several attempts to define what every Unix system should look like.

A lawsuit was started in 1992 by USL (Unix System Laboratories), a subsidiary of AT&T, against
the Regents of the University of California (Berkeley), claiming that the latter had breached their
software licence contract by freely distributing the BSD code. Meanwhile, two important things
happened: Richard Stallman had started the GNU (GNU’s Not Unix) project [48] in 1983, with the
goal of rewriting Unix from the ground up to create a Unix-like system free of all legal problems. The
GNU project produced many of the userspace commands, starting with the C compiler, but it never
managed to materialize the kernel. This very important missing piece was finally created when Linus
Torvalds announced his personal kernel project [49], which eventually became Linux [50], in 1991. By
putting together Linux, the GNU software and a lot of other open source software (such as the Vim
editor and the X Window System), we can now have several complete and free Unix-like systems in
the form of Linux distributions. Most of them are largely compliant with POSIX, even if they are not
certified by IEEE.

The USL vs UC Berkeley suit was settled out of courts in 1994 (the University had countersuited
USL, since the latter had used the former’s TCP/IP code without attribution). The BSD system survives
today in FreeBSD [34, 5], NetBSD [43], OpenBSD [44] and some other variations.

Bell Labs did not stop at v7 Unix, producing other less well-know versions up to v10, and
developing “Plan 9 from Bell Labs” [18] (a reference to the trash sci-fi movie Plan 9 from Outer Space)
and “Inferno” [12], where the Unix ideas were developed without the need to maintain compatibility
with ancient decisions. Today, Linux also includes ideas from Plan 9, such as the clone()primitive,
which replaces the old fork().

In the rest of Part I we will use Linux as if it were Unix, limiting ourselves to the core Unix features
that are still clearly identifiable. Some of these features have evolved over the years, and we will note
the differences where necessary. Some modern Linux features will be examined in Part III.

2.1 The structure of Unix

There is nothing special about system-provided
commands except that they are kept in a directory where
the Shell can find them.

K. Thompson, D. M. Ritchie, Unix Programmer’s
Manual (v3), 1973

You are probably already familiar with Unix, so we will move very quickly on the basics and then
highlight some finer points that are often forgotten. For our purposes, one of the most important features
to keep in mind is that no program in Unix is magic, except the kernel (see Figure 2.1). Only the kernel
can do things that the other programs cannot. In particular, the shell is not magic: everything the shell
does, you can do in your own programs, and you can even replace the default shell with another one
(we will write our own shell in Chapter 3). Not even sudo is magic: it only allows you to become root
temporarily thanks to the set-uid feature, which is not specific to sudo: any executable can have the
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Figure 2.1 – The structure of Unix

set-uid bit set at the discretion of its owner or the administrator (see Section 2.7 below).
The kernel implements a number of primitives in the form of system calls. Programs such as the

shell, ls, cat, sudo, and so on, perform their tasks using these primitives. When you reason about
what is possible and what is not, you only have to think about the primitives, not the programs: to read
a file, cat must open() it, just like any other program that reads a file.

The original Unix was admired for its elegance, since the set of primitives was very small (a modern
Linux system, unfortunately, implements hundreds of primitives). The system implements processes,
which are the entities that execute programs, and files, which are automatically expanded sequences of
bytes organized in a hierarchy of directories (the file system). Processes are handled by the fork(),
execve(), exit()and wait()primitives. Files are handled with the open(), read(), write()
and close()primitives.

The kernel keeps track of a number of properties for each process. Among them are:

• the process identifier (a small number which is reused when a process terminates);
• a real and an effective user identifier, and a real and effective group identifier.
• a current working directory
• a table of open files.

R Later Unix-derived systems and modern Linux also implement a set of additional group identifiers,
so a process can belong to many groups.

The kernel also remembers, stored in the file system inodes, a set of attributes of each file and directory.
Among them are:

• the file type (file, directory, symbolic link, device node)
• the ids of the file’s owner and group;
• the permission bits (read, write, execute permissions for the file’s owner, for the file’s group, and

for other users)
• the set-uid and set-gid flags.

These are generically called process or file “metadata” in Figure 2.1. Only the kernel can access this
state directly.

2.1.1 Process primitives
The fork()primitive is the only way to create a new process. It is declared as follows:

pid_t fork(void);
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The child process is a copy of its parent and, in particular, all of the process attributes mentioned above
are copied to the child process (except, of course, the process identifier). In particular, the new process
will have the same uid and gid as its parent, and will share the same open files. The executed program
is also the same: the fork()primitive will return different values to the parent and the child, so the
program can take different branches and let the two processes perform different actions (in particular,
the child receives zero and the parent receives the pid of the child).

The execve()primitive is the only way to execute a new program and is declared as follows:

int execve(const char *path, char *argv[], char *envp[]);

The first argument of the primitive is the path of a file, which must be executable by the calling process
(according to the file’s permissions and the process’s effective uid and gid). The process remains the
same: same pid, same open files, same current working directory, same real uid and gid (the effective
ones may change because of the set-uid and set-gid feature, see below). However, all its memory is
replaced by the contents of the file. Execution resumes at the file’s _start symbol. The execve()
primitive takes two more arguments, which are two arrays of C strings, with each array terminated by
NULL. The code in _start (which comes from the standard C library) will use the first array to create
the argc and argv parameters of main, while the second array is used as the set of the environment
variables of the process, pointed to by the global environ variable (see also Section 3.7).

If the set-uid bit of the file is set, execve()changes the effective uid of the process to the uid of
the owner of the file. The same goes for the set-gid bit and the effective gid. The real uid and gid do
not change.

Processes terminate when they call the exit()primitive, declared as follows:

void exit(int status);

R This is actually a userspace library function that first does some cleanup and then calls the
_exit()kernel primitive. Se also Exercise 3.11 on the difference between the two.

A process can wait for any of its children to exit by using the wait()primitive, declared as follows:

pid_t wait(int *status);

A small integer passed to exit(), can be received by wait() and used as a means for the child
process to communicate errors or special conditions to its parent. By convention, a value of 0 means
that all was well.

The uid and gid of a process can also be changed using the setuid()and setgid()primitives
which behave differently when called by the root user (effective uid 0) and normal users (effective
uid different from 0). If the effective uid of the calling process is 0, setuid()will accept any value
and set both the real and effective uids to it (and similarly for setgid()). Normal users can only
call these primitives when they are essentially no-ops (setting the ids to the value they already have);
set-uid/set-gid programs can use them to set the effective ids back to the real ones, or to upgrade the
real ids to the effective ones.

2.1.2 File primitives
We will cover only the most important features, assuming that you are already familiar with a Unix-like
file system.

Files must be opened before they can be used. The open()primitive is declared as follows:
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int open(const char *path, int flags, ...);

The primitive takes a path as the first argument and some mode flags (read and/or write) as the second.
It checks if the calling process has the proper permissions to open the file in that mode (again, using the
effective uid/gid and the file permissions). If successful, it finds the first free slot in the process open-file
table, stores there a pointer to an in-kernel data structure describing the open file, and returns the index
of the slot. This index (file descriptor) can be passed to the read() and write() system calls to
sequentially read and write bytes to and from the open file. The read()and write()primitives are
declared a follows:

ssize_t read (int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

Both return the number of bytes actually read or written, or -1 in case of error. The number returned
can be less than count for a number or reason that depend on the type of the file being accessed.
In particular, read()can return zero to signal an End Of File (EOF) condition. The process should
close()the files when it is done with them, mostly because the open-file table has a finite size, but
the kernel will automatically close any open files when the process terminates.

If so instructed, open()can also create the file if it does not exist; in this cases it takes a third
argument “mode_t mode”, which sets the file permissions. The original design used a different
primitive for file creation, creat(), which is still available today.

In modern Unix derivatives, directories must be created and deleted using the mkdir() and
rmdir() primitives. Existing directories are opened and closed with open() and close(), like
regular files, but you cannot use write(), and you can (no longer) use read()on them, since their
content is system specific. The standard primitive to read directories is getdents(), but directories
are best accessed using library functions (opendir(), readdir(), closedir(), see Section 2.5).

Finally, a process can change its own current working directory using the chdir() primitive,
passing the path of the new directory as an argument.

2.1.3 Interpreting paths
All of execve(), open()and chdir()always interpret their first argument—a filesystem path—in
the same way:

• if it begins with /, it is an absolute path starting from the root of the file system;
• if it does not begin with /, it is a relative path starting in the current working directory of the

process.
Note, in particular, that no PATH variable is taken into account by execve(): PATH is handled in
userspace before calling execve()(see Section 3.2).

Any character can be part of a file or directory name, except the null byte and the slash (/). This
includes whitespace, even newlines, and control characters like backspace.

2.1.4 A didactic reimplementation of some Unix programs

Use the source, Luke

anonymous

Unlike the original Unix code, the source code of modern libraries and commands, even the simplest
ones, is huge and hard to read. Nevertheless, source code is very useful for understanding what is really
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going on in the system, how primitives are used and which program is responsible for which feature.
The mynix package contains a very simple rewrite of some standard Unix programs. The only

purpose of the exercise is to show how things fit together without distracting details. The only thing
that is assumed is the kernel—everything else is rewritten.

You can download the package here:

https://lettieri.iet.unipi.it/hacking/mynix-3.1.zip

Once unzipped, you obtain a mynix-3.1 directory with the following subdirectories:
src contains the sources of all the commands
lib contains the sources of all the library functions
util contains a few scripts to build and run the programs

For many programs (sh, ls, login, . . . ) there are several sources numbered sequentially. Each
version improves the previous one, typically by adding a single new feature.

The system should run on any sufficiently recent version of standard Linux distributions, such as
Ubuntu or Kali. You can of course run Linux in a VM, but even WSL2 should work. Moreover, the
sources include assembly for both Intel and ARM CPUs, so you should be able to run the system also
in a Linux VM running on a Mac M1/2/. . . .

The easiest way to compile everything is to run:

$ util/install

as a normal user. This creates a root directory containing a minimal Unix file system. Individual
programs can be run as, e.g.:

$ root/bin/sh0

You can also run a “standalone” system which uses only the programs in src, but you need to be
in sudoers and have a proper entry in /etc/subuid and /etc/subgid. Moreover, xterm and
uidmap must be installed in your Linux distribution. If these conditions are met, you can run

$ util/start

as a normal user. You will be asked for your sudo password. The script will start a few xterms,
each one emulating a terminal connected to the mynix system. Then, it will run the init program
to spawn getty on the terminals. You should see the “login:” prompt on each one of them. The
initial /etc/passwd file defines a couple of normal users (user1 and user2) and the root user.
Passwords are not set, so you can login by just typing enter at the password prompt. Once you have
logged in, you can use passwd to set the passwords.

When several versions of the same program exist (e.g., sh0, sh1, etc.), the default one is the
highest numbered one. So, for example, /bin/sh is actually a link to /bin/sh9. You can select a
different default one when you start the system, e.g.:

$ util/start sh=bad2sh

will start the system with /bin/sh pointing to /bin/bad2sh.
Type ctrl+C on the window where utils/start is running to stop the system.
The number of terminals can be tweaked by editing src/ttys and then running util/install

again. Edit src/passwd to add/remove users, followed by util/install. Note that the install

https://lettieri.iet.unipi.it/hacking/mynix-3.1.zip


2.2 How things fit together 21

script does not delete the previous file system.
Finally, the programs can also be compiled using the system libraries, instead of the custom library

in lib. Just enter the src directory and type make followed by the name of the program that you
want to build (or just make to build them all). This should work even on a Mac M1/2/. . . without any
VM, but some programs that use Linux specific features (such as ps) will not be compiled.

2.2 How things fit together
From a Unix access control point of view, you must always remember that what matters is the effective
uid and gid of the processes, as checked by the kernel when they invoke primitives. The programs
are not important: exactly the same ls program is run by normal users and by root, but the set of
directories that can be listed depends on who is running ls. More specifically, it depends on the
effective uid and gid of the process that execve()’d the /bin/ls file.

So, how do processes get the effective uids and gids of users? We can follow the boot process
of mynix to have a clear view. It mimics, in a simplified way, the boot process of traditional Unix
systems. Imagine that the Unix system is running on a large computer somewhere, and there are several
terminals connected to it.

For example, in the picture at the beginning of this chapter, we see a pair of Teletype ASR
33 terminals connected to the PDP 11 running Unix. An uncharacteristically shaved Ken
Thompson is sitting at the first one, with Dennis Ritchie standing next to him.

When Unix boots, the kernel creates a process with id 1, both real and effective uid and gid set to
0 and no open files. The process executes the init command, which must exist and be executable.
The available terminals are listed, one per line, in a /etc/ttys file created by the administrator
(ttys stands for teletypes). For each line in this file, init forks and executes the getty command,
passing the name of the teletype as an argument (via the second parameter of execve()). It then waits
endlessly for one of its children to exit. Whenever a child exits, init wakes up and spawns a new
getty for the corresponding terminal.

■ Example 2.1 Start mynix and login as root in tty1, then run “ps jax” to see the list of all
processes. The important columns in the output are PPID (pid of the parent of the process), PID (pid of
the process) , UID (effective user id of the process) and COMMAND (the argv of the process). You
should see a COMMAND init with PID 1 and UID 0. There is also a COMMAND “getty tty2”
with UID 0 and PPID 1 (a child of init). It is the getty that is listening on the other terminal. ■

You can take a look at src/init1.c to see how this can be done using the available system calls,
and nothing else. However, instead of the expected execve()we see this in the function that spawns
getty:

init1.c21 execl("/bin/getty", "getty", gettys[i].tty, NULL);

We are not calling the execve()system call directly. Instead, we use execl(), a C library function
that is a little easier to use. You can find the sources in lib/execl.c. The function does some
extra processing and then calls the system call (we know it has to call it: there is no other way to run
a program). The first argument of execl()is exactly the same as execve(), and in fact execl()
will pass it as is. The execl function is variadic, i.e. it takes a variable number of arguments, which
in this case are C strings. The function collects these strings, starting with the second argument until
it finds NULL. It creates an array of pointers to these strings. This array then becomes the second
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argument of execve(), and then the argv of the new program. We follow the convention that the first
element of argv must be the program name. As for the last execve()argument, the array pointing
to the environment variables, execl()will simply pass the one from the calling process (this last part
is actually done by execv(), see lib/execv.c in mynix). At this point the environment is still
empty.

The getty process thus starts with uid and gid set to zero and no file open. It does whatever
is necessary to put the teletype device into a usable state (nothing, in our case), then it opens the
corresponding device file three times, once in read-only mode and twice in write-only mode. Here are
the relevant lines in src/getty.c:

getty.c21 fd0 = open(buf, O_RDONLY);
22 fd1 = open(buf, O_WRONLY);
23 fd2 = open(buf, O_WRONLY);

(where buf is the path of the device received as an argument.) Since there were no open files before,
and the open()primitive always uses the first free slot in the file descriptor table, the device goes
into file descriptors 0, 1 and 2. By convention, these are the standard input, standard output and
standard error files for programs started from this terminal: any descendant process will inherit these
file descriptors, unless one of its ancestors explicitly close()es them.

■ Example 2.2 Continuing from example 2.1, assuming that the PID of “getty tty2” is 3, run

# ls -l /proc/3/fd

The /proc directory contains a pseudo filesystem that allows us to inspect the properties of all the
active processes (it is where ps takes its data from). Each process has its own subdirectory in /proc,
named from its PID. The fd subdirectory contains a link for each open file descriptor, pointing to the
corresponding file. The above command should show three files, named 0, 1 and 2, all pointing to the
same character device. ■

The getty program will then print “login:” to file descriptor 1:

getty.c26 write(fd1, "login: ", 7);

and starts reading from file descriptor 0:

getty.c27 n = read(fd0, buf, 9);

R Traditional usernames were limited to 8 characters, but we read 9 bytes to account for the newline.
The lines after 27 (not shown) check that the newline is actually there and replace it with the
string terminator, to leave a proper C string in buf.

When a user comes to the terminal and enters her name, getty will execve() the login program,
passing the entered username as an argument:

getty.c34 execl("/bin/login", "login", buf, NULL);

Now the process (still the same one spawned by init) starts to run the login program. It still
has its uids and gids set to zero, and its fds 0, 1, and 2 pointing to the terminal where the user has typed
in her name.
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■ Example 2.3 Continuing from example 2.2, go to the tty2 terminal, type “user1” and Enter, but do
not answer yet to the “password:” prompt. Instead, go back to tty1 (where root is logged in) and
type “ps jax” again. You should see that process 3 is now running COMMAND “init user1”,
but it is otherwise the same process that was running “getty tty2” before. In particular, it is still
running with UID 0. ■

Let’s take a look at the sources in src/login1.c. The program prints “password:” to file
descriptor 1, then reads from file descriptor 0. It needs to do some ioctl()first, so that the terminal
doesn’t echo the password to the terminal printer, where it would remain there for everyone to see. This
is done by the getpass() library function (in lib/getpwnam.c):

login1.c19 pass = getpass("Password: ");

Once it gets the password, it opens and reads the /etc/passwd file (prepared by the administrator),
looking for a line starting with the username. This is traditionally done in another library function,
getpwnam()(see lib/getpwnam.c).

login1.c22 if ( (pw = getpwnam(argv[1])) == NULL )

The function returns a pointer to a “struct passwd” structure, with one C field for each colon-
separated field in the /etc/passwd file. If getpwnam()finds the user, login checks the password,
and if they match, it calls

login1.c34 setgid(pw->pw_gid);

and

login1.c39 setuid(pw->pw_uid);

Since login is still running as root, these calls set both the real and effective gids and uids of the
process to those of the logged-in user.

R The kernel doesn’t know which users belong to which groups, it only knows about the user ids
and group ids of processes. The fact that the processes of a user also belong to the group of the
user is entirely dependent on the fact that login calls setgid()with the proper value extracted
from /etc/passwd.

After that, login moves to the home directory of the user:

login1.c43 chdir(pw->pw_dir);

and finally executes the shell:

login1.c45 execl(pw->pw_shell, "-sh", NULL);

R The dash in the first argument (argv[0]) is a conventional way of telling the shell that it is
being called by login. The shell will use this fact to read some initialization script that should
only be run at login time.

■ Example 2.4 Continuing from example 2.3, go back to tty2 and enter user1’s password (empty if
you have not changed it). Now user1 is logged in. Go back to tty1 and run “ps jax” again: process
3 is now running COMMAND “-sh”; most importantly, is UID is now 1000. ■
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Login also sets some environment variables, which are then inherited by the shell (see src/login2.c
for some examples).

When the shell runs, it will still have file descriptors 0, 1 and 2 pointing to the terminal opened
by getty and the uids and gids set by login. From now on, all the programs started by the shell
will inherit this setting, and, if the uid is greater than zero (a normal user has logged in) there will be
no way to arbitrarily change the uid and gid since setuid()and setgid()are no longer available.
Only by execve()ing set-uid/set-gid programs can the uids and gids be changed, but these programs
will only perform safe actions (or so the administrator hopes).

When the shell exits because the user logs out, init will wake up and respawn getty on the
same terminal.

R The shell is still running in the child process initially forked from init, since only execve()
has been called since then. This is why init is able to understand that it needs to respawn
getty when it is notified of the termination of the shell.

■ Example 2.5 Continuing from example 2.4, go back to tty2 and logout user1 (just enter Ctrl+D on
an empty line). In tty1, type “ps jax” for the last time. Process 3 is no longer in the list: it terminated
when the shell exited, and init has spawned a new process (with a new PID) to run “getty tty2”.
The new process has printed “login:” on tty2. ■

Exercise 2.1 Can we swap setgid()with setuid()above? And chdir()with setuid()?
Can we put the chdir()after the execl()? ■

2.3 Reading and writing files

- nano? Real programmers use emacs.
- Hey, real programmers use vim.
- Well, real programmers use ed.
- No, real programmers use cat.

R. Monroe, https://xkcd.com/378/

The cat program, available since v1 and certainly older, is probably the simplest Unix program that
still manages to be useful in a variety of situations (echo is another contender, but it came later, in v2).
When run without arguments, it copies its stdin to its stdout. The src/cat1.c version just does this:

cat1.c9 int main()
10 {
11 int n;
12 char buf[512];
13
14 while ( (n = read(0, buf, 512)) > 0)
15 write(1, buf, n);
16
17 return 0;
18 }

Notice how the program uses file descriptors 0 and 1 without open()ing them: they are still the ones
that were opened by getty and then inherited through execve()and fork().

https://xkcd.com/378/
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R For simplicity, the above program assumes that write()will actually write all n bytes, which is
true for all normal cases. A more robust program should check the return value an retry until all
bytes are written.

If we run the program, it waits for a line of input, which is also echoed to the terminal as we type,
prints it when we hit Enter, and then starts over, until we type an EOT.

Exercise 2.2 EOT (End Of Transmission, Ctrl+D) acts as an EOF (End Of File) only on an empty
line. What happens if you type something and then type Ctrl+D before hitting Enter? ■

If we use I/O redirection (see Section 3.5) we can send the output of cat to a file:

$ cat >newfile

This is about the simplest “editor” available in Unix. It is also the only one available in mynix.
The cat command is supposed to concatenate files, but this simple version doesn’t even do that.

A more complete implementation is in src/cat2.c. In cat2, stdin is used only if no arguments are
passed. The final version, src/cat3.c, adds the special handling of the “-” option to refer to stdin
together with other files.

According to McIlroy [see 16, page 6], the “-” syntax was added by Thompson in v5
sort and rapidly spread to other programs. However, since it is just a convention, it is not
understood by all programs. The superior /dev/fd special files, also supported by Linux,
were only added in v8.

2.4 Terminal I/O

When you type to UNIX, a gnome deep in the system is
gathering your characters and saving them in a secret
place.

K. Thompson, D. M. Ritchie, Unix Programmer’s
Manual (v3), 1975

Note that, while cat is waiting for your line, you can edit what you have typed before hitting enter:
you can delete the last character, the last word (Ctrl+W) or the whole line (Ctrl+U). Where is this
feature implemented? Since we have only called read(), it must be implemented by something that is
active during its execution. But read() is a system call, so line editing must be implemented either in
the kernel, or in the terminal (emulator) itself. We cannot be more precise than this without adding a
bit of history: old terminals were very simple and did not provide any line-editing functionality, so it
had to be implemented in software. For a long chain of compatibility requirements, this is still true
today. In fact, this kind of line editing is implemented in the TTY module in the kernel, attached to the
driver that talks to the (emulated) teletype device. See Figure 2.2: the TTY module buffers all the bytes
coming from the tty device and echoes them back as they come; the program reading from the device
(in this cas, cat) receives the bytes only when the buffer is flushed, for example, when the incoming
byte is a newline (ASCII 0x0a), or EOT (ASCII 0x04, Ctrl+D). While the bytes are in the buffer, the
TTY module allows us to edit them using the above control characters.
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TTY

1b [ A 0a

^[[A0a

cat tty1echo

Figure 2.2 – The TTY module inside the kernel

The basic features of deleting the last character (“erase”) and the whole line (“kill”) where
available since the first versions of Unix, using # for erase and @ for kill. The terminology
and the choice of characters was the same as in CTSS.

The TTY module has a fairly complex set of options, which can be inspected and set using the stty(1)
utility (or, more precisely, using a set of system calls also used by stty). You can print the list of the
current options with “stty -a”. Many options are devoted to the details of the serial communication
with the tty device and are mostly meaningless today; there is an option to disable echo (the one used
by login when it asks for your password)); some options specify the action to be taken when special
ASCII values are entered from the keyboard: some values cause a signal to be sent to the terminal’s
foreground process group, and others are used for line editing. The erase action removes the last
input character and should be mapped to the “^?” ASCII value, which corresponds to DEL.

R The “^c” syntax is used to display unprintable, or control, ASCII values, i.e., the first 31 values
and the last one (0x7f, DEL). The idea is to flip bit 0x40 to get a printable character, then prepend
that character with “^”, which stands for 0x40⊕ . . .. The ASCII code of “?” is 0x3f, and
therefore “^?” stands for 0x40⊕0x3f= 0x7f, which is DEL.

The ASCII code of DEL is 0x7f because ASCII was designed for paper tape: to erase any
character, you could punch all seven holes.

Note that, for many keys, typing Ctrl+x will also toggle bit 0x40 of x so you can also enter DEL by
typing Ctrl+? instead of the key mapped to DEL in your keyboard (probably backspace). This is also
the way you can enter “^C” (ASCII 0x03, usually mapped to the SIGINT signal by the TTY module)
and the other values which are not otherwise available on the keyboard. For this reason the “^x” syntax
is often pronounced “control x”.

This is reminiscent of how the Ctrl key was implemented in the Teletype ASR 33. However,
in the ASR 33 the Ctrl key always resets bit 7 instead of toggling it. The Shift key instead
toggled bit 5 (0x10), so if you shifted “1” (ASCII 0x31) you got “!” (ASCII 0x21) and so
on. Many of the keytop pairs that we see on our modern keyboards come from old mechanical
typewriters. The ASCII committee deliberately choose codes that differed by only one bit
(bit 5) for these symbol pairs, precisely to allow for the implementation of the shift key
as found on the ASR 33 device [4]. Due to other constrains, however, the committee was
only partially successful, and some typewriter pairs could not be preserved. The distinction
between bit-paired and typewriter-paired keyboards has persisted to this day.

When terminals evolved more capabilities, like a bidimensional screen, they introduced escape
sequences to embed control commands in the stream of ASCII characters exchanged with the computer.



2.5 Directories and inodes 27

These sequences have been then standardized by ANSI1. ANSI escape sequences start with ESC
(ASCII 0x1B) and some variable sequence of printable characters, typically starting with “[”. For
example, if the computer sends “ESC[A” to the terminal, it will move the cursor up one line.

New keys, like the arrow keys, also send escape sequences to the computer. For example, the
up-arrow key sends “ESC[A”, i.e., the same sequence that moves the cursor up when received from the
computer.

■ Example 2.6 Start cat and hit the up-arrow: you see “^[[A”. This is the echo, sent by the
TTY module in the kernel, of the escape sequence sent by the terminal (emulator). By default,
the TTY module echoes control characters in the same way explained above, so “^[” stands for
0x40⊕0x5B= 0x1B, which is ESC. Note that cat will receive the true “ESC[A” sequence, not the
one which is echoed. You can check this if you run cat, hit the up-arrow a few times and then press
enter. Then cat will wake up and send the received characters back at the terminal and the cursor will
move up. ■

2.5 Directories and inodes

cat. doesn’t work anymore

R. Pike, The Good, the Bad and
the Ugly, 2001

Files and directories are identified by their inode number, but are accessed using links, which pair a
simbolic name with an inode number. Directories are special files that can only contain links.

The src/ls[1-7].c files contain increasingly complex implementations of the ls utility, de-
signed to show various properties of directories and inodes. The simplest implementation, src/ls1.c,
only prints the names of the entries in the current directory. Its code is as follows:

ls1.c12 int main()
13 {
14 DIR *dir;
15 struct dirent* ent;
16
17 if ( !(dir = opendir(".")) ) {
18 perror(".");
19 return 1;
20 }
21
22 while ( (ent = readdir(dir)) ) {
23 printf("%s\n", ent->d_name);
24 }
25
26 closedir(dir);
27
28 return 0;
29 }

1https://en.wikipedia.org/wiki/ANSI_escape_code

https://en.wikipedia.org/wiki/ANSI_escape_code
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The implementation uses the functions defined in opendir.c, readdir.c, and closedir.c in
the directory lib of mynix, rather than calling the system calls directly. Directories are opened with
open(), just like normal files—opendir()just adds the allocation of the DIR object, which contains
a buffer used by readdir(). However, the file descriptor returned by open()cannot be used with
read() (and certainly not with write()): if we have read permission on a directory, we can call
the getdents() system call to get the directory entries. This system call can return one or more
variable-lenght “struct dirent” data structures. The readdir()library function used in line 23
is easier to use, since it internally buffers the entries obtained by getdents()and returns them one
by one. The dirent structure contains at least the name of the entry (the one printed on line 23) and
its inode number.

If we run ls1, we may notice a few things:

• the entries are not returned in alphabetical order: any sorting must be done by ls itself;
• all entries are returned, including those that start with “.”.

The “.” entries are hidden only in the sense that ls doesn’t show them by default: they are just regular
entries for the kernel. The file src/ls2.c adds this behavior to our ls: we just need to skip entries
whose d_name starts with a dot, unless the user has explicitly asked for them by passing the -a option.

File src/ls3.c adds the -i option, which prints the other information that is always available in
dirent, i.e. the inode number. All other information printed by the -l option of ls, such as owners,
groups, modes, sizes and so on, is stored in the inodes. File src/ls4.c adds a simplified version of
the -l option. To get the additional information we need to call stat()on each d_name found in
the directory.

R On some systems, including Linux, the dirent structure also contains a d_type field which
encodes the type of entry (regular file, directory, device node, . . . ) and can therefore be obtained
without calling stat(). This allows fast implementations of “ls -F” and similar features, such
as using colours to distinguish different types of directory entries.

Exercise 2.3 The src/ls5.c version also accepts the name of a directory. Do the following:

$ mkdir onlyread onlysearch
$ touch onlyread/file onlysearch/file
$ chmod a=r onlyread
$ chmod a=x onlysearch

Try to predict what happens if you type the following commands:
1. ls5 onlysearch
2. ls5 onlyread
3. ls5 -l onlysearch
4. ls5 -l onlyread

■

The ls4 and ls5 binaries print the inode information as is. The other task ls has to do is to make this
information more readable. One thing that we may notice is that the inode only contains the numerical
uid and gid of the file owner. This is generally true: the kernel only knows about these numerical
ids—all symbolic names are handled in userspace and are just conventions. The src/ls6.c version
prints out the inode information using the conventions we are used to. Note in particular the following
function:
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ls6.c171 char* pretty_print_owner(uid_t u)
172 {
173 static char owner[11];
174 struct passwd *pw;
175
176 snprintf(owner, 11, "%d", u);
177
178 if ( (pw = getpwuid(u)) != NULL )
179 return pw->pw_name;
180
181 return owner;
182 }

The function converts a numeric uid to the corresponding username, if found, otherwise it returns a
string representing the uid itself. It uses the getpwuid()library function (lib/getpwuid.c) to
look up the uid, similar to the getpwnam() function used by login. In both cases, the functions
consult the /etc/passwd file, which acts as a database mapping uids to usernames, and therefore
needs to be readable by everyone.

R You can try removing read permissions from /etc/passwd: both ls and ps will loose
their ability to display usernames and fall back to numerical ids. Group names are stored in
/etc/group. If this file is readable, the tools will still be able to display symbolic group names.

2.6 Hard links
Links, which are now referred to as hard links to distinguish them from the soft links introduced later
(see Section 6.4), are an integral part of the Unix file system design. Creating a file or a directory
involves two distinct actions, performed indivisibly by either creat(), open(), or mkdir():

• allocating and initializing an inode that describes the new file or directory;
• creating a new link that points to the inode (through its inode number).

Additional links to existing regular files can be created using the link() system call, declared as
follows:

int link(const char *oldpath, const char *newpath);

This system call retrieves the inode number of oldpath and creates a new link to it from newpath.
The ln1.c file in mynix implements a simplified version of the ln command that acts as a wrapper
around this system call.

The process invoking this call must have search permission on all the directories in oldpath and
newpath, and write permission on the final directory in newpath. However, it needs no permissions
on the linked file itself. The idea is that the process does not gain any new permissions on the original
file that it dit not already have.

The new link is indistinguishable from the original. The kernel keeps track of all the hard links
pointing to an inode and only frees the inode (and the disk space allocated for its data) if there are no
hard links pointing to it.

R The second column of the long listing output of ls shows the number of existing hard links to
any file or directory. This number is stored in the file’s inode.

There is no way to free an inode, other than removing all the hard links pointing to it. In particular,
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the rm command uses the unlink()system call. For example, this is the code of rm in mynix (file
src/rm.c):

rm.c6 int main(int argc, char* argv[])
7 {
8 int i, errors;
9

10 errors = 0;
11 for (i = 1; i < argc; i++)
12 if (unlink(argv[i]) < 0) {
13 perror(argv[i]);
14 errors++;
15 }
16 return errors;
17 }

If the file was open in any process, the behavior is peculiar: the file disappears from its directory
and cannot be opened again, but the actual deallocation is delayed until the file is closed, so that the
processes can continue to use it undisturbed.

Each directory also contains the special entries “.” and “..”, which are the only permitted hard
links to directories. The “.” entry points to the directory itself, and the “..” entry points to the parent
directory. The root directory has no parent directory, so its “..” link points to itself.

The original PDP-7 version of UNIX allowed unrestricted links to directories. The decision to
disallow them came very early in Unix development, even before v1 [see 24, page 5] However,
the restriction was only meant for normal users: the super user retained this capability, to
support directory creation, deletion and renaming. In fact, new directories were created using
the generic mknod()system call, which didn’t add the the special “.” and “..” entries—
the mkdir command was set-uid root and created them using privileged calls to link().
Directories were deleted with unlink(), but only the super user could to that; accordingly,
rmdir was set-uid root too. It made sure that the directory to be deleted only contained the
“.” and “..” entries, and unlinked them too. Even mv was set-uid root. It used its privilege
when moving a directory: it created a hard link to the source directory in the destination path,
adjusted the “..” entry if necessary, and then unlinked the source.
In modern Unix and Unix-like systems, the mkdir(), rmdir()and rename()system calls
take care of all of the above link management inside the kernel, and the super user has lost
the power to create and delete links to directories.

Note that the existence of links means that the Unix file system is a graph, not a tree. However, the
limitations on the links to directories have two important consequences: the graph is directed (there can
be no loops), and the directories form a tree.
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2.7 Set-uid and set-gid programs

When this bit is set to one, the identification of the
current user is changed to that of the owner of the
executable file.

D. M. Ritchie, Patent US4135240A, 1979

The set-uid/set-gid idea can be seen as a generalisation of the system call mechanism. In both cases,
there is a privilege switch coupled with a protected transfer of control. By this we mean a transfer of
control to a destination defined by the callee: in the case of system calls, it is the kernel that defines the
set of system call entry points, and the user cannot change them (e.g., she cannot jump in the middle
of a syscall); in case of set-uid programs, the entry point is written inside the executable file, and
unauthorised processes (i.e., processes that don’t have write access to the file) cannot change it.

The mechanism is very subtle, and there are many misconceptions about it. The set-uid bit only
changes the effective uid of the process that execve()s the program, and the set-gid bit only changes
the effective gid. The two changes are independent: a uid change doesn’t imply a gid change and vice
versa: For example, if you run a set-uid program from your shell, the spawned process will run with
the new uid, but it will still inherit your group(s). This is a necessary consequence of the fact that,
as we noted in Section 2.2, the kernel doesn’t know the relationship between users and groups: this
relationship is written in regular files like /etc/passwd and /etc/group, and with the exception
of executable files passed to execve(), the kernel never cares about the contents of regular files.

Most importantly, no other process is affected by the uid/gid change. The often-heard phrase that
the effect lasts “only for the duration of the set-uid program” is a bit misleading, since “duration” has
nothing to do with it: the shell always spawns a new process to run external programs, and when that
program is set-uid (and/or set-gid), the child process undergoes the effective uid (and/or gid) change,
but nothing happens to the process running the shell, or any other process.

■ Example 2.7 Start mynix, login as user1 and enter passwd. While passwd is still running,
login as user2 from the other terminal and run

$ ps jax

You should see the process that is running user1’s shell, in a sleep (S) state, and a child process that
is running passwd. The latter has uid zero, but the former has uid 1000. ■

To see the difference, think of running a set-uid program in background: while the privileged
program is still running, we can issue other commands to our shell, and these will run with our normal
user id, not the upgraded one.

If the affected process fork()s other processes, those processes will inherit both the real and the
effective uids and gids from their parent, so they will run in set-uid and/or set-git mode too. If any of
these processes exceve()another program, the uids and gids will be preserved (unless the executed
program is itself set-uid and/or set-gid, in which case the effective uid and/or gid of that process will be
changed again). So, for example, a shell that is running in set-uid mode will execute all commands in
set-uid mode too.

Any program can have these bits set: the owner of the program can set them with a simple call to
chmod.

■ Example 2.8 Start mynix and login as user1. Check that you cannot list the contents of the
/root directory, nor can you cd into it:
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$ ls -la /root
$ cd /root

Both commands should return a “Permission denied” error. Now login as root from the other terminal
and run:

# chmod u+s /bin/ls

Go back to the first terminal (the one where user1 is logged in) and try the ls and cd commands
again: this time ls will succeed, but cd will still fail. ■

Only the superuser and the owner of the program can set these bits: this is not a new rule, just the
normal rule limiting the use of the chmod()syscall.

R The restriction applies also to the set-gid bit: non-owners have no right to set the set-git bit, even
if they belong to the file’s group. On the other hand, a non-root owner cannot set the set-gid bit if
she doesn’t also belong to the group of the file.

The effective uid and/or gid change gives the affected process the right to access files and directories
using the new credentials. If the new effective uid is not zero, there are no other effects. It is only when
the set-uid program is owned by root that the process gains the power to make privileged system calls
(in particular, an executable that is only set-gid can never give root power, since only uid zero is special
to the kernel and set-git programs can only change the gid, not the uid).

Something similar to setuid root programs can be found in CTSS. The system had a fixed
table of “privileged” commands, stored in kernel memory. These programs were allowed to
“make supervisor calls which users are forbidden to make” (one such command was MAIL,
from which Unix mail derives: it needed the privilege to write to other users’ MAIL BOX
files). The setuid root mechanism can be seen as a generalisation of this CTSS feature: instead
of having a fixed table of privileged programs, any program can be made privileged by the
superuser.

■ Example 2.9 Let’s try something similar to example 2.8, but this time without involving root. If you
still have the system in the state of example 2.8, first login as root and remove the set-uid flag from
/bin/ls to restore its normal state:

# chmod u-s /bin/ls

Then logout from root and login as user2. Login as user1 in the other terminal. In the terminal
where user1 is logged in, create a directory readable only by user1:

(user1)$ mkdir mydir
(user1)$ chmod go= mydir

Check that user2 has no access to this directory:

(user2)$ ls -la /home/user1/mydir

This should return “Permission denied”. Now, let user1 create a copy of ls:

(user1)$ cp /bin/ls /tmp/ls
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The owner of this copy of ls is user1, so she can use chmod on it. In particular, she can set the
setuid-flag:

(user1)$ chmod u+s /tmp/ls

Now go back to the terminal where user2 is logged in an try:

(user2)$ /tmp/ls -la /home/user1/mydir
(user2)$ /tmp/ls -la /root
(user2)$ /bin/ls -la /home/user1/mydir

The first commands succeeds and the other two fail: /tmp/ls grants you the ability to run ls as if
you where user1, and nothing else. The effect depends on the set-uid flag on the /tmp/ls file: you
gain nothing by running the original copy of ls. ■

2.7.1 The sudo command
The widespread use of sudo (Super User DO) has created many other misconceptions in this area. The
mynix sources contain an extremely simplified version of sudo in the src/sudo[1-3].c files.
The simplest version is as follows:

sudo1.c4 int main(int argc, char *argv[])
5 {
6 if (argc < 2) {
7 return 1;
8 }
9

10 execvp(argv[1], argv + 1);
11 perror(argv[1]);
12 return 1;
13 }

The program simply execvp()s the program it received as the first argument, passing it all the other
arguments. If you were expecting to see a system call that “grants privilege”, think again: there cannot
be such a system call. If there were, any program could have called it, not just sudo. The sudo
command only works because it is owned by root and its set-uid bit is set. It is this standard mechanism
that grants privilege to sudo; its job is only to decide whether or not to use its privileges on behalf of
the caller. The src/sudo1.c version always offers its privilege without objection, but the version
in src/sudo2.c checks that the caller is listed in a /etc/sudoers file and is able to provide a
password. Just like /etc/passwd, the /etc/sudoers file is just a userspace convention and has
no meaning to the kernel (nor to any other program that doesn’t read that file).

R The liberal src/sudo1.c version can still be useful, as you can still use the execute permissions
on sudo1 to determine who is authorised to use it. For example, the administrator could define a
sudoers group, and then give execute permissions on sudo1 only to the users of that group.

2.7.2 The need for real and effective ids
Why does the kernel remember both the real and effective uids and gids of a process, when only the
effective ones are used for permission checks? There are at least a couple of reasons for this:

• to implement the access()system call;
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• to allow set-uid and set-gid processes to drop their privilege.
Using the access()system call allows a set-uid/set-gid process to request that the kernel checks the
permissions to open a file by using its real uid and gid instead of the effective ones. This should be
used by set-uid/set-gid programs that accept file names as input and want to verify that their users had
the necessary permissions to access those files.

R For an example of a program that could have benefited from this system call see the Ritchie’s
description of mail in Section 4.4. The system call was introduced in v7, probably motivated by
this kind of abuses.

However, note that, even if the system call succeeds, the file must still be opened using open(), which
uses the effective ids. This two-step process (access(), then open()) is vulnerable to Time-Of-
Check-to-Time-Of-Use (TOCTOU) attacks, as we will discuss after talking about links. For this reason,
the access()system call has been deprecated.

Privilege can be dropped by calling the seteuid()and/or setegid()system calls. Non-root
users (i.e., processes with a non-zero effective id) can use these calls to reset their effective ids to the
real ids. Set-uid/set-gid processes may wish to do this as a security measure, once they have completed
the task that required the privilege. This is possible in Unix because permission checks are only
performed during open(). Once a file descriptor has ben successfully obtains, it can continue to be
used even if the file’s permissions or the process’s credentials change. Therefore, a process that needs
to be set-uid to open a sensitive file, may open it and then immediately call seteuid(getuid()),
where getuid()returns the real uid of the process. This means that the process runs without privilege
for the rest of its lifetime, making it less attractive to attackers (see also Section 5.7 for another use).
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[ . . . ] any blank gap is a delimiter of arguments; the first
argument is specifically the name of the command; the
other arguments are passed over to the command as
actual values of formal parameters.

L. Pouzin, The SHELL: A Global Tool for Calling and
Chaining Procedures in the System, 1965

The shell is used to run other programs and define their parameters, environment and open files. It is
also a parser, interpreting and rewriting what we type at the command line in various complex ways.

We will try to understand what a shell does by incrementally building a simple one. A note of
caution, however: while we will try to mimic the behavior of a real POSIX shell as closely as possible,
we will not try to be complete, efficient, or even compatible with the standard, much less with any
existing shell.

We will use the code that can be downloaded from here:

https://lettieri.iet.unipi.it/hacking/esh-1.0.zip

The code has been organized as a git repository, with each commit adding a single new feature. Once
you have unzipped the file, you can enter the esh-1.0 directory and run

$ git log --oneline

to see a list of all the commits. Each commit has been tagged for ease of reference. You can easily see
the changes introduced by each commit using git. E.g., to show the changes introduced by 2-path, you
can run

$ git show 2-path --

This shows the differences between the 2-path shell and its immediate predecessor. You can look at the
full source of any version of the shell by adding :esh.c after the tag. E.g., to obtain the sources of
the 7-env shell, just run:

https://lettieri.iet.unipi.it/hacking/esh-1.0.zip
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1-basic-esh.c1 #include <sys/wait.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <unistd.h>
5
6 #define MAX_LINE 1024
7
8 int main()
9 {

10 char buf[MAX_LINE];
11 int n;
12
13 while ( (n = read(0, buf, MAX_LINE)) > 0 ) {
14 buf[n - 1] = ’\0’;
15
16 if (fork()) {
17 wait(0);
18 } else {
19 execl(buf, buf, NULL);
20 perror(buf);
21 exit(1);
22 }
23 }
24 return 0;
25 }

Figure 3.1 – The simplest shell

$ git show 7-env:esh.c

If you run

$ make revisions

you will obtain the sources and the corresponding executable for each revision of the shell as separate
files in the current directory.

3.1 The simplest shell (tag: 1-basic)
Figure 3.1 shows the simplest shell imaginable. It is a program that cyclically reads a line of text
from its standard input (file descriptor 0) and tries to execute a program with that name. The program
is executed in a new process, while the parent process, which is still running the shell, waits for its
termination. It uses the process primitives described in Section 2.1.1.

If this is the login shell, file descriptor 0 will still point to the teletype device node opened by
getty and inherited first by login and then by the shell (Section 2.2). Therefore, the user will be
able to type commands on the terminal where she has logged into. The commands executed by the
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shell will also inherit the files opened by getty, and will therefore accept input from, and write output
and errors to, the same terminal.

The shell has also inherited its uids and gids, this time from login. The real ids will also be
inherited by the shell’s children. The effective ids will be inherited too, unless a child execve()s
a program that has the set-uid and/or set-gid flags set. In the normal case these flags are not set, and
therefore the command will be executed with the credentials of the current user. The same reasoning
applies recursively to any other process that the command itself might create.

The read()at line 13 will also give us the newline character that ends the line typed by our user.
We replace it with the null character, to get a C string (line 14).

R We did something similar in login in Section 2.2, but there we had a maximum length for valid
login names. Here, the user could, in principle, type more than MAX_LINE characters, but we
assume that she’ll kindly refrain from doing so; we’ll ignore this issue until Section 3.6.

We use execl()as we did in all the programs in Section 2.2. To follow the convention that the
first element of argv must be the program name, we pass buf twice.

R Actually, the convention is a bit different: if buf contains any “/”, we should pass in argv[0]
only the basename, i.e., the string that follows the last “/”. We leave this out for simplicity—the
convention is not followed by all programs anyway.

Remember that only the first argument is interpreted by the kernel as a path, while the second is just
copied into the process memory and made available via argv[0].

Now let’s go to our home directory and start our minimal shell, then type /bin/ls and press
enter. We should see the contents of the directory. We can type the full path of other commands, such
as /bin/ps, or press Ctrl+D to send an EOF and cause our mini-shell to terminate (since read()
will return 0).

Now remember how execve()interprets its first argument, the path of the new program to execute
(reread Section 2.1.3 carefully if necessary), and try to guess what will happen if we start our minimal
shell and then type ls (followed by Enter) assuming that the current directory is still our home.

Did you guess right? execve()fails and we get a “no such file” error. This is because the PATH
variable is not used, execve()gets the string “ls” as its first argument, and this represents a relative
path starting from the current directory (since it does not start with /). The current directory will
(probably) not contain an executable file called ls, and therefore the kernel will not be able to find it.
To confirm this, we can exit from our mini-shell (Ctrl-D), copy the ls program to our current directory
(to avoid confusion, let’s call it myls):

$ cp /bin/ls myls

Then run our mini-shell again. This time, typing myls will work.

Exercise 3.1 The wc command stands for Word Count: if run without arguments, it prints the
number of lines, words and characters received from its standard input. What happens if you type
/usr/bin/wc immediately followed by Ctrl+D? Why would this happen? ■

Exercise 3.2 Close 1-basic and create a script text file containing any shell command, make
it executable (chmod +x script), restart 1-basic and try to run the script. What happens?
Why? ■
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Exercise 3.3 Do as in Exercise 3.2, but add a line with #!/bin/sh at the very top of the script
file. What happens now? Why? ■

Exercise 3.4 If you try to use advanced editing keys such as the arrow keys, you get only strange
characters in response. What are these characters? Why don’t the keys work as expected? ■

3.2 Using PATH (tag: 2-path)
Now let’s add the PATH variable into the picture. All we have to do is replace execl with execlp
in Figure 3.1.

The execlp()function works much like execl(), and it must call execve()to ask the kernel to
run a new program (there is no other way, remember). Therefore, it needs a path to the new executable,
to pass it as the first argument to execve(). As a convenience, the function is able to search for a
program in the set of directories listed in the PATH variable (separated by colons). This way the user
is not forced to always type the full path of each command. More specifically, it works like this: to
get the path of the executable, the function appends its first argument to each one of the paths listed in
PATH in turn (adding a “/” in between, if necessary) until it finds an existing executable file with the
resulting path. If the list of directories is exhausted and no executable file is found, the function returns
with an error1.

However, there are occasions when the user wants to execute a program that is not in any of the
directories listed in PATH. To accommodate for this use case, the function introduces a distinction
between commands and paths: if its first argument contains no slashes, then it is a command; otherwise,
it is a path. Only commands need to be converted to paths using PATH, while paths are passed directly
to execve()without any further processing.

Now let’s start our modified mini-shell in our home directory and let’s type /bin/ls (a path) and
then ls (a command) as before. This time both strings work: the first one is passed as-is to execve()
and the kernel interprets it as an absolute path that successfully leads to the ls program. The latter
one also works because the PATH variable most likely contains the /bin directory, and therefore
execlp()will succeed in finding the ls program when it tries the /bin/ls path.

Now, assuming that myls is still in our current directory, let us type myls and, before hitting enter,
let us try to guess whether it will work or not.

This time we get an error. And why is that? Because the myls string is classified as a command,
since it contains no slashes, and therefore execlp()will look for it in the directories listed in PATH,
and only there. The current directory is, most likely, not listed in PATH, and therefore execlp()will
not be able to find our program.

Note that the above behaviour is caused by a corner case in the classification operated by execlp():
strings without slashes are legitimate paths according to the kernel (they are relative paths), but they are
commands according to execlp(). Since execlp()runs first, its interpretation wins.

If we want to use PATH and still be able to run a program that lives in the current directory we have
a few options:

• use a path that leads to our program and contains a “/”;
• add the current directory to PATH.

The first method causes execlp()not to recognize the string as a command and pass it directly to the
execve()system call. A common trick is to type ./myls—a redundant path that has the required
slash and is completely equivalent to “myls” as far as the kernel is concerned.

1Check lib/execlp.c in mynix for the full story.
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The latter can be done in many ways. Of course you can add the absolute path of any directory to
PATH, but you can also add relative paths to it. Adding the “.” path will cause the execlp()function
to also look for files in the current directory (essentially recreating the “./myls” path by itself).

Perhaps little known, but implicit in the above description, is the fact that execlp()will look
in the current directory even if PATH contains an empty path: it will not concatenate anything to the
input path, will not add a / since there is nothing to separate, and therefore will get the same path as
before. If PATH contains an empty path and we type myls, execlp()will also try to pass myls
to execve(), which will find it. An empty path exists if PATH starts or ends with a colon, or if it
contains at least two colons with nothing in between.

Exercise 3.5 Assume that the current directory contains a subdirectory called utils that contains
an executable called exe. Now we type

utils/exe

into 2-path. Will it work? Does it depend on the contents of PATH? ■

Exercise 3.6 Do as in Exercise 3.2, but using 2-path instead of 1-basic. What happens now?
Why? ■

3.3 Splitting the command line (tag: 3-words)
Now let us use 2-path and try to type “ls -l”. Will it work?

No, the kernel will look for a program called “ls -l”, which most likely does not exist (but it
could have existed: remember that spaces are allowed in file names).

The splitting of what we typed into the name of the command and its arguments will not happen by
magic. Go through what we have said until now, and try to find the place where we said that something
splits a string into words: you will not find it, because it does not exist.

Splitting the command line into words is one of the main tasks of the shell. The first word becomes
the first argument to execve(), possibly after PATH processing. All the words (including the first
one) are assembled into the array passed as the second argument. Figure 3.2 shows the main function
of the 3-words shell, which implements the processing we have just described. If you compare it
with the shell in Figure 3.1 you will see that we have added a couple of function calls between the input
of the command line and the creation of the new process. The first function is getwords(), that splits
the line into words using whitespace characters as separators. For each word found, the function fills an
element of the words array of word_t descriptors; then, it returns the number of words it found. If
there are no words (the line consisted only of whitespace) we can continue with the next line of input;
otherwise, we build the c_argv vector from the array of words, using the buildargv()function.
The getwords()and buildargv() functions are defined at the bottom of the esh.c file in the
repository, and just contain some strings and pointers manipulations.

■ Example 3.1 See Figure 3.2. The figures in this chapter show the evolution of some data structures
over time, using the following conventions: time runs from top to bottom; the horizontal dashed lines
indicate the execution of the function mentioned at the beginning of the line; data structures that are
modified by the function are replicated below the line, with a prime added to their name; data structures
that do not change are not replicated.

The user has typed the string “ ls -l ” followed by a newline. The top of the figure
shows the contents of the buf array after line 14 in Figure 3.2, where the newline has been replaced by
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3-words.c1 #include <sys/wait.h>
2 #include <ctype.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <unistd.h>
6
7 #define MAX_LINE 1024
8 #define MAX_WORDS 10
9 #define MAX_ARGS 10

10
11 typedef struct {
12 char *w;
13 } word_t;
14
15 int getwords(char *buf, word_t words[]);
16 int buildargv(char *argv[], word_t words[], int nwords);
17
18 int main()
19 {
20 char buf[MAX_LINE];
21 int n;
22 word_t words[MAX_WORDS];
23 char *c_argv[MAX_ARGS + 1];
24 int nwords;
25
26 while ( (n = read(0, buf, MAX_LINE)) > 0 ) {
27 buf[n - 1] = ’\0’;
28
29 nwords = getwords(buf, words);
30 if (!nwords)
31 continue;
32 buildargv(c_argv, words, nwords);
33
34 if (fork()) {
35 wait(0);
36 } else {
37 execvp(c_argv[0], c_argv);
38 perror(c_argv[0]);
39 exit(1);
40 }
41 }
42 return 0;
43 }

Figure 3.2 – A shell that splits the command line into words
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l s - l 00

l s 00 - l 00 00

NULL

buf

getwords()
words

buf′

buildarg()

c_argv

Figure 3.3 – Example execution of getwords()and buildargv()

00. The getwords()function skips the first three spaces and finds the first word (“ls”). It replaces
the following space with 00 to terminate the string. It skips another space, finds the second word
(“-l”), and terminates it too. Finally, it skips two more spaces without finding another word. The
result is shown in the buf′ and words arrays in the figure. The buildarg() function creates the
c_argv vector by picking both words and adding the terminating NULL. ■

R Rather than having two distinct functions, one for word-splitting and the other to build c_argv,
we could have done everything in a single step. However, we will see in a moment (Section 3.5)
that some input words are not passed to the command, so it is cleaner to keep the two tasks apart.

The first element of c_argv (i.e., c_argv[0]) and a pointer to c_argv itself are then passed
to execvp(). This is another “exec” variant that invokes the execve()system call under the hoods.
Like execlp(), it uses PATH on its first argument and copies the parent environment to the child.
Unlike execlp(), though, it does not build the argv vector by itself and just uses its second argument
as-is.

Now, if we run our new shell and type “ls -l”, we will see the long listing of the current directory.
We can pass any number of arguments (well, up to MAX_ARGS) to any command, and everything will
(mostly) work.

Note how the shell only splits the line, but the meaning of the resulting words (besides the first one)
is entirely up to the commands. They receive them in the argv parameter of their main function and
they can do whatever they want with them. It is only by convention that many programs (but by no
means all of them) understand arguments starting with “-” as an option, or a single “-” as the standard
input file, and so on. One needs to check the documentation of each command to learn these details
when needed. Since many commands where invented while the conventions had not yet been fixed, and
others were invented by different groups of people in the long history of Unix, you will find a lot of
inconsistencies.

Exercise 3.7 — catdash. Try to solve challenge catdash. This challenge uses 3-words as the
system shell, only slightly modified to print a prompt. You have to print the “-” file and you only
have cat (source in /usr/src/cat.c). ■
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3.4 Shell builtins (tag: 4-builtin)

These peculiarities are inexorably imposed upon the shell by the
basic structure of the UNIX process control system. It is a
rewarding exercise to work out why.

K. L. Thompson, D. M. Ritchie, Unix Programmer’s Manual (v2)

Now that we can pass arguments to commands, let’s try to use cd to change the working directory.
Assume that the current directory contains a subdir subdirectory (create it if it doesn’t). Let us start
3-words and type

cd subdir

Will it work?
No, 3-words will look for a cd binary to execute, but there is no such binary in the file system.

Such a program would have to call the chdir()system call, but this system call only changes the
current working directory of the process calling it. That is, it would change the current working
directory of the child process that the shell would have created to run cd. The shell itself would
continue to use its old working directory, and we would have accomplished nothing.

If you guessed wrong, it might make you feel better to know that Ritchie and Thompson made
the same mistake when they added multiprocessing support to Unix. Before that, there was
a cd command (it was actually called chdir). The command stopped working when they
implemented fork(), and they were confused by it, at least for a while [see 23, page 6].

For cd to work, the shell must call the chdir()system call by itself. The 4-builtin shell does it,
and you can see the necessary differences with “git diff 4-builtin^!”. The only difference
with 3-words is that after the call to buildargv() the first element of c_argv is compared to
the “cd” string. If the strings match, 4-builtin calls chdir()without creating a new process;
otherwise, it continues as before.

The commands that are executed directly by the shell are called “shell builtins”. Whenever a
command needs to affect the environment of the shell itself, so that it can be inherited by all later
commands, we need a shell builtin. Other common builtins are umask and ulimit. Over time,
shells have acquired other builtins that were not necessarily needed, because it is more efficient to run
something in the shell than to spawn a new process each time. For example, the simple echo utility is
a builtin in most shells. For another example, the “:” nop become a shell builtin very early (the v4
shell already had it). Another reason for adding a builtin is to take advantage of the greater knowledge
that the shell may have about the current state. For example, pwd (print working directory) is also
implemented as a builtin in many shells because, unlike the external command, the shell can remember
when it has traversed a symbolic link and can display it in the path. If you want the external program
instead, you can always invoke it by typing its full path (e.g., /bin/echo or /bin/pwd). More
precisely, it is the presence of a slash in the string that disables the builtins, as well as PATH and aliases
(which we will not discuss).

Exercise 3.8 Implement the umask builtin (help umask) and compare it with the one in
4-builtin.2. You can limit yourself to the octal output and input syntax. ■
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Figure 3.4 – Example execution of getredirs()

3.5 I/O redirection (tag: 5-redir)

Input and output redirection is one the first shell features implemented by Thompson: it had been
available for many months even before v1 come out. The design of the Unix basic system calls make it
very simple to implement: assume you want, say, ls to write its output in a file, instead of printing it on
the terminal; then, in the child process created by the shell, before calling execvp(), you close(1)
and open()the file: the kernel will pick the first unused file descriptor, which will be the 1 we have
just closed, essentially replacing the standard output file of the process. Since execvp()will then
replace the program, but not the process, ls will write into the file, without even knowing about it.
Note how the mechanism will work with all the programs that honor the stardard input/standard output
convention, and we have achieved this without adding any new system call.

We implement this idea in our next shell, 5-redir. We adopt a simplified syntax, similar to the one
used in the earliest versions of the Thompson shell: input redirection is obtained by writing a word
like <file and output redirection with a word like >file. These must be words, i.e., they should not
contain any space (not even between the < and > operators and the filename) and must be separated by
whitespace from the other words. The implementation is then very simple. First, we add a field type
to the word descriptor. Then, in the main process:

1. getwords()first assignes the “normal” type to each word it finds;
2. we then call a new getredirs()function that scans the words array and changes the type to

“redirection” for the words that start with either < or >;
3. buildargv()now picks only the words that still have a “normal” type.

■ Example 3.2 See Figure 3.4. The user has typed “ls >out -l” (note that redirection words can
appear anywhere on the command line). The getwords()function has identified three words and has
marked them all as “normal” (W_NORML). Then, the getredirs()function changed the type of the
second word to “redirection” (W_REDIR) and buildargv() took only the first and the last words. ■
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In the child process, a new function redirect()searches the array of words for those of type “redi-
rection”, and performs the necessary close()and open()system calls before the call to execvp().

Note that to implement the >file redirection when file doesn’t exist, the shell must be able to create
a new file given only the path. This is only possible because of the radically simple notion of files
introduced by Unix: all files are just sequences of bytes, so we don’t need to specify the type; the size
grows automatically as we write to it, so we don’t need to specify it beforehand; owner and group
are implicitly obtained from the creating process. However, there is still some information that the
shell doesn’t have: in particular, the open()system call wants to know the initial read/write/execute
permissions for the owner, group, and other users. This is a situation common to most Unix programs
that need to create a file and are only given a path by the user; historically, they have always preferred
ease of use over security and have simply given all relevant permissions to everyone. This is what we
did in our shell—we just removed “x” permissions, since we expect files created in this way to contain
data rather than code. This “liberal” default behaviour is the second problem with Unix file permissions
that Ritchie mentioned in his “On the Security of UNIX” paper (see Section 4.2). The v7 version the
paper mentions the introduction of umask()(see Exercise 3.8) as a partial mitigation to this problem.

Exercise 3.9 The > operator clears the file if it already exists (option O_TRUNC). The shell in v2
UNIX (1972) introduced the >> operator that appends output to the file if it exists. Try to implement
this feature and then compare your solution with the one in 5-redir.2 ■

R Today we implement features like >> by passing flags to open(), but Research UNIX never
introduced these flags: the UNIX shells just use creat(), lseek(), and open()as needed.
However, the flags approach is not just for convenience: it ensures that these actions are performed
atomically.

Exercise 3.10 Assume that you have to write something in a file f where you have no write
access. You are listed among the sudoers, so you try

$ sudo echo something >f

buy you still get a permission denied error. Why? How can you solve your problem? ■

3.6 Scripting (tag: 6-intr)

Buffered IO was, and still is, a necessary evil.

M. D. McIlroy, A Research UNIX Reader, 1987

Since the shell is a program like any other, we can call it recursively. If we redirect its standard input
from a file in which we have placed some shell commands, the new shell will execute them one by one
without further intervention. This gives us a (somewhat limited) scripting capability, without adding
any new ad hoc mechanisms to the system. This was also the way scripting was implemented in the
pre-v7, minimalist Thompson shell.

However, if we try this with the shells that we have built so far, it will not work. The reason is
that we have assumed that each read()call will always return exactly one line. However, this is only
true if we are reading from a terminal configured for line processing (and the line fits into the input
buffer). This assumption fails especially if we call read()on a file: the system call will just try to fill
the buffer, without stopping at newlines. The shells that we have written so far are not prepared for this.
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■ Example 3.3 Put a couple of commands in a script file, e.g. ls and pwd, each one on its own
line. Then, run our redirection-capable shell, 5-redir, and call it recursively with input redirected from
the script:

$ ./5-redir
./5-redir <script

(The second line is the input to 5-redir.) We should get the following error:

ls: pwd: No such file or directory

This comes from ls looking for a “pwd” file in the current directory. The 5-redir shell received the
entire file contents in a single read(), including the newline between ls and pwd. Since the newline
counts as whitespace, the shell split the string in two words an then tried to run ls with pwd as an
argument. ■

To always get exactly one line from standard input, whether it points to a terminal, a file, or
something else, we can use the stdio library function fgets(), which is what we do in our next shell,
6-intr. Unfortunately, there is a catch: the stdio library does its own buffering in userspace, to reduce
the number of read()system calls and improve performance. This means that, if standard input is a
file, our shell will get one line at a time from fgets(), but fgets() itself will still read blocks of
bytes from the underlying file. This is a problem when the shell spawns another command that also
needs to read from standard input: some of the bytes intended for the command may already have been
eaten up by fgets()by the time the command runs (see Exercise 3.11). The simplest solution to
this problem is to always read only one byte at a time from standard input, either by calling read()
directly, or by disabling stdio buffering on standard input: this is the purpose of the “setbuf(stdin,
NULL)” call in the 6-intr sources. The call to fgets() is in the new getcmd() function. We take
the opportunity to simplify things a bit and don’t remove the newline from the input buffer: since the
newline is whitespace, getwords()already takes care of it.

3.6.1 Interactive vs non-interactive
Our shell can now be used either “interactively” or to run scripts. Shells actually try to understand when
they are being used interactively, and change their behaviour slightly to be more human friendly. For
example, shells print a prompt when they are waiting for input in interactive mode. A simple strategy
for inferring that there might be a human being on the other end of stdin is to check if it is attached
to a terminal: this can be detected because there are some ioctl()system calls that only apply to
terminals, and will fail if used on anything else. The library function isatty()uses this trick to
determine if a file descriptor points to a terminal. The 6-intr.2 shell revision uses this function to set
an interactive global flag, which is then checked by getcmd() to decide whether a prompt is
needed or not. Note that the prompt changes based on the effective user id of the process running the
shell: $ for normal users and # for root.

Interactive mode also differs from non-interactive mode in the way the shell handles input errors,
such as nonexistent commands or syntax errors. In interactive mode, a diagnostic is usually printed, but
the error is otherwise ignored. In non-interactive mode, however, the shell stops executing the script.
The idea is that the human user can correct the error and retry, while the script cannot. The 6-intr.3
shell implements this behavior. Note that our shell doesn’t look at the value returned by the commands
it spawns, and therefore doesn’t handle errors in their execution. This is also essentially true for real
POSIX shells, unless the user has explicitly set a shell flag (“set -e”).
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Another difference between interactive and non-interactive mode is in the way the shell handles
terminal interrupts. If you type Ctrl+C in any of the shells that we have developed so far, the shell will
terminate. This is not the expected behavior of an interactive shell: in fact, when running interactively,
shells should ignore SIGINT (the signal the kernel sends by default when we type Ctrl+C) and SIGQUIT
(sent by Ctrl+\). This behavior is implemented in 6-intr.3. Note that the shell restores the handlers
for these signals in the child process, so we can abort a misbehaving command and return to the shell
prompt.

In place of this, BSD introduced a very complex and un-Unix “job control”feature in the
kernel and in the shell [39]; this was later adopted by POSIX and is now implemented in all
modern shells.

Exercise 3.11 Remove the “setbuf(stdin, NULL);” line from the 6-intr sources and recom-
pile the 6-intr shell. Write a file script containing the following lines:

cat
hello

Execute this first with a standard shell, e.g. by running “bash <script”, then run “./6-intr
<script” and try to understand what is going on. If you are feeling adventurous, try to repeat the
experiment with more “hello” lines at the bottom of the script. ■

3.7 Environment variables (tag: 7-env)
Now consider shell’s support for environment variables, such as PATH and HOME. Environment
variables where added in v7, when Steve Bourne rewrote Thompson’s shell to make it more suitable for
programming.

These variables can be used to personalize the user’s environment or to remember values across
program executions. From the kernel’s point of view, environment variables are just another set of
strings that execve()must copy into the process’s memory. Everything else about them is just
convention, from their syntax to their meaning.

• Syntactically, these strings should be of the form variable=value, where variable should look
like an identifier, starting with a letter or underscore and then containing only letters, numbers
and underscores. However, the kernel does not check that any of these rules are actually followed:
it just copies null-terminated strings, whatever they are. The C library assumes that these
conventions are followed, and provides some functions to work with them: getenv() to get the
value of a variable given its name, setenv() to create a new variable or, optionally, overwrite
an existing one, and unsetenv(), to remove a variable completely.

• Semantically, some of these variables have meanings that are understood by most Unix programs.
PATH is an obvious example, since its meaning is embedded in the C library functions that are
used to run programs. Another example is EDITOR, which users can set to their preferred editor.
Programs that need to spawn an editor should look at this variable and start the user’s preferred
editor. However, nothing in the system enforces these rules, and each program is free to ignore
any environment variable or assign a different meaning to it.

The most important thing to remember, if you really want to understand how environment variables
work, is that they are local to each process, and that they originally come from the parent of the process.
Unix users often forget this because environment variables look like a “global” thing. This illusion is
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created by the fact that most programs simply pass to their children the environment that they have
received from their parent. This behavior is encouraged by the C library, where most exec* variants
(including the ones that we have used so far) copy the current environment under the hood (i.e., they
pass the current value of the environ pointer to execve()). This illusion breaks if you want to
change the value of a variable, or create a new one. This change is only visible in the current process
and in its future children: you cannot change the environment of another process, since you cannot
(normally) write to its memory.

Shell support for environment variables comes in two forms:
1. the shell maintains an environment that can be passed to its children, and provides some syntax

for updating it;
2. the shell can “expand” the value of a variable as it parses the command line.

The latter is a form of macro processing: some text is replaced by other text, often without regard to the
syntax of the resulting command line.

Supporting environment variables is the most complex addition to our shell. We add it a bit at a
time.

3.7.1 Updating the environment
The shell 7-env implements point 1 above, with the following syntax. To assign a value to an
environment variable, use

variable=value

Again, the whole assignment must be a word: it must be delimited by whitespace and it cannot contain
spaces (not even around the “=” operator)

R Unlike the analogous limitations in Section 3.5, these ones apply also to modern shells, but see
Section 3.8.

You can have more than one assignment on a single command line, separated by spaces. The assign-
ments change the environment of the shell and of all subsequent commands. As a special case, if
you write a command on the same line as the assignments, only the environment of that command is
updated. To delete one or more variables use the new builtin unset followed by the names of the
variables.

The implementation is simple: after getredirs(), and before buildargv(), we call a new
function getvars(). Just like getredirs(), the new function scans the array of words looking for
the ones that match the above syntax (an identifier immediately followed by =). It marks the matching
words as “assignments”, so that buildargv()will skip them (since it only picks “normal” words).
Unlike getredir(), it stops at the first non-matching word.

Bourne’s shell initially looked for assignments in all the words of the command line, but
this conflicted with some commands (like dd) that use the assignment syntax for their own
arguments.

■ Example 3.4 See Figure 3.5. The user has typed “CC=gcc make V=1”. The getwords()
function identifies three words and assigns the “normal” type to all of them. The getredirs()
function doesnt’t change anything because it doesn’t find any redirection word. Then, the getvars()
function changes the type of the first word to “assignment” (W_ASSGN), because the word starts with a
valid identifier immediately followed by an equal sign. Note that the third word is also syntactically
a valid assignment, but it is not classified as such, because it comes after make, which is not an
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C C = g c c m a k e V = 1 0a 00

C C = g c c 00 m a k e 00 V = 1 00

W_NORML
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W_NORML
W_NORML

NULL

buf
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buf′

getredirs()
getvars()

words′

buildargv()

c_argv

Figure 3.5 – Example execution of getvars()

assignment. Therefore, buildargv() takes both make and V=1 as arguments. The make command
will start with the variable CC=gcc in its environment, while V=1 will be received in argv[1]. ■

The new function assignvars()rescans the array of words looking for those with type “assignment”
and performs the assignments using setenv(). The buildargv()function now returns the number
of elements it has put into c_argv. If the array is empty, assignvars() is called in the main
process, otherwise it is called in the child process, to affect only the environment of the spawned
command. Note that there is no need to change the call to execvp(), since this function will copy the
current environment under the hoods.

R POSIX shells behave a little differently than our own, distinguishing between shell and environ-
ment variables. Assignments to non-existent variables, for example, create only internal shell
variables, which are not automatically copied to the child environments. To add a shell variable to
the environment passed down to children, you have to export it, unless the -a flag is set, in
which case all variables are exported automatically. Our shell behaves as if -a had been set.

In a real system the environment starts empty when init is run, but then other programs can add
variables to it. For example, login adds the HOME variable set to the path of the home directory
read from the /etc/passwd file (see src/login2.c in mynix). The shell inherits this variable
and uses it as the default path for chdir()when you type cd without an argument (this is also
implemented in our shell).

The shell itself can provide default values for the variables that are essential to its operation (e.g.,
PATH, IFS, PS1, PS2, . . . ).

3.7.2 Variable expansion
To expand the value of a variable, use $variable, followed by a space or a non-alphanumeric character
anywhere on the command line. The expansion replaces the $variable string with the value of variable
if it exists, and with nothing otherwise.
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Figure 3.6 – Example execution of expandall()

The implementation is conceptually simple, but string manipulation in C is cumbersome and
error-prone. Unlike all the manipulations that we have done so far, variable expansion can increase the
number of characters we have to store in the input buffer, so we must be careful not to overflow it. To
simplify the task we introduce a “struct obuf” that contains a pointer to a buffer and a counter of
the available space in it. New characters must be added to the buffer only using the new oput()and
oputs()functions, that turn into NOPs if there is not enough room. The avail field of obuf can be
checked at any time: if we find it negative we can signal an error to the user.

The 7-env.2 shell calls a new function expandall() after getvars() and before calling
buildargv(). The new function passes each word to expandword()for possible expansion. The
function expandword()produces the expanded version of the word: it scans each character in the
word string and copies it to a new buffer, unless the character is a $ followed by an identifier: in that
case, the function skips the identifier in the source string and places the (possibly empty) value of the
corresponding variable in the new buffer (with the help of the function expandvar()). Note that $
can be anywhere in the word, not just at the beginning, and that you can have more than one expansion
in the same word. Expansion can also occur in words of the type “redirection” or “assignment”. Also
note that the output of the expansion is not re-scanned for more expansions.

■ Example 3.5 See Figure 3.6. The user has typed “cat f$i >$out”. Assume that the environment
contains the definitions i=1000 and out=save. The getwords()function identifies three words
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(see buf′ in the figure): note the presence of dollars in the middle of the second and third words. The
getredirs()function classifies the third word as “redirection” because it starts with > (the presence
of dollars in the word doesn’t affect the classification). The getvars() function doesn’t change
anything because the first word is not an assignment. The expandall()function scans all the words,
replaces the $i and $out substrings with 1000 and save, respectively, and adjusts the pointers in
the words array (see buf′′ and words′′).

R For simplicity, expandall()internally creates a new array of words (tmpwrd) and a new buffer
tmpbuf, and copies them over the original ones using the utility function updatewords().

Note that the replacement can affect the contents of words, but not their classification. In particular,
the redirect()function will see the >save redirection word and will open the save file, without
any knowledge of the out variable. Also the cat program will receive f1000 in argv[1] and will
never see the original f$i string. ■

The expandall()function can sometimes reduce the number of words. We have already seen
that undefined or empty variables are expanded to nothing; if a word becomes empty after expansion, it
is removed from the array of words. This is the purpose of the if after the call to expandword()
in the expandall()function. For example, if the user types “echo $X$Y” and both X and Y are
undefined (or empty), echo will only get one argument (i.e. argv[0]).

Exercise 3.12 Assuming that X doesn’t exist yet, try to guess the output of

$ X=aaa echo $X

in either your normal shell, or in 7-env.2 (it should be the same). ■

3.8 Quoting (tag: 8-quote)

Twenty years after the publication of the first
Posix shell standard, members of the standards
working group are still debating the proper
behavior of obscure quoting.

C. Ramey, The Bourne-Again Shell, in The
Architecture of Open Source Applications, 2011

We have introduced a few characters that are used by the shell itself and are not passed to the commands:
whitespace separates words, with newline terminating commands; “<” and “>” at the beginning of
words are used for redirection; “$”, when followed by an identifier, is used for variable expansion; a
“=” occurring in a word may turn it into a variable assignment. These are called shell metacharacters.
We may know from experience that we can pass these characters to commands by quoting them, but
where is the quoting implemented? Create a file with a space in its name using your normal shell, e.g.:

$ touch "a space"

Then start our latest shell, 7-env.2, and try to run some command on the file you just created, e.g.:

cat "a space"

We get errors from cat, which cannot find the “"a” and “space"” files. This is because single and
double quotes, as well as backslashes, are more metacharacters that are parsed by the shell, but our
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shell doesn’t know how to do it yet. When we have issued the touch command, your normal shell
has recognized the quotes and has passed “a space”, as a single string and with the quotes removed,
to the touch program (in argv[1]). Our shell, on the other hand, has treated the “"” characters as
normal characters: it did not use them to protect the space between “a” and “space” and it did not
remove them from the command line.

The quoting metacharacters are single (’) and double (") quotes and backslash (\). Backslash
removes the special meaning of the following character2, while single quotes remove the special
meaning of all the characters up to the first single quote. Double quotes are a bit more complex: they
remove the special meaning of all the following characters up to the first double quote, except for
backslash, but only if it is followed by one of a few special characters.

R The full set includes another backslash, double quotes, dollar and newline; in the first revision we
will only consider other backslashes and double quotes.

Don’t think of quotes as defining “strings”, like in most programming languages: for the shell,
everything is already a string by default. You need quotes only when you have to stop the shell from
interpreting some of its metacharacters. Moreover, you can have quotes even in in the middle of
words. For example, the word a"$"c becomes the single word a$c after quote processing. Quoting
characters that have no special meaning has no effect: the strings "abc", a"bc", a"b"c or even
""abc and abc"" are all equivalent to abc.

Why three metacharacters for quoting? The backslash is convenient when you need to protect just
one metacharacter, while the quotes are convenient when you need to protect several of them in a row.
Moreover, since the quoting characters are themselves metacharacters (interpreted by the shell and then
removed from the input), you need a way to quote them when needed. You can quote the backslash
with another backslash. In the earliest shells backslash had no special meaning inside quotes, so you
could not use it to put quotes inside quotes. However, you could quote single quotes by putting them in
double quotes and vice versa. Over time the double quotes have acquired some special behavior: now
you can put a double quote within double quotes using backslash ("\"") but you cannot do the same
with single quotes (see Exercise 3.15 for another special behaviour of double quotes).

If you really need to put a single quote in a single-quotes string, you can do as follows:

$ echo ’don’"’"’t do this at home’

Of course this is cheating, since you are actually just concatenating three strings (’don’,
"’" and ’t do this at home’), none of which contains single quotes within single
quotes.

The 8-quote shell implements the quoting mechanism. Immediately after receiving a line of
input from getcmd(), we pass the input buffer to the new function quote(). The function allocates
a new buffer tmp, then scans each character of the input buffer, looking for quoting metacharacters.
Unquoted characters are simply copied to the tmp buffer. Quoting metacharacters are used to copy
a “quoted” version of one or more characters, according to the rules outlined above. To implement
the “quoted” version of characters we steal the idea from the original Thompson shell: we mark the
characters by setting their most significant bit (see the QUOTE constant that is or-ed to characters). The
quote()function then replaces the input buffer with the tmp buffer. Now, quoted spaces, dollars, and
so on, will be hidden from the eyes of getwords(), getredirs(), getvars(), expandall(),
and any other string processing function that we may add later. Finally, before actually passing the

2Except when the character is newline, see Exercise 3.16.
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Figure 3.7 – Example execution of quote() and unquoteall()

argument vector to the commands (either builtin or external), we use the function unquoteall() to
remove all the quote metacharachters and quote markings.

■ Example 3.6 See Figure 3.7. The user has typed “cat "a space"”. The quote() function
marks with QUOTE all the characters between the two double quotes (the quoted characters are shown
in grey in the figure). Because of the quotes, the getwords()function does not recognise the space
between “a” and “space”, and therefore treats “"a space"” as a single word. The other functions
don’t do anything in this case, until we get to the unquoteall()function, which removes all QUOTE
markings and the two double quotes. Finally, buildargv()takes the two resulting words. This way
cat gets “a space” in argv[1]. ■

The trick is nice and should clarify what quoting means, but note that it only works in a pure ASCII
world, since otherwise the character’s most significant bit would not be available (we say that our shell
is not “8 bits clean”).

Note that strings like “""” or “’’” become zero-length arguments because they are first recog-
nised as non-empty words by getwords()and later converted to empty words by unquoteall().
This behaviour is mandated by POSIX, and is the reason why we let quote()preserve the quote
metacharaters and only remove them in unquoteall()after getwords()has already identified all
the words. However, this creates a problem with another POSIX requirement: quote metacharacters
that were not in the original string should be preserved. For example, if the value of variable X is “"” (a
double quote) and the user types “echo $X”, then echo should receive the string “"” in argv[1].
To meet this requirement, we introduce a new oputexp()function that we use to add new strings to
our buffer. The oputexp() function marks all the new quote metacharacters with QUOTE, so that
unquoteall()does not remove them from the string.



3.8 Quoting (tag: 8-quote) 53

Exercise 3.13 Explain the differences (if any) among these commands:

$ echo "Hello World"
$ echo Hello World
$ echo "Hello World"
$ echo Hello World

■

Exercise 3.14 Now that we have quoting, can we solve the problem in Exercise 3.7 by typing, e.g.,
cat ’-’? Explain. ■

Many groups at Bell Labs tried to extend the Thompson shell before Ritchie and Bourne decided that
UNIX needed an official new one that could subsume them all [see 28, min. 12:25]. In particular, the
PWB shell by John Mashey allowed for expressions like $v to be expanded within double quotes [42].
The expansion is disabled if the dollar is preceded by backslash. Note that the characters resulting from
the expansion are still within the quotes, and therefore should be quoted. This feature was added to the
Bourne shell, and is now mandated by POSIX.

Exercise 3.15 Implement this feature and compare it with the solution in 8-env.2. ■

What if we hit enter before closing a single- or double-quotes string? A real shell will wait for a
continuation line, printing its secondary prompt (“>” by default in the Bourne shell) if it is interactive.
The same happens if we hit enter immediately after a backslash, either within double quotes or not, but
with a difference: the backslash and the newline are removed from the input buffer.

Exercise 3.16 Implement these features and compare your solution with the one in 8-env.3. ■

A real shell will have many other features. Some are easy to implement, while others are much
more complex. The 9-fields* shells implement “field splitting” and will be used in Chapter 5.
Some other features are implemented in the src/sh?.c files in mynix. We will introduce some of
them when the need arises.





4. Is Unix secure?

Unix was not developed with security, in any
realistic sense, in mind.

D. M. Ritchie, On the security of Unix, 1975

“On the Security of UNIX” [21] is a short paper by D. M. Ritchie, first published in the 6th edition of
“The UNIX Programmer’s Manual” (1975) and then adapted for the 7th edition (1979) [22]. The main
message of the paper is that “ UNIX was not developed with security [ . . . ] in mind.” The paper lists
several examples to support the above statement. Most of what Ritchie says is still true today, in some
form.

4.1 Abuse of system resources
The first two examples deal with denial of service problems caused by overuse of system resources:

Here is a particularly ghastly sequence guaranteed to stop the system:

: loop
mkdir x
chdir x
goto loop

(a) v6 script

while : ; do
mkdir x
cd x

done

(b) v7 script

These four-line scripts attempt to create an arbitrarily deep directory structure, and will only stop when
either the i-node table is full or all disk blocks have been used. The mkdir-chdir sequence allows
the paths passed to the commands to be kept short: trying to create x/x/x/. . . in one go would hit
path size limit before doing any damage, while trying to create many files in the same directory would
be stopped prematurely by the directory size limit.
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The v6 script uses Thompson’s shell syntax: the colon introduces a label and goto jumps
to it. The implementation is interesting. Thompson’s shell could only execute scripts by
redirecting its standard input. The “goto label ” statement used seek()on the standard
input file pointer, looking for a line starting with a colon and the string label. This caused
the shell to go back and read the command that followed the “: label ” statement. Since file
pointers are shared between the shell and its children, Thompson could implement goto as
an external command. The colon itself was another external command that did nothing and
returned 0 (success). Bourne removed the goto command, but kept the colon (as a built-in
command). In the Bourne and POSIX shells, the colon is used either as a fast true (the v7
script shows an example of such usage), or when you are only interested in expanding its
arguments for their side effects. The mynix shell implements goto (as a built-in) to support
some form of flow control without having to parse the much more complex for and while
constructs of the Bourne shell.

According to Ritchie,

[e]ither a panic will occur because all the i-nodes on the device are used up or all the disk blocks
will be consumed, thus preventing anyone from writing files on the device.

If we try the script on a modern Linux, it will (slowly) use all available inodes until mkdir fails with
“no space left on device”, but there will be no panic (unlike research UNIX, Linux tries its best not to
panic). However, it is still true that any unprivileged user can do this and prevent anyone from creating
new files (unless other files are removed first).

The second example exhausts system resources (either swap space or process table slots) by creating
an excessive amount of background processes (the syntax used is the same as today):

For example, the sequence

command&
command&
command&

if continued long enough will use up all the slots in the system’s process table [ . . . ]

Since the shell doesn’t call wait()when we terminate a command with & (see Section ??), the kernel
cannot free the resources of all these processes. In this case too, v6 UNIX would either panic or become
unusable. UNIX v7 mitigated the problem by introducing limits on the number of processes that a user
can create; modern Unix and Unix-like systems do the same. Ritchie, however, duly notes that this is
not sufficient and the system can still become essentially unusable, or even crash, if these processes
use too many resources. A moder Linux system may not crash in such a scenario, but it can certainly
become unusable.

4.2 File permissions problems
Ritchie then goes on to explain file permissions.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction. Here the degree of security seems (almost) adequate theoretically[.]

Ritchie explains the now-familiar rules for checking user/group/other permission, and the special cases
for directories. He also introduces the set-UID/set-GID feature, using a motivating example that is
much nicer than the ones commonly used today, typically based on passwd:
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The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game’s sponsor
can be allowed unrestricted access to the file lest they manipulate the game to their own advantage.
The solution is to turn on the set-UID bit of the game program. When, and only when, it is invoked
by players of the game, it may update the score file [but] ordinary programs executed by others
cannot access the score.

There are nonetheless a few problems he sees in this area:
1. The existence of the super user (aka root):

[ . . . ] there is a “super user” who is able to read any file and write any non-directory. The
super-user is also able to change the protection mode and the owner UID and GID of any
file and to invoke privileged system calls. It must be recognized that the mere notion of a
super-user is a theoretical, and usually practical, blemish on any protection scheme.

It’s unclear how the super user got her“root” nickname. One hypotesis is that the name
refers to the super user’s home directory. This directory was originally the root of the
file system and was changed to /root much later.

2. Default permissions are too liberal:

The first necessity for a secure system is of course arranging that all files and directories have
the proper protection modes. Unfortunately, UNIX software is exceedingly permissive in this
regard; essentially all commands create files readable and writable by everyone.

3. The permissions on directories are not intuitive:

[ . . . ] a writable file in a read-only directory may be changed, or even truncated, though
not removed [ . . . ] it is possible to delete a file if one has write permission for its directory
independently of any permissions for the file.

Grampp & Morris [see 13, page 1655] expand on point 3: if a user can delete a file, she can also replace
it with something else, “which for most purposes is equivalent to being able to modify [it]”.

All of the above problems are still true today, but they are not at the same level of importance.
Problem 2 can be fixed in some cases by following Ritchie’s advice:

[ . . . ] if one wants to keep one’s files completely secret, it is possible to remove all permissions
from the directory in which they live, which is easy and effective[.]

In the v7 version of the paper, Ritchie mentions the (then) recently introduced umask (see Exercise 3.8)
as a better solution for problem 2. The default value of umask set by login removes write permissions
for others, and this also makes problem 3 much less visible.

R Many Linux distributions also remove group write permissions from the default umask. However,
many still allow read permissions for group and others; this may be a problem in a multi-user
system, if users don’t change the defaults.

Problems 1 is the most dangerous, and it has gotten worse: the number of “privileged system calls” that
the root user may invoke has increased over the years and is now overwhelming. This is a problem
when we are forced to run a program as root because the program needs one of these capabilities. For
example, to give a web server the right to open port 80, we must also give it the right to wipe out the
entire filesystem.
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4.3 Passwords
Ritchie then moves on to the topic of passwords. He says that here UNIX behaves better than most
other systems of the time, since

[p]asswords are stored in an encrypted form which, in the absence of serious attention from
specialists in the field, appears reasonably secure, provided its limitations are understood.

This allowed the passwd file to be world-readable, so that it could also be used as a database mapping
usernames to uids (replacing an older uids file). This database is used, e.g., by ls, ps, chown and
so on (see the remark at the end of Section 2.5).

According to Wilkes [see 8, pp. 147–148], R. M. Needham introduced encrypted passwords
in Cambridge, likely in the mid 1960s. In contrast, CTSS stored passwords in plain text,
in a file that could only be accesed by administrators, in a manner similar to that of early
versions of Unix. At least a couple of incidents involved the theft of CTSS passwords [9,
26], and the second one is amusing. One day in 1966, two administrators at MIT were
editing the message-of-the-day file and the password file, unaware of each other’s actions.
Since the editor program always used the same name for temporary files, the two files were
accidentally mixed up. Consequently, until the system was stopped, all users logging into
the system were greeted with everyone’s passwords in clear text. Multics tried to obfuscate
stored passwords [51], but this was a weak defence. Unix v6, on the other hand, improved on
Needham’s idea and provided its first widely available implementation [17].

However, Ritchie points out that a world-readable passwd file opens the door to brute-force/dictionary
attacks:

[ . . . ] 67 encrypted passwords were collected from 10 UNIX installations. These were tested
against all five-letter combinations, all combinations of letters and digits of length four or less, and
all words in Webster’s Second unabridged dictionary; 60 of the 67 passwords were found.

So, users must choose strong passwords. This is even more true today, of course. However, to help
prevent brute-force and dictionary attacks the encrypted passwords have now been removed from
passwd, which must remain world-readable for compatibility, and are now stored in the shadow file,
which is readable only by root.

Ritchie also mentions an old trick that works on UNIX too:

[ . . . ] write a program which types out “login: ” on the typewriter and copies whatever is typed to a
file of your own. Then invoke the command and go away until the victim arrives.

This is still true today, and it’s not much of a problem only because we no longer log into our systems
from public-access terminals. Windows NT is safer in this regard: the Ctrl+Alt+Del key combination
cannot be intercepted by user programs and provides a “trusted path” from the user to Windows
itself. Linux can also be configured to provide a trusted path, using the Secure Attention Key (SAK)
mechanism.

4.4 Set-UID and Set-GID programs
Then Ritchie’s comes back to the very important topic of set-UID/set-GID programs (his own invention,
and the only UNIX patent). First, he notes that set-UID/set-GID programs must not be writable by
attackers (a problem related to how permissions work):
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For example, if the super-user (su) command is writable, anyone can copy the shell onto it and get
a password-free version of su.

This is a general note: the permissions of a file (including the set-UID and set-GID flags) are stored in
its i-node: they don’t change when you write into the file.

More importantly, he notes that set-UID/set-GID programs must be

[ . . . ] careful of what is fed into them.

This is still extremely important, and we will spend some time on the attacks that target this very feature
of UNIX(-like) systems. Ritchie introduces an example that is no longer directly applicable, but is still
instructive (Ritchie himself repeats it in the v7 version of the paper, even if it was already “obsolete” by
then):

In some systems, for example, the mail command is set-UID and owned by the super-user [setuid-
root in modern jargon, ndr]. The notion is that one should be able to send mail to anyone even if
they want to protect their directories from writing.

This may be abused to violate privacy, since

[ . . . ] anyone can mail someone else’s private file to himself[,]

and also integrity:

[ . . . ] make a file with a line like one in the password file which allows one to log in as the
super-user. Then make a link named “.mail” to the password file in some writable directory on the
same device as the password file (say /tmp). Finally mail the bogus login line to /tmp/.mail; You
can then login as the super-user, clean up the incriminating evidence, and have your will.

To understand the examples, we need a few explanations. The v5 mail command takes a letter and a
list of person strings as arguments. To send “someone else’s private file” to himself, Ritchie could just
type:

% mail path-to-the-file dmr

(“%” is the user prompt in the v5 and v6 shells.)

R We have used the v5 version of mail because there is some inconsistency in Ritchie’s description.
The v6 mail command, at least as described in the released manual, is not vulnerable to this
particular attack. See below for more details.

For the second example, we need to read the v6 mail(1) man-page carefully:

A person is either a user name recognized by login (I), in
which case the mail is sent to the default working directory
of that user, or the path name of a directory, in which case
.mail in that directory is used.

So, Ritchie is suggesting to operate as follows:

% ln /etc/passwd /tmp/.mail
% mail bogus /tmp

In this way the contents of bogus will be prepended to /etc/passwd. One can write the following
into bogus, before “mailing” it:
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dmr:encrypted-password:0:1::/usr/dmr:/bin/sh

It is the zero UID that grants super user powers, not the username.

R The mail command also prepended the sender’s name and a “postmark”, so the passwd file will
contain an incorrectly formatted line after this attack—apparently login would not be confused
by it and would simply skip the offending line.

The attack has many of the characteristics we will see throughout the rest of the book: ingenuity (which
is what makes these attacks fun), in depth knowledge of obscure features (“mail to a directory”), using
things for what they are rather than what they mean (both mail bodies and password entries are just
text).

As Ritchie implies in the v7 version of the paper, the v7 mail command is not vulnerable to either
attack. He doesn’t say why this is the case, but we can note the following:

1. v7 mail doesn’t accept a letter argument, it can only read the letter from standard input;
2. in v7 mail all person arguments must refer to existing users, not directories.

Point 1 addresses the privacy problem. To see why, consider that now you can no longer write:

% mail letter person1 person2

Instead, you need to use input redirection (see Section 3.5):

% mail <letter person1 person2

Now it is your shell that has to open the file, before the set-UID flag of mail has had any effect.

R The v6 mail command already behaves in this way, and this is why we have used v5 mail in
the example above. On the other hand, it is v6 mail that uses .mail for the mailbox: earlier
versions used mailbox, and v7 moved to /var/spool/mail/user. Ritchie either mixed
things up, or was referring to some interim version of mail that was never officially released.

The ability to read the letter from standard input was added to mail in v3, presumably to
make it usable in pipelines. Until v5, this behavior was optional, selected if you passed only
one argument, interpreted as person. This syntax, induced by the need to avoid ambiguity
with the previous use, was a bit limiting, so the decision to drop the letter argument in v6 may
also have been motivated by usability considerations.

Both of these points solve the security problems nicely, because they work by simplifying the program
and its interface, and by removing corner cases of dubious utility. Adding stuff is always more
dangerous, because it can introduce new bugs and opportunities for exploitation. In fact, v7 UNIX
actually exacerbated the problem of set-UID/set-GID programs with the introduction of environment
variables, as we will see. The v7 version of Ritchie’s paper doesn’t yet show any awareness of this fact.

4.5 Untrusted filesystems
Finally, Ritchie mentions a problem with filesystem mounts:

Once a disk pack is mounted, the system believes what is on it. [ . . . ] a mounted disk with garbage
on it will crash the system; one of the files on the mounted disk can easily be a password-free
version of su; other files can be unprotected entries for special files.

The only thing that might need an explaining is the reference to “unprotected entries for special files”.
Ritchie is referring to the special device nodes usually found in /dev, but which can actually be created
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anywhere. In Linux, a device like /dev/sda gives low-level access to the blocks of the first hard disk.
Access to this device (and others like it) is usually restricted to root: a user who can read from this
device can essentially see the entire contents of the file system (including blocks belonging to deleted
files that have not yet been recycled), bypassing all other permission checks; a user who can write to
/dev/sda can make arbitrary changes to the filesystem. Now, since the power of /dev/sda comes
only from the major and minor numbers written in its i-node, a specially crafted disk could very well
contain an i-node with the major/minor pair of /dev/sda, or of any other hard disk, with a permissive
mode. A user who can mount this disk will then get unrestricted access to any other disk.

The v1 manual included the phrase “This call should be restricted to the super-user” in the BUGS
sections of the mount and umount entries—another step towards the overpowered root user we see
today. These calls are now privileged, but PC users still need a way to mount filesystems, if they want
to use their pen-drives or virtual disks and so on, so the system may contain suid-root programs or
root daemons that will call mount()on their behalf. Modern Linux kernels, however, allow these
privileged programs to specify “mount options” such as nosuid and nodev which are explicitly
aimed at the types of threats hinted at by Ritchie: nosuid will not allow set-UID/set-GID binaries in
the mounted filesystem, and nodev will not allow special device nodes.
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Other subtle features of the modern su: the dot is
excluded from the shell search path and the
burglars’ favorite shell variable IFS is reset.

M. D. McIlroy, A Research UNIX Reader, 1987

Now let us play the role of an attacker. We assume that we have a normal account on a Unix system,
and we want to escalate our privileges—possibly “become” root. By this we mean that we want to be
able to run programs of our choice in processes with an effective uid of 0. Our ultimate goal is to get a
“root prompt”, the “# ” prompt that the Bourne shell prints out when running as root.

The login program will lookup our uid in the /etc/passwd file and then call setuid(uid)
when we log into the system (Section 2.2, line 39). This uid will be inherited by our shell. Since our
uid is greater than zero, we have lost the ability to call setuid(uid)again. Assuming that we cannot
tamper with the system up to this point, and that the kernel is working correctly, we now have only two
ways to run programs with an uid other than our own:

1. somehow make processes that have inherited a different uid run what we want;
2. somehow make available set-uid programs run what we want.

Both of these methods require that the legitimate owners and/or creators of such processes (case 1)
or programs (case 2) make mistakes. In a properly configured system, we shouldn’t be able to do any
harm: processes owned by other users will run programs that we can’t control, and set-uid programs
will do what they are supposed to do without any interference from us. Unfortunately (for the victims,
but fortunately for the attackers), mistakes are very easy to make, especially in a highly configurable
system that was developed in an environment very different from our own: a small circle of people
where everyone knows everyone else.

5.1 Exploiting PATH

Suppose we want user u to run a program of our own choice, let us call it p. When user u types a
command like c at her shell prompt, the shell will search a set of directories, depending on the contents
of u’s PATH variable, for a file called c (Section 3.2). If we can control either u’s PATH variable, or
the contents of a directory that comes before the one containing c in the search list, we can make u
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involuntarily execute our own p when she wants to execute c: just rename p to c and copy it into the
controlled directory. The victim’s shell will find our fake c before the legitimate one and execute it,
using u’s credentials of course.

For this attack vector to work, however, we need u to make some mistake. We normally have no
way of influencing the contents of u’s PATH variable, whose value is set in the chain of processes that
leads from init to her shell, which we assume is out of our reach. Moreover, if u’s PATH variable
only mentions directories that we cannot write to, such as /bin, /usr/bin, and so on, our attack
options are zero.

However, if we boot our PDP-11, log in as root in our freshly installed Unix v7 system, and type
“echo $PATH”, our Teletype ASR 33 will print out the following:

:/bin/:/usr/bin

By default, any user—including root—has an empty path in her PATH (did you notice the first colon?)
What’s more, this empty path comes before the other directories. This means that whenever the system
administrator types a command at her prompt, her shell will look for a matching executable file in her
current directory before looking anywhere else.

The old PATH=:/bin:/usr/bin default was a deliberate choice. In the earliest Unix
implementations, Thompson’s shell searched for executables first in the current directory, and
then in the /bin directory: the idea was that users where expected to be programmers, and
would want to run their own programs, created in their own directory; /bin was searched
after the user’s directory, to avoid accidentally hiding user programs with homonymous
system programs. In v3, the shell also tried /usr/bin after /bin: this new directory was
introduced when the available space in /bin was exhausted (in fact, the v3 manual calls the
/usr/bin files “overflow” programs [see 2, entry for sh]—v4 hides this bit of history and
tries to repurpose /usr/bin as a place for “lesser used” programs [see 1, entry for sh],
presumably because it was searched for last). When environment variables were introduced in
v7, the Bourne shell generalized the search for executables with the PATH variable, following
the example of the PWB shell [15]; the default value was chosen to reproduce the old behavior.

If root has not changed the default, this is the mistake we need. Now all we have to do is put our
attack payload (the program that we want root to run) into the directories where we have write access
(hour home, or /tmp), give it the name of some common utility (ls, find, cat or whatever), and
wait for root to cd there and execute the payload for us unnoticed.

A possible payload is the following:

cp /bin/sh /home/attacker/hello.c~
chmod u+s /home/attacker/hello.c~

We make a copy of the shell with a filename that looks like something else (like the swap file of some
editor) and set the set-uid flag on it. Remember that these commands will be run by root. Therefore,
hello .c~ is now a shell that gives root access to anyone who runs it.

5.1.1 Executable scripts
In order to solve the exercises, we need to learn something more about shell scripts. From Section 3.6.1,
we know that we can execute a script by invoking the shell and redirecting its standard input. Since v1
(1971), the Thompson shell could also be called as follows:
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$ sh script arg1 arg2 ...

The shell would still redirect its standard input from the script, which could now contain strings of
the form $n, where 0 ≤ n ≤ 9. While parsing script’s lines, the shell replaces every $0 with script, $1
with arg1, $2 with arg2, and so on.

The Bourne and POSIX shells work similarly, except that they do not redirect their standard input:
they simply open() the script and read from there. The sh3 and later shells of mynix implement
this method, including processing of $n special variables, and some additional related features. In
particular, they also understand the special variables * and @. Both expand to all arguments (except
argument 0), with a subtle difference when expanding within double quotes: "$*" always expands to a
single quoted string (which might be empty), while "$@" expands to a quoted string for each argument
or nothing if there are no arguments besides 0.

R The exact details are much more complex than this, and involve field splitting and the IFS
variable (Section 5.3.2). We will not go into them here.

The same shell also implements the “-c cmd” option, which allows the shell to execute the commands
contained in the “cmd” argument, e.g:

$ sh -c ’echo "hello world"’

Note that all of the above methods for running scripts require you to first invoke the shell. This
means that executing a script is different from executing a binary program, where you can just type the
name of the program itself. However, if you have completed Exercises 3.3 and 3.6, then you know that
there are a couple of ways to hide this difference:

• if you make the script executable (using the command “chmod +x”), the exec*p(path,args)
functions will first try to execve()it and then, as a fallback, will try to run

/bin/sh path args

i.e., they will try to let the shell interpret the file as a script, passing the arguments to it.
• if the script is executable and its first line is “#!/bin/sh”, the kernel itself will essentially do

the same, in the execve()system call (this is the so-called “shebang” mechanism).
Either way, if the executable script is in the PATH, typing its name at the shell prompt will result in the
script being interpreted by a new shell.

Exercise 5.1 — badpath. Try the PATH attack in the badpath challenge. Be careful: if something
doesn’t work as expected, root may find out what you are up to. ■

The attack is a bit risky, since an “ls /tmp” from a safe directory, an “echo *” from /tmp, an
explicit call to “/bin/ls”, and so on, will easily make the administrator suspicious, and an “ls -l
/tmp/ls” will also reveal our name as the owner of the script. However, it can be very effective as a
step in a longer privilege escalation chain—we may have stolen the account of another regular user
(e.g., by guessing their password) and created the script using that intermediate victim’s credentials.

5.2 Mitigation: Default value of PATH
Default initialization scripts and programs no longer put the current directory in PATH, nor do libraries
provide an unsafe PATH if the variable is not explicitly set, as they used to do. If users really want to
keep the current directory in their PATH, they should very carefully ls directories like /tmp before
cd-ing into them. Putting the current directory last in PATH can also help, but it’s not foolproof either:
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the attacker can put an sl in /tmp and wait for a user to mistype. Much better is not to put “.” or
empty paths into PATH at all, and just use the “./” trick when we want to run a program that lives in
the current directory.

Note, however, that the current directory may also enter PATH unintentionally. Empty paths can
appear in PATH as a result of expanding undefined environment variables. Suppose you have installed
a subsystem that puts its executables in a non-standard directory (a very common occurrence). You put
the path to that directory in a variable, then expand that variable into your PATH in some of your shell
initialization scripts:

mybin=/opt/mysubsys/v0.1/bin
# lots of other stuff
PATH=$mybin:/usr/local/bin:/usr/bin:/bin

Some time later you uninstall the subsystem, delete the line that creates mybin, but forget to remove
$mybin from the assignment to PATH. Now you have an empty path in your PATH.

5.3 Exploiting setuid programs that escape to a shell

[ . . . ] designers must carefully consider the consequences of
inherited files, signals, the shell’s environment, and so on.

F. T. Grampp, R. H. Morris, UNIX Operating System Security, 1984

Now let us try to exploit the second possible attack vector: vulnerable set-uid programs. As Ritchie
said (Section 4.4), these programs must be written very carefully and, as a rule, they should not
trust anything coming from the outside: command line arguments, environment variables, open files,
directories writable by untrusted users—the list is unfortunately very long.

Set-uid programs are the favorite targets of attackers with login access to a Unix system (also
known as local attackers), and we will examine their possible vulnerabilities in several chapters of the
book. For now we limit our discussion to programs that call a shell, as we are interested in bugs that
manifest at the command level.

5.3.1 Exploiting PATH (again)
Suppose a novice programmer writes a set-uid program that uses the system() library function, such
as:

BU
G

#include <stdlib.h>
int main()
{

// stuff
system("grep something somefile");
// other stuff

}

The programmer needed a functionality similar to that provided by the grep utility, so she decided
to reuse grep itself. The problem is not grep: it could have been anything. The problem is that the
system(cmd)works by fork()ing a process and making it run “/bin/sh -c cmd”. See, for
example, the implementation of system()in mynix (from lib/system.c):
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lib/system.c17 int system(const char *cmd)
18 {
19 int status, w;
20 pid_t pid;
21
22 switch ( (pid = fork()) ) {
23 case 0:
24 execl("/bin/sh", "sh", "-c", cmd, NULL);
25 exit(127);
26 break;
27 case -1:
28 return -1;
29 default:
30 do {
31 w = wait(&status);
32 } while (w != pid && w != -1);
33 if (w == -1)
34 status = -1;
35 break;
36 }
37 return status;
38 }

R This is essentially the system() function as found in v7. UNIX v7 also ignored SIGINT
and SIGQUIT while waiting, but we have omitted this code for simplicity. POSIX mandates
more things: (i) we should also block SIGCHLD (a signal added later); (ii) if cmd is NULL,
system()should just check that a shell is available; (iii) perhaps more importantly, we should
use waitpid(pid) to wait only for the child created by system(). Our loop at lines 30–32,
instead, may throw away the return status of processes created before system()was called.

The shell will parse cmd according to its usual rules, including using PATH to look for grep. Now,
however, the attacker has a major advantage over the scenario in section 5.1: the shell created by
system()will inherit the environment of the setuid program; unless the programmer explicitly cleans
it up, the setuid program’s environment will be the one inherited from the parent process, i.e., the
attacker’s shell.

Exercise 5.2 — bad0suid. Exploit the above idea to obtain a root shell in the bad0suid challenge.
■

Notice how vulnerabilities in set-uid programs are much better, from an attacker’s point of view,
than vulnerabilities like the one we examined in Section 5.1. In the “dot in PATH” vulnerability, there
are many things that are not under the control of the attacker, who just has to wait for them to happen
by accident: root (or another user) must have put the dot in her PATH, she has to cd into the directory
where the attacker has planted the trap, she has to execute the fake command. Errors in the attack
payload can also render the attack ineffective, and the attacker must wait for the entire sequence of
events to occur again, which also increases the chances of getting caught. Vulnerable set-uid programs,
on the other hand, are an attacker’s dream: she can control essentially the entire execution environment,
and she can run them at will.
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Exercise 5.3 If we replace

system("grep something somefile");

in Exercise 5.2 with

execlp("grep", "grep", "something", "somefile", NULL);

(possibly in a child process), we are executing grep withouth going through the shell. Does this
solve the problem with PATH? ■

5.3.2 Exploiting the IFS variable1

Suppose that the inexperienced programmer tries to patch the above vulnerability in the following way:

#include <stdlib.h>
int main()
{

// stuff
system("/bin/grep something somefile");
// other stuff

}

Since /bin/grep is a path, the shell will not use the PATH variable. Also, since the path is absolute
and only traverses directories writable only by root, it must lead to the real grep utility.

Let’s put on our attacker hat again. While thinking of ways to exploit the new program, we type the
following into our v7 shell:

$ IFS=,
$ ls,-l

Perhaps surprisingly, our teletype starts printing the long listing of the current directory. What we
have done is to change the value of the IFS variable, which contains the characters that the shell
uses as field separators (IFS stands for Internal Fields Separator). After parsing the command line
into words and operators, the shell examines each word for possible expansions (e.g., processing
$variable expressions) followed by field-splitting. The latter processing uses IFS to split words into
fields, which then become the actual arguments used to execute a command. The default value of IFS
is 〈space〉〈tab〉〈newline〉, but now we have changed it to a comma. This splits “ls,-l” into “ls”
and “-l”, resulting in a normal call to the ls program with the -l option. The 9-fields revision of
the elementary shell of Chapter 3 supports IFS. The processing is implemented in a new function
fieldsplit() that is called by expandall()on every normal word, after expandword()has
finished.

■ Example 5.1 Figure 5.1 shows an example. The user has typed “ls,-l ,a,$X”, where variable
X is set to b,c. Assume that IFS=,. Independently of the value of IFS, the getwords()function
always identifies the initial set of words using whitespace characters as separators. In this case, it
finds two words. The getredirs()and getvars()functions don’t do anything in this case, then
expandall()expands the value of variable X. Now, expandall()calls fieldsplit()on every

1The contents of this section are mostly of hystorical interest, but still very instructive.
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l s , - l , a , $ X 0a 00

l s , - l 00 , a , $ X 00

W_NORML
W_NORML

l s , - l 00 , a , b , c 00

l s 00 - l 00 a 00 b 00 c 00

W_NORML
W_NORML
W_NORML
W_NORML
W_NORML

buf
quote()
getwords()

words

buf′

getredirs()
getvars()
expandall()

buf′′

fieldsplit()
words′

buf′′′

Figure 5.1 – Field splitting example—Bourne shell style

W_NORML word (both of them in this case). The result is shown in words′ and buf′′′. All the
characters in IFS are treated as whitespace: note in particular that the comma before the a is skipped.
The final command line contains 5 words. ■

Exercise 5.4 — bad2suid. Abuse IFS to get a root shell from the vulnerable setuid program in
the bad2suid challenge. This challenge uses a shell (bad2sh) that uses IFS the way the Bourne
shell did: all the characters in IFS are equivalent to whitespace. You can see the code in the 9-fields
revision of the elementary shell. ■

POSIX mandates a different behavior for IFS. In particular, point 3 of Section 2.6.5 of the standard [33]
says:

[. . . ] The term “IFS white space” is used to mean any sequence (zero or more in-
stances) of white-space characters that are in the IFS value (for example, if IFS contains
〈space〉〈comma〉〈tab〉, any sequence of 〈space〉 and 〈tab〉 characters is considered IFS
white space).

a. IFS white space shall be ignored at the beginning and end of the input.
b. Each occurrence in the input of an IFS character that is not IFS white space, along

with any adjacent IFS white space, shall delimit a field [. . . ].
c. Non-zero-length IFS white space shall delimit a field.

The 9-fields.2 revision of the elementary shell implements the necessary changes in the function
fieldsplit(). With these rules, the attack you used in Exercise 5.4 will not work.

■ Example 5.2 Figure 5.2 shows the processing of the same example of Figure 5.1, but using the
POSIX rules for IFS interpretation. The difference, in this case, is in how the comma before the a is
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l s , - l , a , $ X 0a 00

l s , - l 00 , a , $ X 00

W_NORML
W_NORML

l s , - l 00 , a , b , c 00

l s 00 - l 00 00 a 00 b 00 c 00

W_NORML
W_NORML
W_NORML
W_NORML
W_NORML
W_NORML
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expandall()

buf′′

fieldsplit()
words′

buf′′′

Figure 5.2 – Field splitting example—partial POSIX style

treated: since comma is not whitespace, fieldsplit()doesn’t skip it. Instead, according to point
b above, it uses it to delimit a field—an empty field in this case. The final command line contains 6
words. ■

Exercise 5.5 — bad3suid. The bad3sh used in the bad3suid challenge implements IFS process-
ing by following the POSIX rules above. Nonetheless, you can still obtain a root shell from the
bad3suid program (this is based on a real attack!). ■

Exercise 5.6 This time we replace the call to system()with

execl("/bin/grep", "grep", "something", "somefile", NULL);

(again, in a child process). Does this solve the problem with IFS? ■

5.3.2.1 Mitigation: IFS according to POSIX

Shells still implement IFS, but they use it in a much more restricted way. The 9-fields.3 revision of the
elementary shell contains an implementation that adheres more strictly to what POSIX says. First of
all, the shell must reset the value of IFS when it starts (section 2.5.3 of the standard). Second, field
splitting must be applied only to the portions of the words that result from a previous expansion (point
2 of section 2.6 of the standard).

■ Example 5.3 Figure 5.3 shows the processing of the same example of Figures 5.1 and 5.2 according
to the full set of POSIX rules, with IFS set to a comma. Note how field splitting is applied only the
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l s , - l , a , $ X 0a 00

l s , - l 00 , a , $ X 00

W_NORML
W_NORML

l s , - l 00 , a , b , c 00

l s , - l 00 , a , b 00 c 00

W_NORML
W_NORML
W_NORML

buf
quote()
getwords()
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buf′

getredirs()
getvars()
expandall()

buf′′

fieldsplit()
words′

buf′′′

Figure 5.3 – Field splitting example—full POSIX style

b,c characters resulting from the expansion of variable X—all the other commas are not touched at all.
■

5.4 Exploiting shell metacharacters

Great care must be taken when feeding a shell with input obtained from untrusted sources. Consider
the following lines from the source code of the buggy setuid program in challenge bad1suid:

BU
G

if (snprintf(buf, MAX, "/bin/mkdir /etc/%s", argv[1]) >= MAX) {
fprintf(stderr, "path too long\n");
return 1;

}
return system(buf);

The program uses argv[1] to create a line that will be interpreted by the shell. It doesn’t perfor any
kind of input validation. However, the bad9suid binary is installed with execution permissions for
everyone, so its command-line arguments must be considered untrusted. A malicious user can pass
literally any non-null character in argv[], including all shell metacharacters.

The shell used in the challenge only understands the metacharacters explained in Sections 3.1 to 3.8.
Nevertheless, they are sufficient for a successful exploit.

Exercise 5.7 — bad1suid. Obtain a root shell from the bad1suid binary. ■

The bad7suid challenge is enabled when you solve the one above. In it, the system programmer tries to
be a bit smarter:
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BU

G

if (snprintf(buf, MAX, "/bin/mkdir \"/etc/%s\"", argv[1]) >= MAX) {
fprintf(stderr, "path too long\n");
return 1;

}
return system(buf);

The user’s input is now enclosed in double quotation marks, which prevents the shell from interpreting
the metacharacters used to solve bad1suid.

R Don’t be confused by the backslashes. They are necessary for placing double quotes within a C
string. The resulting string will contain the double quotation marks but not the backslashes. The
shell will not receive the backslashes, which is what we want. This is a relatively benign example
of the quoting chaos that results when a string is passed through several systems, each with its
own quoting rules. In this case, the systems are the C compiler and the shell.

The system programmer still isn’t checking the contents of argv[1], so the binary is still ex-
ploitable.

Exercise 5.8 — bad7suid. Obtain a root shell from the bad7suid binary. ■

By now, the programmer should realize that she needs to examine the input provided by the user. She
should detect bad input and either:

• reject it with an error message;
• transform it into a benign form.

In the case of the shell, the latter strategy would entail removing metacharacters or transforming them
into something innocuous, such as an underscore, or quoting them. All of these tactics have drawbacks,
so the transformation strategy should be avoided unless it is necessary to solve the problem. Even then,
it is much better to find a well-tested library function that performs the transformation rather than trying
to implement it ourselves.

Exercise 5.9 — bad8suid. The programmer of the bad8suid binary failed to heed this advice.
As one might expect, her escape()function does not adequately prevent exploitation. ■

Although rejecting bad input is preferable, we must still be careful. There are two approaches to
detecting bad input: a blacklist approach, where input containing characters on the blacklist is rejected,
and a whitelist approach, where input is accepted only if all its characters belong to the whitelist (e.g.,
alphanumeric characters and underscores). The whitelist approach is safer when applicable, since we
may forget to include some bad characters in the blacklist.

5.4.1 Command substitution

Before trying the last exercise, let’s add another useful shell feature to our arsenal: command substitution
using the $() syntax. This is another type of expansion that occurs at the same time as variable
expansion. The shell lets a subshell interpet the command inside the parentheses and captures its output.
Then, it places the output in the command line in place of the “$(...)” string. For example,

$ vi $(grep -l TODO *.txt)

will open the vi editor on all the .txt files containing the TODO string.
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Command substitution was introduced in the Bourne Shell in v7, but it used backquotes
instead of $(). We don’t implement backquotes: Steve Bourne himself admits that $() is a
much better syntax [see 28, min. 32:00].

This is implemented in sh8 in mynix. Note that, like variable expansion (see Exercise 3.15), command
substitution works also within double quotes.

Exercise 5.10 — bad9suid. The programmer of the bad9suid program has used the blacklist
approach, but her shell understands some dangerous metacharacters that she missed. ■

5.5 Prevention: don’t use system()

Set-uid programs should never never call system(). Besides the problems outlined above, we should
consider that shells, especially the modern ones, are large and complex programs with possibly many
little-understood quirks and unexpected behavior. Consider bash, for example. Its manual runs for
more than 100 pages, and its many features have repeatedly been abused in the past. Here are just a few
examples.

1. You can define shell functions and inherit them through the environment. Up to version 4.2-208,
bash function names allowed the “/” character in them; an attacker could therefore easily
redirect a system("/bin/cmd")by defining a /bin/cmd function.

2. Up to version 4.4, bash “xtrace” feature would expand the PS4 environment variable before
executing any command; xtrace can be set in SHELLOPTS and PS4 can execute the attacker’s
payload using command substitution.

3. In September 2014 the ShellShock [30] vulnerability was disclosed; it was caused by a bug in
how bash parsed function definitions stored in environment variables; it allowed attackers to
execute arbitrary code and was widely exploited before being fixed.

If an external program is really needed, it is better to use one of the exec*()functions without going
through a shell (but recall exercise 5.3).

5.6 Prevention: no set-uid scripts
In Section 5.1.1, we examined a few mechanisms that enable scripts to behave similarly to executables,
such as the fallback in the exec*p()functions and the “shebang” kernel feature. What would happen
if we enabled the set-uid and/or set-gid flags in one of these executable scripts? Would the scripts be
executed with their UID and/or GID changed?

It should be clear that the first mechanism (the exec*p()functions) cannot work. The kernel only
looks at the set-uid and set-gid flags during execve(), and we are not running execve()on the
script. Instead, we execve() the shell and pass it the script’s path as an argument. The kernel has no
chance to understand what is going on.

With the shebang mechanism, however, things are different. It is the kernel itself that spawns the
shell during the execve()of the script. Therefore, the kernel can see the flags and arrange for the
desired effect to be achieved—in particular, it can change the UID and/or GID of the process that
runs the shell. This was one of the advantages Ritchie mentioned when introducing the mechanism
sometime between v7 and v8 [45].

However, we should be convinced by now that set-uid/set-gid scripts are not a good idea. See [29]
for many more examples of environment variables that affect the behavior of shell scripts. Beside
these, there are actually more problems with the shebang mechanism itself, which we will discuss after
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talking about links (Section 6.3). Due to these issues, many Unix and Unix-like systems, including
Linux, made the extreme decision to completely disable them [41].

5.7 Mitigation: Privilege drop
Attempting the attacks in this chapter on a modern system will reveal that the resulting set-uid shell
does not grant root access. This is true regardless of whether he “set-uidness” is achieved by setting the
shell binary itself to set-uid (as in Section 5.1), or by another set-uid program spawning a shell (as in
Section 5.3).

Consider, for example, the PATH attack in Section 5.1, where we tried to create a set-uid shell
disguised as a normal hello.c˜ file. Let’s do this as root in a modern Linux system:

# cp /bin/sh hello.c~
# chmod u+s hello.c~

We can confirm that the set-uid flag is set on hello.c˜, but when run by a normal user, the root
prompt is not displayed. Running the id program reveals that our uid is still the unprivileged one.
What’s going on? When they start, many shells (including bash and dash) call getuid()to retrieve
the real uid of their process. They then ask the kernel to reset the effective uid back to the real one,
using the seteuid()system call (see Section 2.7.2). To implement this mitigation in our mynix shell,
we should add the following code to main(), before the program does anything else:

seteuid(getuid());

The same must be done for the real and effective group ids.

R Remember to make sure that the systemcall actually succeeded, by checking that its return value
is zero. In case of failure, the process would continue to run with elevated privilege.

We will see many mitigations like this in the book. They have all been retrofitted into systems
that have been in use for decades and now face the difficult task of striking a balance between legacy
behaviour and security. For this reason, they attempt to block a very specific use, while leaving all
others untouched. In this case, the shell’s mitigation is intended for set-uid/set-gid programs that call
system(). Since these programs should never call system()(see Section 5.5 above), the fact that a
set-uid/set-gid process is executing a shell indicates that something malicious is occurring and should
be blocked (most likely, an attack like those described in Part II is underway).

If a set-uid/set-gid program really wants to spawn a shell, it must make its intentions clearer. One
such program is sudo, which can spawn a root sheel with either “sudo -i” (login shell) or “sudo
-s” (non-login shell), provided we are permitted by the sudoers file, of course. To do this, sudo
simply calls setuid(0)before the execve()of the shell (see sudo3.c in mynix for an example).
When run with an effective uid of zero, this call sets both the real and the effective uids, therefore
rendering the setuid(getuid()) statement in the shell ineffective.

Note that, if sudo can do something, then any other program running with sufficient privilege can
do the same (no program is magic, remember?). For example, we can make the PATH attack described
in Section 5.1 work on modern systems by operating as follows. First, we compile the following
program:

#include <unistd.h>
int main()
{
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setuid(0);
execl("/bin/sh", "/bin/sh", NULL);

}

We put the resulting binary somewhere, say in /home/attacker/mysudo. Then we use the
following payload for the PATH attack:

chown root /home/attacker/mysudo
chmod u+s /home/attacker/mysudo

If root is caught in the PATH trap, she will turn our mysudo program into a set-uid program that will
give us a root prompt.

Since the (e)uid check is so easily defeated, some shells don’t even attempt to protect themselves in
the non-system()case. The bash and dash shells, for example, will skip the check and give you
the root prompt if you use the -p option. However, the system()use case should still be safe, since
it is system()that passes the options to the shell in that case, and the attacker should not be able to
control them.
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Try this:
Make hard link of /etc/passwd to /var/tmp/dead.letter
Telnet to port 25, send mail from some bad email
address to some unreacheable hoost.
Watch your message get appended to passwd.

C0WZ1LL4@NETSPACE.ORG, Sendmail 8.8.[34]
dead.letter exploit, 1997

Links can alter the meaning of file system paths in surprising ways. Programmers must be very
careful when using paths whose components are not entirely trusted. However, this is easier said
than done. Bugs in this area are very common. A search for the keyword “symlink” on https:
//www.cve.org/ returns more than 1590 entries, starting in 1999 and ending in 2024. In this
chapter we will examine some of the ways attackers can exploit these bugs.

6.1 Opening unexpected files
As discussed in Section 2.6, a user who wants to create a link to the file /a/b/c needs search
permissions for the directories /, a, and b. However, she needs no permission for the file c itself. This
is due to the way links are implemented. To create a link to c, you only need its inode number. This
number can be obtained by searching for “c” in b—you don’t need to access c itself (or do you? We
will reconsider this point in Section 6.6.1.2).

Creating a new link to a file does not directly grants you any new permissions on the target file.
The owner, group and permissions of the linked file are stored in its inode, and these have not been
changed. However, you maybe now be able to access the file indirectly. Programs that want to create
a file usually pass the O_CREAT flag to open(). This flag instructs open() to create the file if it
does not exist. If the file already exists, no error is returned and the existing file is opened. This is
particularly the behavior of the fopen()function in the stdio C library, when using the "w", "w+",
"a" or "a+" open modes (see, for example, lib/fopen.c in mynix). This creates an attack vector
when privileged programs create files in directories that are writable by less privileged users. A
typical example is temporary files created in the /tmp directory, which is writable by everyone. If the
privileged program creates temporary files with predictable names, without checking that they don’t

https://www.cve.org/
https://www.cve.org/
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already exist, it may unintentionally open a link created by an attacker. Consequently, the privileged
program will operate on the target of the link, which could be anything the attacker wants.

Exercise 6.1 — badlog. Challenge badlog contains a set-uid-root program that writes into a log
file in the current directory. Try to exploit it to obtain root access. ■

6.2 Exploting races with access()

As we discussed in Section 4.4, v5 mail sends the file received as its first argument to the user specified
as its second argument:

$ mail file user

The program is installed as set-uid root so that it can create a mailbox file in any user directory, even
if the user has removed write permissions. However, this also enables mail to read any file. Therefore,
any user can send themselves the private files of any other user (including root). In Section 2.7.2, we
briefly introduced the access()system call, and suggested that it was probably intended for programs
like v5 mail. The idea is that the mail program should do something like this:

BU
G

if (access(argv[1], R_OK) < 0) {
perror(argv[1]);
exit(1);

}
if ( (src = open(argv[1], O_RDONLY)) < 0 ) {

perror(argv[1]);
exit(1);

}

Since access()uses the real uid and gid, the above code asks: “Can the user read this file?”. If the
answer is negative, mail stops with an error; otherwise, it can continue and open the file.

Despite its good intentions, this system call is vulnerable to a Time-Of-Check-to-Time-Of-Use
attack. The access()and open()system calls follow the same path twice, but there is no guarantee
that they will reach the same file both times: an attacker can remove and create links to redirect the final
part of the path, in the time between the calls to access()(Time-Of-Check) and the call to open()
(Time-Of-Use). While the timing is not easy to get right, the attacker can retry as many times as they
want (maybe in a script), until they succeed.

In the badmail challenge you will find a simplified version of the mail command that uses code
similar to that shown above. In order to complete the exercise, it is necessary to understand another
feature of our shell: background processes.

6.2.1 Background processes
The shell is capable of creating “background processes”, i.e., processes that run in the background
while the shell accepts new commands. These are easily implemented by skipping the wait()if the
user has terminated her command with a “&” (the implementation is in src/sh2.c in mynix). For
example,

$ yes 1 >/dev/null &
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will spawn a process that will execute “yes 1”, and return to the shell prompt. We can check that
the process is still running with ps. The “!” special variable contains the pid of the last background
process. The & actually works as a command separator, e.g.:

$ yes 1 >/dev/null & yes 2 >/dev/null

will create two processes, one in the background (“yes 1”) and the other in the foreground. The
sh2.c and later versions of the shell also implement the “;” separator, which can be used to run
several commands in foreground, one after the other, on the same command line.

Exercise 6.2 — badmail. Read /root/secret in challenge badmail. Hint: it may be useful to
look up the nice command. ■

6.2.2 Prevention: temporary privilege drop
There is no straightforward solution to the issue with access()and the system call has been deprecated.
As the manual suggests, a much better approach for modern systems is to temporarily drop the
credentials when opening the file:

FI
X

uid_t euid = geteuid();
if (seteuid(getuid()) < 0) { exit(1); }
if ( (src = open(argv[1], O_RDONLY)) < 0 ) {

perror(argv[1]);
exit(1);

}
if (seteuid(euid) < 0) { exit(1); }

This is possible because modern kernels (including Linux) remember a saved uid alongside the real
and the effective ones. When execve()changes the effective uid, it also sets the saved uid to the
same value. After dropping the credentials, a process can use the seteuid()system call to restore
the effective uid to the saved uid. Similar considerations can be made for the gids, as usual.

6.3 Exploiting set-uid shebang scripts
The “shebang” method of executing scripts (see Section 5.1.1) can hide many pitfalls when used in
combination with the set-uid/set-gid flags.

6.3.1 Passing unexpected arguments
Let’s review the mechanism more carefully. Imagine a process calls

execve(path1, argv, env);

where
argv = [arg0, arg1, . . . , argn ].

If the first line of the file reachable from path1 is “#!path2”, the file is considered a script that must be
passed to the interpreter reachable from path2. Therefore, the (Linux) kernel replaces the original call
with

execve(path2, argv′, env);
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where

argv′ = [path2, path1, arg1, . . . , argn ].

Note that the path of the script (path1) is passed to the interpreter as the first argument (argv[1]), in
exactly the same form that was passed to the original execve(). Using links enables an attacker to
have complete control of the path1 string, meaning they can choose the first interpreter argument at
will.

As discussed in Section 5.6, Linux has completely disabled the support for set-uid shebang scripts.
However, to demonstrate how easily this feature can be abused (on system where it is still available), we
have patched the kernel to re-enable support for it. The badscript1 challenge uses the patched kernel,
and contains a set-uid root shebang script in /bin/badscript1. In order to solve the challenge,
you may find it useful to take a look at the options supported by POSIX shells [see 47, OPTIONS
section].

Exercise 6.3 — badscript1. Read /root/secret in challenge badscript1. ■

In systems where set-uid shebang scripts are supported, we can use the fact that the kernel accepts an
optional argument on the “#!” line, separated by spaces from the interpreter path. This argument is
passed to the interpreter before the script’s path. The programmer can then start the script as follows:

#!/bin/sh -

Note the dash: this marks the end of the option list for a POSIX shell. Any other arguments passed
after the dash will be interpreted as the name of the script, followed by the arguments for the script
itself, not the shell.

R It is useful to recall at this point that the shebang mechanism is not limited to shell scripts; the
interpreter can be anything, and the way to prevent attackers from passing unwanted options must
be found on an interpreter-by-interpreter basis.

6.3.2 Racing with the interpreter
The shebang mechanism contains a race. First, the kernel follows the script’s path during the initial
execve(). Then, the interpreter follows the path again when it tries to open() the script. As in
Section 6.2, an attacker can use links to redirect the path between these two accesses. This can
be exploited in a similar way to challenge badmail, but it might be helpful to look up the nice
utility.

Exercise 6.4 — badscript2. The script in badscript2 uses the “#!/bin/sh -” trick to prevent
the exploit used in badscript1. However, it is still exploitable. ■

There are ways to prevent this race condition. One option is to use the special files in the /dev/fd
directory. For instance, when a process open()s /dev/fd/4, it reopens (duplicates) its own file
descriptor number 4. This can be used in the shebang mechanism as follows: when the kernel opens the
script in the initial execve(), it creates a file descriptor for the script in the process’s file descriptor table.
Assuming the file descriptor is n, the kernel passes to the interpreter the special path /dev/fd/n
instead of the script’s path. This ensures that the interpreter opens the exact same script that the kernel
has already opened. Since it is impossible to change what an open file descriptor points to, this method
works.
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As we have noted, Linux prefers to disable set-uid scripts completely. However, the above
/dev/fd mechanism is used in the “binfmt_misc” feature [40]. It is a Linux-specific
alternative way to implement executable interpreted files that fully supports set-uid and set-gid
flags.

6.4 Symbolic links
Symbolic links, or “soft” links, were introduced in the BSD system to overcome some of the limitations
of classic Unix links, now renamed “hard” links to distinguish them from the new ones:

• hard links cannot point to directories
• hard links cannot point to a file on another device.

We know about the fist limitation from Section 2.6. The second limitation comes from how hard links
are implemented. Essentially, a link is just an entry in a directory, and therefore it is only a mapping
between a name and an inode number, but inode numbers are only meaningful within a device.

Symbolic links (symlinks from now on) do not have these limitations. They are created by their
own dedicated system call, symlink(). The user command ln uses either link()or symlink(),
depending on the presence of the -s option in its arguments. For example, these are the sources of the
ln command in mynix:

ln2.c10 int main(int argc, char* argv[])
11 {
12 if (argc < 3)
13 return 1;
14
15 if (strcmp(argv[1], "-s") == 0) {
16 if (argc < 4)
17 return 1;
18 if (symlink(argv[2], argv[3]) < 0) {
19 perror(argv[0]);
20 exit(1);
21 }
22 } else {
23 if (link(argv[1], argv[2]) < 0) {
24 perror(argv[0]);
25 exit(1);
26 }
27 }
28 return 0;
29 }

A symlink is not just an entry in a directory. Instead, it is a special kind of file with its own inode. The
contents of the symlink are a filesystem path, pointing to a file or directory (or anything else) which is
called the target of the symlink. This path can be obtained with the readlink()system call. This is
used, for example, by “ls -l” to print “-> target” on the right of each symlink (see the ls7.c file
in mynix).

■ Example 6.1 Either in mynix, or in your own Linux distribution, create a file, an hard link to it, and
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finally a symlink:

$ echo hello > new-file
$ ln new-file hardlink
$ ln -s new-file symlink

If you cat any of the files, you get the same “hello” output. Now look at the output of “ls -li”.
You should notice several things.

• The new-file and hardlink entries have the same inode number and, accordingly, share all
the other informations except the name.

• The symlink entry has a different inode, with type “l”.
• The size of new-file and hardlink is 5 (the characters in “hello”), but the size of
symlink is 8 (the characters in “new-file”).

• The number of links of new-file and hardlink is 2, the symlink is not counted.
■

The permissions of symlinks are apparently all set, but they are actually ignored: when you open
the symlink, the kernel will use the permissions of the target.

■ Example 6.2 Continuing from the example above, remove the read permissions from the target and
try to read the symlink:

$ chmod -r new-file
$ ls -l
$ cat symlink

Note, in the output of “ls -l”, that both new-file and hardlink have lost the read permissions
(no surprise: they are the same file), but symlink has not. However, the last command will give you a
permission denied error, since the only permissions that count are the ones of the symlink’s target. ■

There is no “hard” relationship between the symlink and its target, which is in no way affected by
the creation of the symlink. In particular, symlinks to the same target are not reference-counted, and
the target of a symlink does not even have to exist.

■ Example 6.3 Continuing the above example, remove the symlink:

$ rm symlink
$ ls -l

You should see that nothing has changed in new-file (and in hardlink, which is the same file).
Now create the symlink again and remove the hard links:

$ ln -s new-file symlink
$ rm new-file hardlink
$ ls -l

Nothing has changed in the symlink, but now it points to a non existing file. If you try to read it, you
get an error:

$ cat symlink
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The error should be “symlink: no such file or directory”, which may be confusing at
first, since symlink exists and its only its target that does not exist. But cat is not aware of this: it
has tried to open symlink, and its the kernel that has followed the link.

Now create a new new-file:

$ echo bye > new-file
$ cat symlink

The new new-file has no relation with the old new-file, and yet symlink now points to it. ■

To reason correctly about symlinks, you should think that a symlink just contains an uninterpreted
string, which the kernel will interpret as a path only when the symlink is followed. Most of the system
calls that take a path as an argument (e.g., open(), execve(), chdir()and so on) will “follow” a
symlink when parsing the path. That is, if the last compoment of the path turns out to be a symlink,
they will follow the path to the symlink target and then use that instead of the symlink. Exceptions are
link()and unlink(), which do not follow symlinks in the last component of their paths. This is
especially important in the case of unlink(), which will then remove the symlink itself instead of the
symlink target.

■ Example 6.4 We have seen this at work in the examples above: cat, which uses open(), always
followed the symlink, but rm, which uses unlink(), only removed the symlink itself when we issued
“rm symlink”. ■

The stat() system call follows the symlinks. There is a variant, called lstat(), that can be
used to read the inode of a symlink instead of that of its target. The ls7.c version of mynix ls
uses lstat() to obtain informations for the output of -l, since otherwise it would not be able to
distinguish symlinks from other types of files.

Note that, since symlinks can also point to directories, they can be found also in the intermediate
components of a path. All the systems calls will always follow these intermediate symlinks. This can
be repeated recursively if they find more symlinks in the target path, up to a maximum “nesting level”
which is a system constant.

6.5 Exploiting symlinks
Symlinks introduce a few new twists to the topic of links. Let’s discuss some examples of how these
can be abused.

6.5.1 Bypassing directory restrictions
To create a symlink to a file, we don’t need any permission on any component of the file’s path. Compare
this with hard links, where at least we need search permissions on all the directory components. Again,
this is a consequence of how symlinks operate: the target path is not interpreted when the link is created,
but only when the link is followed.

Consider, for example, Exercise 6.2 above. In the exploit, we need to create a link to /root/secret.
In the proposed solution we used an hard link, because we hadn’t introduced symlinks yet. We were
able to create the hard link only because the /root directory had search permissions for everyone. This
was a simplification introduced for the exercise, since a realistic /root directory would be installed
with rwxr-x--- permissions, i.e., no permissions for others This would be enough to prevent our
exploit. However, with the introduction of symlinks, making directories inaccessible is not sufficent
anymore. We just need to replace “ln” with “ln -s” and the exploit works again.
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6.5.2 Attacker controlled file creation
The behavior of open()with O_CREAT on symlinks with non-existent targets may be surprising. The
system call transforms the path, by following the symlink, before doing anything else. Once it has the
transformed path, now pointing to the target, it checks whether the file exists and creates it if necessary.
So the system call will create the missing target!

■ Example 6.5 Either in mynix, or in your Linux distribution, type the following:

$ ln -s non-existent symlink
$ touch symlink

Check that you have created the non-existent file. ■

Let’s consider CVE-1999-1187 [36] as an example of how this can be abused. The bug is in a
version of PINE, an old mail reader.

PINE stands for Pine Is Not Elm, a play on an older mailreader called ELM, for ELectronic
Mail. This is a both a recursive acronym and a wordplay on the literal meaning of the two
names.

The program creates a temporary file in /tmp with a random name, but always the same for the same
user. It also creates the file with write permissions for everyone. The idea is to trick PINE into creating
a strategic file that belongs to a victim user and is writable by the attacker.

The attacker can learn the temporary file names of the other users (by looking at /tmp), create a
symlink with the same name while the victim is not using PINE, and wait. When the victim opens
PINE again, the program will open the attacker’s symlink with the victim’s credentials.

In the proof of concept shown in the reference above, the attacker creates a symlink to a non-
existent .rhosts file in the victim’s home directory. This file was used in the old (pre ssh) system
for remote access between networked Unix machines. It essentially played the role of the modern
“authorized_keys”, but without the keys: hosts listed in .rhosts are allowed access without
passwords. When the victim opens PINE, a world-writable .rhosts file is created in the victim’s
home directory. The attacker can later write whatever she wants to the file and gain access to the
victim’s account.

Exercise 6.5 — bad4suid. Solve the bad4suid challenge. The rsh command will connect to a
local rshd daemon. The daemon will ask for a login name, then check for an .rhosts file in the
home directory of the user; if the .rhosts file doesn’t exist or doesn’t grant you passwordless
access, the daemon will ask for a password. Also note that a + in the .rhosts file is a wildcard
that grants access from any host. ■

6.6 Prevention: secure temporary file creation
Files created in directories writable by others should not have constant names, but this is not sufficient:
names should also be unpredictable.

Exercise 6.6 — bad5suid. The set-uid binary in the bad5suid challenge doesn’t use a constant
name, but it is still easily exaploitable. You can use rsh as in Ex. 6.5. ■

Moreover, programs should always check that the files they intend to create do not already exist.
However, code like this is buggy:
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BU

G

if (stat(path, &sb) >= 0) {
/* path exists: error */

} else {
fd = open(path, O_CREAT|O_WRONLY, perms);

}

The problem is that stat()follows symlinks. Therefore, if an attacker has created a symlink to a non
existing file (as in the PINE attack above), stat()will fail and the above code will still call open().
The following code correctly uses lstat(), but is still not sufficient:

BU
G

if (lstat(path, &sb) >= 0) {
/* path exists: error */

} else {
fd = open(path, O_CREAT|O_WRONLY, perms);

}

The problem with the above code is that there is a race condition between the stat()system call used
to check that the file does not exist, and the subsequent open()used to create it. An attacker could
create the symlink in the window between the two calls.

Exercise 6.7 — bad6suid. Solve the bad6suid challenge. You can use rsh as in Ex. 6.5 and 6.6. ■

The correct way to create a file is to use the O_EXCL flag in addition to the O_CREAT flag. That
way, open()will atomically check that the file does not exist before creating it, and will return an
error if it does. Note that it will also return an error if the path is actually a symlink, even if the target
of the symlink does not exist. Thus, this technique closes all known attack vectors.

FIX fd = open(path, O_CREAT|O_WRONLY|O_EXCL, perms);

If you are trying to create a temporary file, you should use the mkstemp() library function, which
uses the above technique and also automatically chooses an hard-to-guess random name.

6.6.1 Linux-specific countermeasures

Linux implements a number of non-standard countermeasures against symlink attacks.

6.6.1.1 Protected symlinks

The first is a kind of “safety net” for buggy programs that create temporary files insecurely. It can be
enabled by typing

# echo 1 > /proc/sys/fs/protected_symlinks

as root (your distribution may have already enabled this for you). It works like this: if the sticky bit is
set on a world-writable directory (such as /tmp), Linux will only allow a process to follow a symlink
if either the process owns the symlink, or the symlink and the directory have the same owner (which is
usually root for /tmp). This way, even if the attacker has installed a symlink, the victim process will
not be able to follow it and will receive an error. This turns a potential privilege escalation attack into a
more benign denial of service for that particular process.
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6.6.1.2 Protected hardlinks

There is also an option to protect hard links, but it works differently. If protected_hardlinks
is set to 1, users can only create hard links to files they own or to files to which they have read and
write access. One could argue that this is more sensible than the traditional rule, as it is not entirely
accurate that creating a hard link does not require accessing the target file. In fact, the target’s inode
must be accessed to increment the link counter. This increment also has security implications since it
can prevent files from being deleted. For example, a superuser trying to remove a vulnerable set-uid
program could be thwarted by an attacker who creates a hard link to the program to keep a copy
around.

Exercise 6.8 — bad4suid2. Solve the bad4suid2 challenge. ■

Exercise 6.9 What happens if we set protected_symlinks in Exercises 6.5, 6.6, or 6.7? Are
the exploits affected by the status of protected_hardlinks? ■

Modern kernels also have options to protect FIFOs and regular files in world-writable sticky directories.

6.6.1.3 O_TMPFILE

Another countermeasure Linux implements is the O_TMPFILE flag for the open()primitive. This
flag causes open()to create a file with no links in the file system, i.e. it just allocates an inode without
giving it a name. The primitive is guaranteed to always allocate a new inode, so symlink attacks are
impossible. It also saves the programmer the trouble of inventing a unique name for the temporary file.
Finally, since the inode has a link count of 0, the temporary file is automatically removed when all its
open file descriptors are closed. In the normal case this happens automatically when the process exits,
even if it does not exit cleanly (e.g., because it is killed). If you are writing an application that needs to
run only on Linux, you should consider using this flag whenever you create a temporary file.


