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1 Introduction

In the last lecture we have seen many kernel extensions that try to improve
the confinement of untrusted processes. This, however, assumes that we can
trust the kernel. Unfortunately, the kernel is another big and complex piece
of software, which can (and does!) contain bugs, and some of these bugs can
be exploited by malicious attackers. Paradoxically, all the kernel extensions
that try to add security features also increase the kernel complexity and may
themselves introduce new bugs.

In this lecture we will examine the most common ways in which kernel bugs
can be exploited to escalate privilege, and some existing mitigation strategies.

2 Linux kernel and modules

We assume that you already know how a kernel works in general, so we give
just a few notions about Linux in particular.

The Linux kernel is written in C and assembly It is built using the standard
gcc suite, configured for the particular environment in which it is meant to
run, i.e., the bare machine with no other software runtime support available
(except the code possibly stored in ROMs). The kernel build system creates
the vmlinux binary, which uses the ELF format like everything else, and can
be examined with the standard ELF tools (readelf, objdump, . . . ). The
binary is usually packaged in a bzImage file, which contains a compressed
version of vmlinux and some initialization code that unzips the image and
copies it to its final destination in memory. A boot loader (such as grub) is
responsible for loading the bzImage in memory and transferring control to
the initialization code. The boot loader may also pass “arguments” to the
kernel, typically to enable or disable some optional feature. The arguments are
passed as a single string of text, with spaces used to separate the arguments
from each other. When the the system is up, this string can be inspected
by reading the /proc/cmdline pseudo-file. The kernel just ignores all the
unknown arguments, so this mechanism can also be used to let the boot loader
pass arguments to userspace programs.
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During normal operation, the kernel maps itself and all the data it needs
in the virtual memory of every process1. The address space limitations of 32b
systems, coupled with the large physical memories that are available today,
make this arrangement rather problematic and Linux has to resort to complex
dynamic mapping techniques. For this reason we limit our discussion to 64b
systems, which are much simpler in this regard: the kernel just splits the avail-
able address space in two halves and reserves the upper half (the one where the
most significant bits are 1s) for itself.

The kernel is entered whenever a process issues a system call, or when the
CPU raises an exception, or when some external device requests an interrupt.
Modern processors implement several ways to issue a system call, in an attempt
to improve the speed of the traditional int instruction, which saves a lot of state
in memory and accesses many in-memory system data structures to understand
where it has to jump and to switch to the kernel stack. The AMD64 syscall
instruction is an alternative, much faster way to enter the kernel, since it saves
very little state in some registers, jumps to a fixed address (selectable once and
for all in a CPU internal register) and doesn’t switch the stack. This (or the
mostly equivalent Intel’s sysenter instruction) is the preferred way used by
Linux to implement system calls. On entering, the rax register must contain
the system call number that the user wants to call, and the other registers must
contain the system call arguments.

Inside the kernel, normal C library functions are not available, but some
of the most common functions (like string functions) have been reimplemented.
The replacement for the printf() function, in particular, is called printk(),
and uses the same syntax with some extensions. This function, however, doesn’t
send output to “stdout” (which is an abstraction created by the kernel itself),
but to an in-kernel ring buffer, which can be examined from userspace using the
dmesg command. System daemons, like ksyslog or systemd, also extract
messages from this buffer and copy them to log files, like /var/log/syslog,
/var/log/messages or others, depending on the configuration. The kernel
may also optionally send the messages to the “system console”, which is today
just one particular (pseudo)terminal selected for this purpose.

2.1 A minimal kernel module

The Linux kernel can also dynamically load kernel modules that extend its func-
tionality at runtime. These are used to implement device drivers, new filesystem
types, firewalls, security extensions (like AppArmor) and so on. Already loaded
modules can be listed using the lsmod utility, new modules can be loaded using
the insmod and modprobe commands, and unloaded using rmmod. Of course,
loading and unloading modules requires root privilege, since modules run with
full kernel power.

The easiest way to experiment with kernel bugs exploitation is to introduce
the bugs in a kernel module, which can be made very small and focussed. In

1We will see that this is no longer true today, because of Meltdown, but this is not relevant
for the current discussion.
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1 #include <linux/module.h>
2
3 MODULE_LICENSE("Dual BSD/GPL");
4
5 static int m1_init(void) {
6 printk("Hello from m1\n");
7 return 0;
8 }
9
10 static void m1_exit(void) {
11 printk("Goodbye from m1\n");
12 }
13
14 module_init(m1_init);
15 module_exit(m1_exit);

Figure 1: The m1.c source code for the minimal m1 module.

1 obj-m := m1.o

Figure 2: A Kbuild file for the example m1 module. This is read by the
Linux makefiles to understand which object files must be created int the current
directory and, by implication, which source files must be compiled.

order to understand the exercises, then, we now show how a minimal kernel
module is built and used. Figure 1 shows the source code of a kernel module
that prints a log messages when it is loaded and another log message when
it is unloaded. We need to include the linux/module.h file (line 1) which
defines the macros used at lines 3 and 14–15. Every module must declare its
licence (line 3), since non-GPL modules have (legal) access to only a subset of
the functions exported by the kernel. Line 14 selects the m1_init() function
as the initialization function, and the m1_exit() function as the exit function.
These are the functions that the kernel will call when the module is loaded and
unloaded, respectively. The two functions just call printk() to send a message
to the kernel log. Note that printk() is defined in the kernel and the module
only knows its symbol name: when the module is loaded it will be linked with
the running kernel and the symbol will be resolved. The modules use the ELF
format too, and their linking needs are encoded in standard relocation entries
in the binary module file.

To build the module, create the m1.c, as shown in Figure 1, in an otherwise
empty directory, call it d. In the same d directory create two additional files:
the Kbuild file shown in Figure 2 and the Makefile file shown in Figure 3.
Then cd to d and run make. This will create several files in d, including m1.ko,
which is the final, loadable module. Since it is an ELF file, it can be inspected
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1 KERNEL ?= /lib/modules/$(shell uname -r)/build
2
3 all:
4 make -C $(KERNEL) M=$$(pwd) modules

Figure 3: A generic Makefile for external modules. It delegates everything
to the makefiles included in the Linux sources, passing them the necessary ar-
guments. In particular, the M=$$(pwd) argument is used to tell the Linux
makefiles that you want to compile a module in the current directory.

with readelf, objdump and so on.
The module can be inserted into the running kernel with

sudo insmod m1.ko

The sudo dmesg command should now show the “Hello from m1” message
(among all other kernel messages). The module can be removed with

sudo rmmod m1

and now the sudo dmesg command should also show the “Goodbye from
m1” message.

2.2 An example character-device driver

We now write a simple module that creates a new character device. Charac-
ter devices are special files that can be read and/or written like all other files,
but that implement these operations in special ways. Typical examples are the
/dev/tty* files, where read operations return the key-codes typed at the ter-
minal keyboard and writes produce output on the terminal display, but also the
/dev/null file, where read() always returns 0 and write()s are discarded.

Consider, for example, the /dev/null device file:

crw-rw-rw- 1 root root 1, 3 dic 2 07:53 /dev/null

The important values are 1 and 3, respectively, the major and minor device
number. The major number, in particular, identifies the kernel driver that is
responsible for the implementation of the file operations (such as read() and
write()) on the device. Whenever a process opens /dev/null, the kernel
looks up the driver number 1 and delegates to it the handling of the subsequent
operations on the file descriptor. The meaning of the minor number is entirely
up to the driver, which typically uses it to discriminate among several instances
of the same kind of device.

Note, incidentally, that the existence of a device file does not imply that
the corresponding driver exists: the kernel will just return an error when such
orphan device files are opened. Conversely, loading a driver into the kernel does
not automatically create the corresponding device file(s) in the file system. The
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mknod command should be used to create them2. The name of the device file,
or its position in the file system, are also not important: the only things that
matter are the major and minor numbers.

Figure 4 shows the code of our simple module. When the modules is loaded,
we register the driver with the kernel (line 34). Here we are telling the kernel that
there is a new character device driver with major number 65, with internal name
m2 and “file operations” as defined in the m2_fops structure. This is a structure
that contains several function pointers, one for each possible operation on the
device. The kernel will call the relevant function whenever the corresponding
event triggers. For example, our m2_read function will be called whenever a
user process will call read() on our devices. The function receives the buf and
count arguments that the user has passed to read() (lines 12 and 14) and is
responsible for writing at most count bytes into the user buf. The idea is that
every device should implement a “stream of bytes” abstraction and subsequent
read()s from the device should return more bytes from this stream, or zero if
the stream ended. For this purpose, the function also receives a pointer f_pos
(line 14) to the “file pointer” that indicates where the user is in the byte stream.
The function also has the responsibility to update the file pointer (line 25).

Our simple device contains a fixed string (lines 16–18) and implements
read() by returning bytes from this string in succession. For simplicity, we
always write just one byte, independently of how many bytes the user requested
(lines 22–24), unless we have reached the end of the string, in which case we
write nothing (lines 20–21). Note that we must return how many bytes we have
actually copied, just like read() (lines 21 and 26). Note also that, to write
into the user buffer, we must use the copy_to_user function (line 22). This
is because user memory may be swapped out or be otherwise inaccessible (if the
user has passed us a rogue pointer) and we cannot cause faults while we are in
the kernel. The copy_to_user function takes care of handling these special
cases. The function returns the number of bytes that it was not able to copy.
If if returns anything other than zero, it means that the user’s buffer is invalid
and we have to return with an error (line 23).

There is no need to implement all the functions defined in file_operations,
since the kernel provides sensible defaults for all of them. In our example we only
implement read(). Write operations on our devices will fail with a permission
error.

When the module is unloaded, we should tell the kernel to unregister the
device (line 38), so that it will no longer call us if a device with major number
65 is opened again.

To compile the module operate as for m1 but replace m1.o with m2.o in
the Kbuild file. If you run make you will obtain the m2.ko file that you can
load into the kernel with insmod. To create a device managed by our driver
use the command

sudo mknod /dev/m2 c 65 0

2Modern systems come with helper programs, like udevd, that can create the devices
automatically.
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1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/kernel.h>
4 #include <linux/fs.h>
5 #include <linux/errno.h>
6 #include <linux/uaccess.h>
7
8 MODULE_LICENSE("Dual BSD/GPL");
9
10 static ssize_t m2_read(
11 struct file *filp,
12 char *buf,
13 size_t count,
14 loff_t *f_pos)
15 {
16 static const char *msg =
17 "this is the data contained"
18 " in the m2 device\n";
19
20 if (*f_pos >= strlen(msg))
21 return 0;
22 if (copy_to_user(buf, &msg[*f_pos], 1)) {
23 return -EFAULT;
24 }
25 (*f_pos)++;
26 return 1;
27 }
28
29 static struct file_operations m2_fops = {
30 .read = m2_read,
31 };
32
33 static int m2_init(void) {
34 return register_chrdev(65, "m2", &m2_fops);
35 }
36
37 static void m2_exit(void) {
38 unregister_chrdev(65, "m2");
39 }
40
41 module_init(m2_init);
42 module_exit(m2_exit);

Figure 4: The m2.c source code of the m2 module that creates a character
device.
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which creates a character device file with major number 64 and minor number
0 (we have not used the minor numbers in our driver, so the minor number can
actually be anything). Now you can use /dev/m2 like any other (read-only)
file. In particular,

cat /dev/m2

will print the string defined at lines 17–18 of Figure 4.

3 Exploiting kernel bugs

Kernel code can contain all the bugs that we have already studied for userspace
applications. Since the kernel is written in C and compiled with standard com-
pilers, it uses the same conventions for function calls and stack usage. This
means that buffer overflows on the kernel stack lead to the same kind of conse-
quences, where attackers may be able to hijack the execution control flow. The
kernel also uses a heap to allocate memory for its own purposes and, while the
heap data structures may be different from the ones used in userspace, buffer
overflows on the heap can be exploited using similar techniques. Double-free
and use-after-free bugs are also possible. Function pointers (like the one in Fig-
ure 4, line 32) are used extensively and lead to the same kind of exploits that
we have already studied.

So, assume that an attacker can hijack the control flow of a kernel code path.
For simplicity, let us focus only on kernel bugs in system calls, and assume that
the bug can be triggered by an attacker process by invoking one or more system
calls, with specially crafted parameters, so that the kernel will jump at attacker
chosen locations. Where should the attacker redirect the control flow to? There
is a possible confusion here, that we should clear up. In userspace we where
attacking other processes, to steal their privilege. In that context the attacker
aimed at replacing the program that the victim process was executing with an
attacker’s chosen program, typically a shell. In the kind of kernel bugs that we
examining now, instead, things work differently: the attacker already owns the
process and can let it execute any program that she wants. However, the process
is running with the unprivileged attacker’s credentials and the attacker goal is
now to upgrade the credentials of the process. It makes no sense to just redirect
the kernel execution to, e.g., the code that implements the execve() system
call to spawn /bin/sh: the shell would still run with the attacker’s credentials!
This would achieve nothing more than just calling system("/bin/sh") in a
normal program. In other words, we should not confuse “kernel privilege” with
“root privilege”. Kernel privilege is an hardware-defined state that allows soft-
ware to access all of the hardware resources, including all registers, all memory
and all I/O devices. Root privilege, on the other hand, is a kernel-defined state
that allow processes to access all kernel-defined resources, such as files, pro-
cesses and network interfaces. Even if kernel privilege is potentially much more
powerful than root privilege, an attacker usually wants to achieve the latter,
which is incomparably easier to use. A more sensible approach is therefore this:
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if an attacker has gained kernel privilege, it might use it to arbitrarily mod-
ify the kernel data structures to, e.g., also gain root privilege. To obtain root
privilege, the attacker may, for example, use her kernel privilege to modify the
process descriptor of one of her processes and assign them a uid of zero. Such a
“promoted” process may then spawn a shell which would be executed as root.

3.1 Return to userspace

To implement the above plan, the attacker must be able to redirect kernel
execution to some code that changes the credentials of one of her processes.
Let us focus on the simplest scenario: assume that the bug can be triggered
while the vulnerable system call is still running in the context of the process
that invoked it. Then, the goal is just to change the credentials of the running
process. This can be achieved in Linux by calling the following kernel functions:

struct cred *c = prepare_kernel_cred(NULL);
commit_creds(c);

The first statement creates a cred structure, which is the data structure used
by the Linux kernel to store user credentials (user and group ids). When passed
NULL, it creates a cred structure with root credentials. The second statement
assigns this credentials to the current process, replacing the previous ones.

To execute the above “shellcode”, the attacker has the usual choices, like
injecting it somewhere in kernel memory or use ROP. There is, however, another
possibility: just put the shellcode into the userspace process memory and let the
kernel jump there. This is possible because the process userspace memory is still
available when the kernel is executing in the context of the attacker’s process.
This technique, called return to userspace (memory), is very attractive, since
the attacker doesn’t have to worry about space limitations, bad characters or
non-executable memory: the shellcode is just part of her own program, but
executed with kernel privilege. The only annoyance is that the shellcode may
need to call kernel functions without being linked to the kernel, so the addresses
of these functions must be put in the shellcode “by hand”.

After a successful return to userspace memory and the execution of the
credentials-upgrading shellcode, the best strategy is to also return to userspace
privilege, since programming at kernel level is very hard. To return to userspace
privilege, the shellcode may just execute an iretq instruction on a specially
crafted stack. More details can be found in the exercises.

3.2 SMEP and SMAP

Injecting shellcode into the kernel is today prevented using the same NX bit that
already prevents shellcode injection in userspace. Return to userspace is also
made more difficult by the introduction of some new hardware protections in the
Intel processors: Supervisor Mode Execution Prevention (SMEP) and Supervi-
sor Mode Access Prevention (SMAP). When SMEP is enabled, the processor
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will refuse to fetch instructions from user memory while running in supervisor
(i.e., kernel) mode3

SMEP is off by default and must be enabled by setting the 20th bit in the
privileged cr4 register. The exercises explore possible ways to overcome this
protection, but note that ROP attacks are not affected by SMEP in any way.

SMAP also prevents supervisor accesses to userspace data, and it is not
intended to be always enabled (otherwise, implementing read() and write()
would be impossible). The kernel should enable it only while accessing data
that, in normal operation, should always be stored in kernel memory.

3Note that higher-privilege execution of lower-level code was already forbidden in the
segmentation architecture introduced by Intel in the 80286 processor of 1982, but it was
somehow neglected in the paging architecture added in the 80386 of 1985, until the “invention”
of SMEP around 2011.
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