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1 Introduction

We will now introduce one of the first “mitigations” that have been invented
to counter attacks that exploit software bugs. The idea behind the mitigation
strategy is that, no matter how hard we try to write correct programs, there will
always be unknown bugs in them. A mitigation attempts to limit the damage
caused by these unknown bugs, in cases where they are discovered and exploited
by the attackers before they are fixed.

Stack canaries are a mitigation that targets stack-based buffer overflow at-
tacks. It works by exploiting one of the limitations of this type of attacks,
which is that the attacker must overwrite all the bytes between the overflowed
buffer and the control data (i.e., the saved registers and the return address).
The idea is to place a value—the canary—between the local variables and the
control data of each function stack frame. Thus, the attacker must overwrite
the canary before she can overwrite the control data. If overwriting the canary
is either impossible or detectable, the attack is blocked.

The name “canary” refers to the actual canaries used in coal mines at the
beginning of the 20th century. The miners would bring a cage with a canary in
it to detect toxic gas leaks. Because canaries are small and breathe much more
oxygen than other small animals, they will feel the effects of the gas long before
the miners, giving them time to leave the mine. Similarly, functions can detect
that attacker bytes (the poisonous gas) have leaked from a buffer by checking
the “health” of the stack canary before trusting the control data.

This idea translates into a change of the prologue and epilogue of each func-
tion, and as such it’s naturally implemented in the compiler. The canary-
enabled prologue must push the canary on the stack, immediately after the
control data (return address and saved registers) and before the allocation of
the local variables. The canary-enabled epilogue must check that the canary
still contains the original value, before restoring the saved registers and return-
ing. If the canary has been changed, a possible attack has been detected and
the process must be aborted. This turns a bug that could lead to a compromise
of the process’s credentials into a more benign denial of service.
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2 Kinds of canaries

Three types of canaries have been proposed, each one with its own strenghts
and weaknesses:

Random: the canary is a random number, unknown to the attacker;

Terminator: the canary contains characters that stop most string functions
(newline, null byte, linefeed, −1);

XOR: the canary is the XOR of a random value and the saved return address.

Random canaries are good if the attacker cannot guess them. Unfortunately,
memory leak bugs can reveal the canary’s value, rendering them useless. Termi-
nator canaries, on the other hand, are constant and well known to the attacker.
They block the attacks in a different way. For example, consider a gets()-
based overflow like the one we have studied in the previous lecture. We know
that the attacker cannot have a newline in her payload, because otherwise the
gets() will not copy all the bytes that come after it. But if the canary contains
a newline and the attacker overwrites it with something else, it will be detected.
Unfortunately, there are bugs that involve memcpy(), read(), or even custom
hand-made code, and these bugs are either not blocked by any particular byte
value, or by characters that are not in the canary.

Both types of canaries are useless against bugs that allow the attackers to
overwrite arbitrary memory addresses, since these types of attacks can overwrite
the saved return address without touching the canary. The XOR canaries at-
tempt to block these attacks by merging the original stored rip address with the
random canary. However, a memory leak can reveal both the the XOR canary
and the stored rip address, thus exposing the random value and so on. Also,
an arbitrary-memory-write bug may allow the attacker to overwrite something
else in the control data (e.g., the saved rbp) without touching either the XOR
canary or the return address. This can be countered by XORing even more
control data with the canary, but the attacker may find other useful things to
overwrite (e.g., function pointers elsewhere in memory). Combinations of two
or more types of canaries are possible, but the they have other problems. For
example, a canary containing both terminator and random characters has re-
duced entropy compared to a completely random canary, and may therefore be
easier to guess.

In summary, canaries can be, and often have been, defeated by memory
leaks and/or attacks that do not rely on stack-based buffer overflows (see, for
example, the format string vulnerabilities in another lecture). This is not sur-
prising, since the canaries were specifically designed to exploit a peculiarity of
buffer overflows, especially stack-based ones. To these “genetic” weaknesses,
however, we must add other weaknesses that may arise from their implementa-
tion in a particular system. Indeed, in real systems, the implementation may
be particularly weak due to backward compatibility constrains or performance-
versus-security considerations.
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So why use them at all? Like all mitigations, they do not block all possible
attacks. However, the idea is that by adding enough mitigations, each one
targeting a specific type of bug, we can block most, if not all, existing exploitable
attacks.

There is a very important mental trap that we should avoid: thinking that
an attack is blocked just because it is “difficult to exploit”, and that therefore
we don’t need to worry about bugs. The perception of difficulty only comes
from our inexperience as attackers, and this is why we try to learn attackers’
known techniques: to have a better idea of what is really difficult and what is
just a nuisance. Bugs need to be found and fixed. Mitigations are just a last
line of defense.

3 Implementation in GNU/Linux

Linux systems that use the GNU C library and gcc (i.e., most of the Linux
systems) implement stack canaries as a collaboration between the kernel, the
compiler and the C library. The workflow is as follows:

1. During each execve(), the kernel places a random value in the stack of
the new virtual memory;

2. The C runtime initialization functions that come with the GNU libc use
this value to compute the canary and place it in a well known location in
the process’s memory;

3. the function prologue generated by gcc takes this global canary and
pushes it on the stack; the function epilogue checks if the local canary
matches the global one, and aborts the process if they differ.

We can already make some considerations. The canary is always the same for
the entire lifetime of a process. There is a new canary only when execve()
is called: a fork()ed process will use the same canary as its parent. The
canary resides in many places in memory: there always is the global copy and,
at any given moment, there is a copy in the stack frames of all currently active
functions. Other copies, coming from previously returned functions, may be
found in uninitialized variables of currently active functions. The attacker only
needs a memory leak bug, in any part of the program, that she can use to read
any of these copies. Then she can use a buffer overflow bug in some other part
of the program to successfully overwrite the canary and the control data it was
supposed to protect. Note that the attacker now has to find two exploitable bugs
instead of just one, so the mitigation reduces the attacker’s chances somewhat.

Let us now examine the implementation in more detail.

3.1 The kernel

Upon completion of the execve() system call, the kernel puts 16 random byes
on the stack, typically just above the argument and environment strings. It
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then puts a pointer to these bytes into an entry of the auxiliary vector. This
is a data structure that the kernel pushes onto the process stack, just below
the environment array. This data structure contains various information about
the process and the program and is mainly used by the dynamic loader, which
we will study in another lecture. The auxiliary vector is a vector structures.
Each structure occupies two stack lines: The first line contains a numeric “tag”
that identifies the type of information contained into the second line. The
AT_RANDOM tag (value 25, hex 19) is the one we are interested in: the second
line of the entry with this tag contains the pointer to the random bytes.

3.2 The GNU C library

The GNU C library contains some object files that are linked with all programs
by default. They contain the C runtime initialization and cleanup routines. The
start entry point of our program is defined in one of these files. It contains
a small assembly program that calls the __libc_start_main() function,
which is still part of the C library and is written in C. This function performs
many initializations and then calls our main(). Among these initializations
there is the creation of the canary value, which is very simple: the canary
coincides with the least significant bytes of the random number generated by
the kernel (4 bytes on 32b systems and 8 bytes on 64b systems). However, the
least significant byte is replaced by 0. Therefore, the canary is a mixture of a
“terminator” and a “random” canary. Note that for 32b this means that only
three bytes of the canary are random, which makes it not difficult to guess by
brute-forcing. We can also see that there is still another place where the canary
can be (essentially) read: the random value stored by the kernel on the stack.

The canary is stored in the Thread Control Block (TCB). This is a per-
thread data structure used by standard libraries to hold information that de-
pends on the current thread. For the entire lifetime of a thread, a pointer to
this structure is contained in the (hidden part of) the fs register. This is one
of the two segment selector registers (the other is gs) that are still in use on
the AMD64 architecture. They contain a constant virtual address that can
be added to any memory operand address. In assembly syntax you can use it
by prepending “fs:” to a memory operand. The fs register is initialized by
__libc_start_main()1.

3.3 The gcc compiler

The gcc compiler will add canary support to the compiled program if the
stack-protector option is enabled. In current Linux distributions, this is en-
abled by default and can be disabled by adding the -fno-stack-protector
option to the gcc command line.

When canaries are enabled, the prologue of canary-protected functions be-
comes:

1The function uses the Linux-specific arch_prctl() system call to initialize the register,
since it cannot be written from userspace.
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1 ; save the old frame pointer
2 push rbp
3 ; (maybe push other registers)
4 ; create the new frame pointer
5 mov rbp, rsp
6 ; reserve space for the local variables + the canary
7 sub rsp, x
8 ; copy the global canary in the current frame
9 mov rax, QWORD PTR fs:0x28
10 mov QWORD PTR [rbp-8], rax

Lines 1–7 contain a standard prologue, except for the need to reserve space for
the canary in addition to the local variables. Lines 9 and 10 are new: line 9
reads the global canary from offset 0x28 in the TCB and line 10 copies the
canary just above the saved frame pointer. Note that, if the compiler has to
save other registers besides the old frame pointer (see the comment at line 3),
the canary will be stored above them.

The canary protected epilogue is:

1 ; compare the global canary with the local copy
2 mov rax, QWORD PTR [rbp-8]
3 sub rax, QWORD PTR fs:0x28
4 je good
5 ; abort if the local canary has been modified
6 call __stack_chk_fail@plt ; doesn’t return
7 good:
8 ; restore old rsp and rbp
9 leave
10 ; return to the caller
11 ret

Lines 1–7 are new, while the others are nothing more than the standard epilogue.
The new instructions add a bit of overhead to the function, so gcc only adds

them where it thinks they are really needed. Basically, only in functions that
declare sufficiently large array variables 2

The stack chk fail function prints an error message on standard error
and aborts the process. For the time being, ignore the strange @plt suffix in
the function name: It is a reference to the linker-generated Procedure Linkage
Table (PLT). We will study it in another lecture, where we will learn how it
introduces yet another opportunity for attackers.

Exercises

3.1. Try to guess the canary and then redirect execution in challenge canary2.

2Search for “-fstack-protector” in the gcc manpage for full details.
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