
Code Reuse

G. Lettieri

2 November 2023

1 Introduction

One of the most important discoveries in binary exploitation is the realization
that arbitrary computation is possible even without injecting any new code.
This means that non-executable data cannot completely block all attacks: it
only makes them (slightly) more difficult.

In this lecture we will examine the most common techniques that reuse the
code of the attacked binary to perform computations chosen by the attacker.

1.1 Return to libc

Probably the first public demonstration of how to defeat NX is Solar Designer’s
1997 return-into-libc exploit1.

The bug exploited by this technique is a standard buffer overflow that allows
the attacker to overwrite part of a stack frame in a vulnerable program. The
idea is to overwrite the saved return address with the entry point of another
function. When the vulnerable function returns, the process starts executing
the attacker’s chosen function.

What function can the attacker choose? A very useful one, found in the C
library, is of course system(). The attacker must also pass an argument to this
function, which should be a pointer to a string containing the shell command to
execute. On 32-bit systems, the arguments are passed up the stack, which the
attacker controls, so the only problem is finding the address of an appropriate
string. Strings are just data and can be injected into the stack as part of the
buffer overflow attack. However, very useful strings (such as "/bin/sh") can
already be found in the C library itself. Having a string already in the binary has
the added advantage that it can ve used even if the exploitable bug doesn’t allow
the attacker to inject null bytes, because otherwise it would be very difficult to
terminate an injected string.

Solar Designer’s exploit also shows how the attacker can chain two function
calls, such as calling setuid(0) before calling system("/bin/sh"), to to
bypass the shell’s set-uid check. The attacker can prepare the following stack:

1https://seclists.org/bugtraq/1997/Aug/63

1

setuid()
system()

0
"/bin/sh"

This takes adavantage of the fact that on function enter, the stack top of the
stack should contain the return address of the function, followed by the function
arguments. Thus, setuid() will use the 0 argument and, upon completion,
“return” into system(), which will then use the pointer to "/bin/sh". How-
ever, this method severely limits the number and type of functions that can be
chained. In the following years, more general ways of performing longer com-
putations were proposed, culminating in the Return Oriented Programming
technique2.

1.2 Return Oriented Programming

The idea of Return Oriented Programming (ROP for short) is to chain existing
code using ret instructions, similar to the example above, but the chained code
does not have to be complete functions. Rather, any existing code fragment that
ends in a ret instruction can be used. These fragments are commonly called
ROP gadgets, or simply gadgets when ROP is understood.3 The ROP gadgets
are chained using the ret instructions at their end. Suppose that a program
contains a classic stack-based buffer overflow and the attacker wants to exploit
it to execute gadget g1;ret, followed gadget g2;ret, followed by gadget g3;ret.
Assume, for the moment, that the gadgets do nothing with the stack pointer
other than popping a return address with their final ret. Then the attacker
can arrange the stack as follows:

buffer AAAAAAAA
· · ·

AAAAAAAA
initial ret g1; ret

g2; ret
g3; ret

The buffer is overflown to reach the saved return address, where the attacker
places the address of the first gadget, followed by the addresses of the other
gadgets. When the vulnerable function executes it ret, it jumps to gadget g1,
at the same time popping the address of g1 off the stack. The stack pointer now
points to the line below, which contains the address of g2. When g1 completes
and executes its own ret, the execution will jump to g2 and the stack pointer
will be moved to g3, and so on.

2The name is a joke on Object Oriented Programming.
3In the original proposal the term “gadget” referred to a stack arrangement that used one

or more of these small fragments to perform a recognizable function, such as an if-then-else.
With repeated use, however, the meaning of the term has become simpler and now refers to
the code fragments themselves.

2

Probably the best way to think about this technique, is to forget the intended
meaning of “ret” and imagine that we are programming yet another weird
machine, which we can call the ROP machine, implemented by the underlying
“normal” machine. The instruction pointer of the ROP machine is the stack
pointer of the normal machine. The instruction set of the ROP machine contains
all available gadgets, each gadget “microcoded” using the instructions of the
normal machine. The opcode of each gadget is the address of the gadget in the
normal machine memory. A ROP chain is a program for the ROP machine: it
starts execution with a first ret, which must be executed by a normal program
running on the normal machine, and then continues on its own.

What kind of gadgets can you expect to find, and which ones are useful? In
a large codebase (think of the C library, for example) there are indeed many
useful gadgets. In fact, it is very often the case that the ROP machine is
Turing complete. In principle, then, the attacker can do whatever she wants by
simply chaining gadgets. For example, she could implement a shell in this way.
However, this would require a very large stack. In practice, it is better to just
do what is needed to execve() a normal shell.

We can make some general observations about the technique:

• We need the absolute addresses of the gadgets; if we are attacking a remote
server, we need a copy of its binary;

• we need to be able to inject these addresses, which can be a problem if
they contain illegal bytes.

The latter is especially a problem (for attackers, that is) on 64 bit systems,
where addresses tend to contain a lot of null bytes. If the bug that the attacker
wants to exploit is based on some misuse of the string functions, it is usually
not possible to inject null bytes.

1.3 Notable gadgets

Let us now look at some notable gadgets (many more can be found in the exer-
cises). Of particular interest are the very simple ones that perform elementary
operations.

1.3.1 Loading registers

Consider a gadget that consists only of the two instructions pop rdi and ret4.
This can be used to load a constant C into the rdi register, by arranging the
stack as follows:

4This gadget is very common and you might wonder why: after all, rdi is a scratch register
and the complier doesn’t need to restore its contents before a function returns. In fact, this
a prime example of an unintended instruction found in a binary: the original instruction was
most likely pop r15, encoded as 0x41 0x5f, but this becomes pop rdi if we skip the first
byte.

3

pop rdi; ret
C

next gadget

It may happen that we need to load a constant C into a register, say rsi,
but we can only find gadgets that also load other registers. For example, the
program may only contain the pop rsi; pop r15; ret gadget. This is often
not a problem, if we can simply ignore the contents of r15: we only need to
account for the additional pop:

pop rsi; pop r15; ret
C

next gadget

In general, the gadgets can do something else in addition to what the attacker
needs, and this is only a problem if the additional actions don’t allow the process
to continue (for example, a memory access to a random address that could crash
the process).

1.3.2 Calling functions

Calling functions in 32 bit systems works much like the return-into-libc tech-
nique, but we can use the ROP idea to chain as many calls as we want. Suppose
we want to call foo(arg1, arg2, arg3). We have to arrange the stack as
follows:

foo()
pop r1; pop r2; pop r3; ret

arg1
arg2
arg3

next gadget

Instead of jumping directly from foo() into the next function (called “next
gadget” above), we first jump into any gadget that moves the stack pointer
past the arguments, like the 3-pops gadget above. After that we are again in a
“clean” state again and we can continue in any way we want.

On 64-bit Intel/AMD systems, the first 6 arguments are passed in registers,
which can be loaded using appropriate gadgets. It is sometimes difficult to
find a gadget that loads the third register (rdx)5, but one can use the general
“return-to-csu” technique to achieve that6

5This is because rdx is scratch, and adding the 0x41 REX prefix to pop rdx we obtain
pop r10, but r10 is also scratch.

6You can find the details by following the links from here: http://hmarco.org/.

4

1.3.3 NOP

A gadget consisting only of a ret instruction is a NOP instruction for the ROP
machine. This can actually be useful if we need to change the alignment of
the stack pointer. For example, some SSE instructions raise an exception if the
stack is not 16 byte aligned when they are executed, and these instructions can
be found in some binaries that have been compiled with advanced optimization
options (notably, the Ubuntu GNU libc). For example, on 64-bit systems the
stack is aligned to either 8 or 16. A ret gadget will add 8 to rsp, changing
the alignment from 8 to 16 or vice versa.

1.4 Finding gadgets

There are several tools and libraries that can analyze a binary and find poten-
tially useful gadgets. Some of these tools are also able to automatically build
generally useful ROP chains, such as chains that will execve a shell.

One such tool is ropper7. If we want to analyze a file named binary, we
can call it like this:

ropper -f binary

This will print all the gadgets that ropper has found, with their absolute
addresses. Note that not all gadgets found will end in ret: this is because other
techniques have been developed that use other kinds of gadgets (for example,
Jump Oriented Programming and Call Oriented Programming). These other
gadgets may occasionally be useful even in an otherwise standard ROP chain,
but you can pass --type rop if you don’t want to see them.

The ropper tool also implements a search command that uses the “%”
character as a jolly, much like the shell’s “*” meta character. For example,

ropper -f binary --search ’pop %’

will find all gadgets that pop something off the stack, while

ropper -f binary --search ’mov [%], %’

will search all the gadgets that write to memory (note that Intel syntax is used).
The tool can automatically generate ROP chains for common tasks, but

the binary should contain enough gadgets for it to succeed. For example, if
/lib/libc.so.6 is the path of the system C library, the following command

ropper -f /lib/libc.so.6 --chain execve

will print on stdout a (Python 2) program that outputs the generated ROP
chain. The output can be redirected to a file and then edited.

Other useful options can be found by studying the output of ropper --help.

7https://github.com/sashs/Ropper

5

2 One gadgets

In many cases, the C library already contains fragments of code that do every-
thing that the attacker needs. Finding these “one gadgets” is very useful for
attackers, since sometimes they can only overwrite a single function pointer in
memory. The most common one-gadgets that can be found are, again, frag-
ments that execve() the shell. The one gadget8 utility is able to find such
fragments in a binary. Typically, the binary is the C library: the trick is that
there are at least two places in the library where /bin/sh is spawned: in
the implementation of system() and in the implementation of popen(). Of
course these functions will want to pass their own arguments to /bin/sh, but
jumping at the right place inside of them may end up running a shell without
arguments, or with arguments chosen by the attacker. These jump targets in
the middle of these functions are the one-gadgets. However, there is catch: the
tool may show a set of constraints for each one-gadget it finds. These are suffi-
cient conditions that must be true just before the jump, to guarantee that the
one-gadget will be successful. These constraints typically require some register
or some stack line to contain a particular value (typically 0). If the attacker
can only redirect execution to the one-gadget, with no way to execute anything
else, she must choose a one-gadget whose constrains are all satisfied.

Note, however, that the conditions shown by the tool are only sufficient, not
necessary: it is often the case that the gadget will work, even if the constrains
are not satisfied. For example, Linux execve() will work even if the second
argument is NULL. This is not a standard behavior, and the man page warns
against relying on it if you want your program to be portable to other Unix-like
systems. Of course, none of this is of concern to an attacker.

8https://github.com/david942j/one_gadget

6

