
Dynamic Libraries

G. Lettieri

25 October 2023

Static libraries are just a collection of object files. In Linux, an .a is just
an archive of .o files created using the ar(1) command, an ancient archive-
management tool that survives today only for this purpose1 During linking, the
link editor extracts the object files from the archive as needed and adds them
to the list of files to link. The resulting executable keeps no record of the fact
that some objects originally came from a library (except perhaps in debugging
info, if any).

Dynamic libraries attempt to address some of the (perceived) shortcomings
of static libraries:

• Objects used in mutiple executables (e.g., those extracted from the C
library) are copied multiple times wasting disk and central memory space;

• if a library needs to be updated to fix a bug, all executables built with the
old library must be identified and rebuilt using the new one.

Dynamic libraries solve these problems by having “incomplete” executables that
are linked with the libraries at load time. The libraries can now be updated
without updating the executables2. In addition, the libraries are built and linked
in such a way that multiple processes can share almost all of their contents.
The price of all this is slower executable startup times (because of the dynamic
linkage), slightly slower libraries (because of the way they are compiled) and,
above all, a lot of management complexity due to possible incompatibilities
among library versions. Some people (like the go developers) think that the
price to pay is too high while the benefits are either marginal or non-existent
(space is not a problem nowadays, and library version incompatibilities often
cause executable updates anyway) and so they only use static libraries. From a
security standpoint, dynamic libraries are both a problem and an opportunity:
on the one hand they introduce a number of exploitable data structures and

1Because of this specialized use, modern GNU ar can also add a symbol index to the
archive all by itself. In the past a separate tool, ranlib, was needed.

2What happens to long-running executables, such as servers and daemons, that where
loaded and linked with the old library? As long as the new library has a different filename
(e.g., a different version number), running processes will not be affected, not even if the old
library is deleted (Unix will keep it around as long as there are running processes that reference
it). However, if we want the servers and daemons to use the new library, we need to restart
them.

1



code (GOT/PLT, writable constructor and destructor lists, . . . ), but on the
other hand, they enable a more effective randomization of address spaces.

1 Basic workflow

Shared libraries are implemented as ELF DSOs (Dynamic Shared Objects).
This is a type of ELF file that contains both program and section headers and,
therefore, contains both loadable code and data, as well as relocation informa-
tion. The address space of a process can contain the image of an EXE ELF file
plus any number of DSOs (including zero).

DSOs are used at least twice during the lifetime of an executable:

1. at build time, when the executable is linked;

2. at load time.

(They can also be used at runtime, by explicitly loading DSOs with the dlopen()
function.) At build time the linker only resolves undefined symbols in the ex-
ecutable and remembers which DSOs define them. It adds the names of these
DSOs to a special .dynamic section in the executable ELF file. The executable
is specially marked so that the kernel can know that, when the program will be
loaded, it will need dyamic linking. Note that is not the kernel that will do the
linking: a userspace dynamic linker will be called to do the job. For this reason,
the executable must contain the filesystem path of the required dynamic linker
in a special .interp section (by writing different paths in this section, each
executable can have its own dynamic linker).

At load time (each time the executable is loaded), the kernel loads the ELF
file as usual, but then it also loads the specified dynamic linker in the same
address space, pushes some additional information on the stack (the auxiliary
vector), and finally transfers control to the dynamic linker. The main purpose
of the auxiliary vector is to tell the dynamic linker where the kernel has loaded
the main executable.

The dynamic linker uses the information contained in the .dynamic section
and in the auxiliary vector to:

1. find all needed DSOs and resolve all undefined symbols (recursively);

2. patch the EXE and all the DSOs to link them together;

3. run all the initialization code (“constructors”).

Finally, control goes to the executable entry point.
We can already make some observations.

• The DSOs found in step 1 above are not necessarily the same as those
identified at build time. They are not even managed by the same people,
since the latter ones belong to the developers, while the former ones belong
to the administrator of the system on which the executable is running.

2



Great care must be taken to ensure that the two sets of DSOs are at least
compatible.

• The DSOs mentioned in the executable may themselves be dynamically
linked, i.e., each of them may mention further DSOs that need to be
loaded (and so on). This can result in the same DSO being mentioned
several times. Usually only one copy of each DSO is loaded. However, it
is possible for multiple versions of the same DSO to coexist, as long as
they are named differently (e.g., by using the version number as part of
the name).

• Linking requires patching, i.e., modifying the executable and the DSOs
to fix relocatable addresses: how can the images be shared among several
processes, then? The solution is to isolate all relocatable addresses in a
data structure, the Global Offset Table (GOT for short), and code all
instructions to either use relative addresses, or fetch absolute addresses
from the GOT. In this way, all the code and all read-only data sections
can be shared by all processes that have loaded the same DSO. Only
the writable data sections and the GOT must be private for each process.
Note that this applies to all loaded DSOs besides the main executable:
each one of them will have its own GOT.

• Entire DSOs are loaded, not just the needed object files as in a static
library. This seems to go against the desire to save space. However, on-
demand paging comes to the rescue, as it will bring into memory only
the DSO parts that are actually used (another reason to keep all the
relocations in the same place, otherwise the dynamic linker would fault-in
many more pages during the patching phase).

Note that the linker code and data structures remain there while the executable
is running and can still be used by the runtime support for the lazy-binding
mechanism (explained below), by the main program, which may want to pro-
grammatically load dynamic objects at runtime and, finally, by attackers.

1.1 Building a shared library

Building a shared library is more like building an executable than a static library:
the set of object files is assembled into a single ELF file, rather than into an
archive. The easiest way to do this is to pass the -shared option to gcc.

Note that the same object file (an .o file which is the result of compila-
tion and/or assembly) can be used several times for different purposes: it can
be included in an executable ELF, a static library, or into a dynamic library
(ELF DSO). To enable sharing, objects destined for dynamic libraries should be
compiled with -fpic or -fPIC, which ask for Position Independent Code3. In

3The only difference between the two options is that the all-caps one tries to overcome
some size limitations in some architectures, possibly at the expense of efficiency. On x86 the
two options are equivalent.

3



fact, a shared object may end up running at different addresses in each process
that shares it, so it cannot make any assumptions about the addresses of its
own parts. A non-shared object does not have this limitation, since it can be
patched as needed once the addresses are known.

However, even if we don’t want sharing, -fpic is still needed, as it is the only
way to enable interposing, which is a requirement for any library. “Interposing”
means that any program linking to a library must be able to redefine any of
the symbols exported by the library. Suppose that a function f1() defined in
the library internally calls a function f2() exported by the library. Suppose
further that the main program redefines f2(). In the final process image, the
function f1() must call the redefined f2() and not the one originally defined
in the library. For static libraries this either means that each exported symbol
lives in its own object file (so that already defined symbols are never extracted
from the library), or that exported symbols are defined “weak” (the linker only
picks a weak symbol if it is otherwise undefined). In either case, the call site
in f1() will contain a relocation which will be filled with the correct address
during the normal linking process. Dynamic libraries are different, as patching
the text section should be avoided to allow sharing. This means that f1()
must not assume to know the address of f2(); instead, it should calculate it
based on information that is only available at runtime. This is almost the same
problem already solved by Position Independent Code and is therefore treated
in a similar way.

Exercises

1.1. When a developer creates a program that uses non-standard dynamic
libraries, shipping the program to users becomes cumbersome: the users
must obtain and install these libraries in order to run the program. To
simplify the installation, the developer can package the libraries and ship
them with the program. However, dynamic libraries must be placed in
specific directories that depend on the (possibly unknown) configuration of
the users’ systems, otherwise the dynamic loader won’t find them. Another
possibility is to put the search path of the libraries in the program itself:
this way, the developer can choose where to put the libraries, independent
of the user’s configuration. The gcc compiler and the GNU libc dynamic
loader support this feature with the RUNPATH dynamic variable, which can
be written in the program by passing the -Wl,-rpath=<dirs> option
to the compiler, where <dirs> is a colon-separated list of directories.
However, if not used carefully, this feature can be exploited by attackers.
Connect with

ssh -p 4422 dll1@lettieri.iet.unipi.it

with password dll1 and try to steal the flag.txt file by abusing the
dll1 program.

4



1.1.1 The Global Offset Table

Position independence in shared objects is achieved through indirection: the
code does not hard-code addresses in the instructions (not even relative ad-
dresses), but fetches them from a table of pointers, the Global Offset Table,
or GOT for short, which is created by the linker and filled by the dynamic
loader. The same GOT is also used to store the addresses of symbols used but
not defined in the DSO, i.e., external symbols imported from other DSOs. The
dynamic loader will fill these entries as well. To let the dynamic loader fill the
GOT, the linker creates relocation entries not different from the entries created
by the assembler. The GOT is just a data structure in the data part of the
DSO which is patched at load time. Note that this means that the GOT is not
shared among all the loaders of the same DSO, but this is also true for all data
sections, as we have seen.

Note that the GOT may be generated also for reasons other than PIC, e.g.,
to overcome the addressing limitations of some architectures. For example,
depending on the memory model used, 64b Intel/AMD architectures may need
a GOT to address data which can reside anywhere in the 64b address space.

The code that accesses an entry in the GOT needs several pieces of infor-
mation: where is the GOT? which GOT entry do I need? The code usually
accesses the GOT using RIP-relative addresses (since the GOT is mostly used
by PIC code). The offset of the GOT from RIP is filled in by the linker (via
a relocation) and then the code only needs to know its RIP. This is easy for
AMD64, since rip-relative addressing is available in the instruction set. Intel
32b code, instead, uses a method called “thunking”: there is a call to a thunk
function which copies the rip saved on the top of its stack into a register and
then returns. The address of the GOT thus computed is usually held in a regis-
ter, but the ABI gives no guarantee on the contents of this register at function
entry, so each function must usually recompute it.

The other part of the information needed to access the GOT, i.e., the index
of the entry, is only known to the linker, since it is the linker that builds the
GOT after collecting all the needed entries. There is a special relocation that
the assembler generates and that causes the linker to fill in this index where
needed.

One final note: it should be clear from the above that there is one GOT for
each DSO and dynamically linked executable. In a process address space where
many DSOs have been loaded there will be several GOTs: the one from the
executable and one for each loaded DSO.

1.1.2 Lazy binding and the Procedure Linkage Table

Filling a GOT entry requires a non-trivial amount of work from the dynamic
loader, which must look up the corresponding symbol into all loaded DSOs until
it finds a match (ELF files come which an hash table of dynamic symbols for
just this purpose). However, in each process run it is possible that many GOT
entries will not be actually be used. This is especially true for entries found

5



in the dynamic libraries’ GOTs: remember, for example, that the entire libc is
loaded, even if you only call printf. All the libc GOT entries not directly or
indirectly used by printf will not be needed by your program. For a large
program using many dynamic libraries (which may in turn load other dynamic
libraries), the number of these unused entries may add up to a considerable
number, so it is tempting to avoid filling them. The usual technique used to
solve this kind of problems is “laziness”: delay the work until the latest time
before it is actually needed. If it is never needed, the work will not be performed.
Even if most entries are actually needed, laziness can improve startup time by
distributing the work more evenly during runtime.

Entries corresponding to functions are first needed when the function is
actually called. Laziness, here, is implemented by letting the code call a stub
function instead of the actual function. The stub function, when called for
the first time, calls the dynamic loader (which, remember, is still there in the
address space) to resolve the symbol, then calls the real function. The stub also
makes sure that the next time the code will call directly into the real function,
skipping the stub. This is achieved using the GOT: the GOT entries that should
point to the imported library functions actual point to the stub. The stub then
replaces the entry with a pointer to the real function.

The stubs are also created by the linker, which then must also be able to
generate code. This arrangement is needed since only the linker has the complete
list of all the external functions needed by the executable or DSO. The stubs
are put one after the other in a Procedure Linkage Table, or PLT for short.
If the code calls the external function foo, the call is redirected to foo@plt,
which is the label of the corresponding stub. The first stub instruction then
jumps indirectly through the foo entry in the GOT. The dynamic loader,
however, initially fills this entry with a pointer to the stub itself, to a set of
instructions that eventually call the dynamic loader, passing it the index of the
foo GOT entry (since there is a stub for each entry, this is a constant in the
stub itself, computed at link time). The dynamic loader will then resolve the
symbol, update the the GOT entry and call the function. Note that the stub
must know the address of the dynamic loader, which is unknown until load time:
an entry of the GOT is reserved for this purpose and is filled by the dynamic
loader, during initialization, with the address of its symbol-lookup routine. All
stubs jump to a common code (at the start of the PLT) which calls through this
entry of the GOT. The dynamic loader must also know which of the several
loaded DSOs is calling the look up routine. For this purpose, another entry of
the GOT is also reserved, and contains a pointer to a per-DSO data structure
allocated by the dynamic loader. The common stub code passes this pointer as
parameter to the lookup routine.

Laziness is typically not implemented for GOT entries pointing to global
data, probably because it is not trivial to remove the stub from the code path
after the first access and it is also not worth the trouble, since there should be
very few global data objects anyway.

6



1.1.3 Constructors and destructors

DSOs can have initialization code that is automatically run before the exe-
cutable main() function, and cleanup up code that is run during normal ex-
ecution (when main() returns or the process calls exit()). GCC allows
the programmer to specially mark any function as a “constructor” using the
__attribute__((constructor)) syntax. A pointer to such a function will
be added to the .init array section, so that a table of function pointers will
be automatically built when the linker will put together all the .init array
sections contained in all the object files. This table will be located and walked
over by the dynamic linker when the DSO will be loaded into a process. Some-
thing similar is done for destructors, which will be called when the DSO is
unloaded (usually when the program terminates).

Exercises

1.2. The GOT, PLT, constructors and destructors tables all provide useful
writeable function pointers that can be overwritten by attackers. De-
pending on the type of bug that the attacker is trying to exploit, these
pointers may be much more convenient than the RIP addresses stored on
the stack. Try to solve the canary1 exercise again, this time overwriting
one of these new data structures instead of the saved RIP.

1.1.4 Versioning

Since dynamic executables and the libraries they depend on are distributed
separately, we face the problem of versioning, i.e., knowing which version of
each library and executable can be safely dynamically linked.

Libraries may change between releases in at least two ways: by introduc-
ing new functionalities while continuing to support the old ones, or introducing
incompatible changes. Version numbers usually try to reflect this by having a
part that changes when new, backward compatible changes are introduced, and
another one that signals incompatible (“breaking”) changes. There is unfortu-
nately no universally agreed upon standard, but “Semantic versioning” is the
most widely adopted scheme. In this scheme, the version number is decomposed
as “major.minor.patch”, where “major” is bumped when breaking changes are
introduced, “minor” for non-breaking changes, and “patch” only for very small
changes such as bug fixes. When an executable (or a library depending on other
libraries) is built, we want to remember the major.minor version of the libraries
used, call it M.m. At load time we can accept any version M.m′.p with exactly
the same major version M , a minor version m′ ≥ m, and any patch level p.
This requirements reflect the fact that our executable may depend on functions
not found in older releases, but it should not be affected by the non breaking
changes introduced in more recent minor releases.

In linux systems these requirements are partially satisfied using some sym-
bolic links and the DSOs “SONAME” (Shared Object NAME) tag in the .dynamic

7



ELF section. For example, when a library libx with version M.m.p is built,
it is tagged with a SONAME libx.so.M.m. The file system were the program
is built will contain the file libx.so.M.m.p and a symbolic link libx.so
pointing to it. At link time, the linker option -lx will cause the linker to
look up the file libx.so and find the symbolic link. The linker will then read
the SONAME tag and copy it into a DT_NEEDED tag of the executable. When
the executable is shipped, we can assume that the target system will contain a
libx.so.M.m.p′ library installed, and a libx.so.M.m symbolic link pointing
to it. At load time the dynamic linker will read the DT NEEDED tag in the
executable .dynamic section and look for a libx.so.M.m file, thus finding the
symbolic link. In this way, an executable built using version M.m.p will be run
using version M.m.p′ of libx, thus ignoring the patch level. The solution is
not able to automatically accept a minor m′ ≥ m, but this limitation can be
sometimes overcome by adding more symbolic links.

The hardest problem, however, comes when a system contains executables
(or libraries) that depend on different, incompatible versions of the same library.
Even worse, the same executable may depend on two such versions, e.g., one
version directly and another version indirectly, through the dependencies of
some linked library. The former problem can be solved in the previous scheme
by having both library versions installed, with libx.so pointing to the newest
one, so that new executables are built against the latest version, while older
executables will find the older library version using the SONAME. The latter
problem is probably unsolvable, since loading two different versions of the same
library is unlikely to work (think of some global state that should be maintained
by the library, or of some data structure created by one version and passed to
the other one).

Linux implements a finer grained scheme that can be used to solve all of the
above problems, with some cooperation from the library authors. Rather than
having only per-library versions, linux libraries can assign a different version to
each symbol and they can export several versions of the same symbol, thus re-
solving internally any compatibility problem. Versions are assigned to symbols
using a “version script” when the shared library is built (--version-script
option of the linker). They show up in the symbol tables with the “sym-
bol@version” syntax. Each symbol also has a default version, which uses two
at-signs instead of one. The default version is picked by the linker when linking
the library to an executable at build time. The executable thus remembers the
version of each symbol it needs. At load time, the dynamic linker searches the
library for the exact version of each symbol.

1.2 Building a dynamically linked executable

The linker will tell the difference between static and dynamic libraries and act
accordingly. If both static and dynamic versions of the same library are available
(.a vs .so files), the linker will choose the dynamic one unless -static is
passed.

Symbols resolved by dynamic linking go into a .dynsym section, while

8



the relative strings go into their own dynstr section. These sections are not
stripped by strip and will go into a loadable read-only ELF segment, together
with other sections related to symbol look-up, relocation and versioning.

The linker also adds the .dynamic and .interp sections. The .dynamic
section is organized as a table of “tag” and “value” entries. The tags are
agreed-upon codes that determine what the value means. One possible tag
is DT_NEEDED, and the corresponding value is the SONAME of a DSO that con-
tains the definitions of symbols needed by the object. The DSOs are looked up
in the file system in a set of standard places, plus all the directories mentioned
in -L flags. The .interp section is filled with the argument of the -loader
option.

The linker will also create a GOT and a PLT as required. This is actually
triggered by the presence, in the linked object files, of relocations related to the
GOT and the PLT.

The linker also selects the default version of each symbol, as found in the
linked DSO, and records it in the dynamic symbol table. The set of versions
(from all imported symbols) is also recorded in the executable, so that a quick
check on the available versions can be performed at load time.

1.3 Loading the executable

Loading an executable is an activity that starts in the kernel, when one of the
exec() primitives is executed, and is completed in user space by the system
dynamic loader.

1.3.1 The kernel

To load a dynamically linked executable, the kernel initially performs the same
actions as for any executable, interpreting the ELF file and loading the text and
data sections into memory (actually, creating the page tables that link virtual
addresses to the location of the corresponding pages in the file), then creating
and filling the stack and so on. Then, it also loads (in a different part of the
address space) the executable mentioned in the .interp section and pushes
on the stack the auxiliary vector. Finally, it yields control to the entry point of
the interpreter, instead of the executable.

1.3.2 The dynamic linker

The interpreter is a statically linked, position-independent executable, usually
living in the /lib directory with a name like ld-linux.so or something like
that.

The interpreter uses the auxiliary vector on the stack to locate the executable
and, in particular, its .dynamic section. It then starts to look up all the
libraries mentioned in the DT_NEEDED tags of the .dynamic section, loading
each one of them and their dependencies (recursively). To load the libraries it

9



actually uses the mmap() system call to map the needed segments of the library
ELF files into the address space of the current process.

The loader looks for each library in many directories in turn. The set of
directories depends on its own configuration, on the configuration of the system,
on options built into the executable itself, and also on the preferences of the user
running the executable (man ld-linux for the details).

The loader then performs all the relocations found in the in the ELF files, in
particular filling the GOT tables of all the loaded DSOs. Then it arranges for
the destructors to be called at normal program exit (using atexit()), it runs
all the constructors, and finally it jumps to the entry point of the executable.

10


