
Exploiting environment variables

G. Lettieri

3 October 2020

1 Introduction

Now let us play the role of an attacker. We assume that we have a normal
account on a Unix system, and we want to escalate our privileges—possibly
“become” root. By this we mean that we want to be able to run programs of
our choice in processes with an effective uid of 0. Our ultimate goal is to get a
“root prompt”, the “# ” prompt that the Bourne shell prints out when running
as root.

Since we are a normal user and our uid is greater than zero, the login
program will call setuid(uid) when we log into the system. This uid will be
inherited by our shell. Assuming that we cannot tamper with the system up to
this point, and that the kernel is working correctly, we now have only two ways
to run programs with an uid other than our own:

1. somehow make processes that have inherited a different uid run what we
want;

2. somehow make available set-uid programs run what we want.

Both of these methods require that the legitimate owners and/or creators of such
processes (case 1) or programs (case 2) make mistakes. In a properly configured
system, we shouldn’t be able to do any harm: processes owned by other users
will run programs that we can’t control, and set-uid programs will do what
they are supposed to do without any interference from us. Unfortunately (for
the victims, but fortunately for the attackers), mistakes are very easy to make,
especially in a highly configurable system that was developed in an environment
very different from our own: a small circle of people where everyone knows
everyone else.

2 Exploiting PATH

Suppose we want user u to run a program of our own choice, let us call it p.
When user u types a command like c at her shell prompt, the shell will search a
set of directories, depending on the contents of u’s PATH variable, for a file called
c. If we can control either u’s PATH variable, or the contents of a directory that

1

comes before the one containing c in the search list, we can make u unvoluntarily
execute our own p when she wants to execute c: just rename p to c and copy it
into the controlled directory. The victim’s shell will find our fake c before the
legitimate one and execute it, using u’s credentials of course.

For this attack vector to work, however, we need u to make some mistake.
We normally have no way of influencing the contents of u’s PATH variable, whose
value is set in the chain of processes that leads from init to her shell, which
we assume is out of our reach. Moreover, if u’s PATH variable only mentions
directories that we cannot write to, such as /bin, /usr/bin, and so on, our
attack options are zero.

However, if we boot our PDP-11, log in as root in our freshly installed Unix
V7 system, and type echo $PATH, our Teletype ASR 33 will print out the
following:

:/bin/:/usr/bin

By default, the root user has an empty path in her PATH (did you notice the
first colon?) What’s more, this empty path comes before the other directories.
This means that whenever the system administrator types a command at her
prompt, her shell will look for a matching executable file in her current directory
before looking anywhere else1

If root has not changed the default, this is the mistake we need. Now all we
have to do is put our attack payload (the program that we want root to run)
into the directories where we have write access (hour home, or /tmp), give it
the name of some common utility (ls, find, cat or whatever), and wait for
root to cd there and execute the payload for us unnoticed.

A possible payload is the following:

cp /bin/sh /home/attacker/hello.c˜
chmod u+s /home/attacker/hello.c˜

We make a copy of the shell with a filename that looks like something else (like
the swap file of some editor) and set the set-uid flag on it. Remember that these
commands will be run by root. Therefore, hello.c˜ is now a shell that gives
root access to anyone who runs it.

1This was done by design. In the earliest Unix implementations, Thompson’s shell searched
for executables first in the current directory, and then in the /bin directory: the idea was that
users where expected to be programmers, and would want to run their own programs, created
in their own directory; /bin was searched after the user’s directory, to avoid accidentally
hiding user programs with omonimous system programs. In V3, the shell also tried /usr/bin
after /bin: this new directory was introduced when the available space in /bin was exhausted
(in fact, the V3 manual calls the /usr/bin files “overflow” programs—V4 hides this bit of
history and tries to repurpose /usr/bin as a place for “lesser used” programs, presumably
because it was searched for last). When environment variables were introduced in V7, the
Bourne shell generalized the search for executables with the PATH variable, following the
example of the PWB shell; the default value was chosen to reproduce the old behavior.

2

Exercises

2.1. Try the above attack in the badpath challenge. Be careful: if something
doesn’t work as expected, root may find out what you are up to.

The attack is a bit risky, since an “ls /tmp” from a safe directory, an
“echo *” from /tmp, an explicit call to “/bin/ls”, and so on, will easily
make the administrator suspicious, and an ls -l /tmp/ls will also reveal
our name as the owner of the script. However, it can be very effective as a
step in a longer privilege escalation chain—we may have stolen the account of
another regular user (e.g., by guessing their password) and created the script
using that intermediate victim’s credentials.

3 Exploiting setuid programs

Now let us try to exploit the second possible attack vector: vulnerable set-uid
programs. These programs must be written very carefully and, as a rule, they
should not trust anything coming from the outside: command line arguments,
environment variables, open files, directories writable by untrusted users—the
list is unfortunately very long.

Set-uid programs are the favorite targets of attackers with login access to a
Unix system (also known as local attackers), and we will examine their possible
vulnerabilities in several lectures. Here we examine some vulnerabilities that
are mostly of historical interest. However, they are helpful in introducing the
topic.

Suppose a novice programmer writes a set-uid program that uses the system()
library function, such as:

#include <stdlib.h>
int main()
{

// stuff
system("grep something somefile");
// other stuff

}

The programmer needed a functionality similar to that provided by the grep
utility, so she decided to reuse grep itself. The problem is not grep: it
could have been anything. The problem is that the system(cmd) works by
fork()ing a process and making it run

/bin/sh -c cmd

The shell will parse cmd according to its usual rules, including using PATH to
look for grep. Now, however, the attacker has a major advantage over the sce-
nario in section 2: the shell created by system() will inherit the environment
of the setuid program; unless the programmer explicitly cleans it up, the setuid

3

program’s environment will be the one inherited from the parent process, i.e.,
the attacker’s shell.

Exercises

3.1. Exploit the above idea to obtain a root shell in the bad0suid challenge.

3.2. The bad1suid challenge contains a setuid binary with a different kind of
vulnerability. Try to obain a root shell from it too.

Notice how vulnerabilities in set-uid programs are much better, from an
attacker’s point of view, than vulnerabilities like the one we examined in Sec-
tion 2. In the “dot in PATH” vulnerability, there are many things that are not
under the control of the attacker, who just has to wait for them to happen by
accident: root (or another user) must have put the dot in her PATH, she has
to cd into the directory where the attacker has planted the trap, she has to
execute the fake command. Errors in the attack payload can also render the
attack ineffective, and the attacker must wait for the entire sequence of events
to occur again, which also increases the chances of getting caught. Vulnerable
set-uid programs, on the other hand, are an attacker’s dream: she can control
essentially the entire execution environment, and she can run them at will.

3.1 Exploiting the IFS variable

Now suppose that the inexperienced programmer tries to patch the vulnerability
in the following way:

#include <stdlib.h>
int main()
{

// stuff
system("/bin/grep something somefile");
// other stuff

}

Since /bin/grep is a path, the shell will not use the PATH variable. Also,
since the path is absolute and only traverses directories writeable only by root,
it must lead to the real grep utility.

Let’s put on our attacker hat again. While thinking of ways to exploit the
new program, we type the following into our V7 shell:

IFS=,
ls,-l

Perhaps surprisingly, our teletype starts printing the long listing of the current
directory. What we have done is to change the value of the IFS variable,
which contains the characters that the shell uses as field separators (IFS stands

4

for Internal Fields Separator). After parsing the command line into words and
operators, the shell examines each word for possible expansions (e.g., processing
$variable expressions) followed by field-splitting. The latter processing uses IFS
to split words into fields, which then become the actual arguments used to
execute a command. The default value of IFS is 〈space〉〈tab〉〈newline〉, but
now we have changed it to a comma. This splits “ls,-l” into “ls” and “-l”,
resulting in a normal call to the ls program with the -l option. The 9-fields
revision of the elementary shell of Chapter ?? supports IFS. The processing is
implemented in a new function fieldsplit() that is called by expandall()
on every normal word, after expandword() has finished.

Exercises

3.1. Abuse IFS to get a root shell from the vulnerable seduid program in the
bad2suid challenge. This challenge uses a shell (bad2sh) that uses IFS
the way the Bourne shell did: all the characters in IFS are equivalent to
whitespace. You can see the code in the 9-fields revision of the elementary
shell.

3.2. The bad3sh used in the bad3suid challenge implements IFS processing in
a different way, as mandated by POSIX. In particular, point 3 of Section
2.6.5 of the standard says:

[. . .] The term “IFS white space” is used to mean any sequence
(zero or more instances) of white-space characters that are in the
IFS value (for example, if IFS contains 〈space〉〈comma〉〈tab〉,
any sequence of 〈space〉 and 〈tab〉 characters is considered IFS
white space).

a. IFS white space shall be ignored at the beginning and end
of the input.

b. Each occurrence in the input of an IFS character that is
not IFS white space, along with any adjacent IFS white
space, shall delimit a field [. . .].

c. Non-zero-length IFS white space shall delimit a field.

The 9-fields.2 revision of the elementary shell implements the necessary
changes in the function fieldsplit(). With these rules, the attack you
used in Exercise 3.1 will not work. However, you can still obtain a root
shell from the bad3suid program (this is based on a real attack).

4 Countermeasures

The story above takes place in 1979. How effective are these types of attacks
today?

5

Countermeasures have been introduced with more secure defaults and some
tweaks to the behaviour of the most security-sensitive utilities. In most cases,
however, users and programmers still need to be very careful.

4.1 Default value of PATH

Default initialization scripts and programs no longer put the current directory
in PATH, nor do libraries provide an unsafe PATH if the variable is not explicitly
set, as they used to do. If users really want to keep the current directory in
their PATH, they should very carefully ls directories like /tmp before cd-ing
into them. Putting the current directory last in PATH can also help, but it’s
not foolproof either: the attacker can put an sl in /tmp and wait for a user to
mistype. Much better is not to put “.” or empty paths into PATH at all, and
just use the “./” trick when we want to run a program that lives in the current
directory.

Note, however, that the current directory may also enter PATH uninten-
tionally. Empty paths can appear in PATH as a result of expanding undefined
environment variables. Suppose you have installed a subsystem that puts its
executables in a non-standard directory (a very common occurrence). You put
the path to that directory in a variable, then expand that variable into your
PATH in some of your shell initialization scripts:

mybin=/opt/mysubsys/v0.1/bin
lots of other stuff
PATH=$mybin:/usr/local/bin:/usr/bin:/bin

Some time later you uninstall the subsystem, delete the line that creates mybin,
but forget to remove $mybin from the assignment to PATH. Now you have an
empty path in your PATH.

4.2 IFS according to POSIX

Shells still implement IFS, but they use it in a much more restricted way. The 9-
fields.3 revision of the elementary shell contains an implementation that adheres
more strictly to what POSIX says. First of all, the shell must reset the value
of IFS when it starts (section 2.5.3 of the standard). Second, field splitting
must be applied only to the portions of the words that result from a previous
expansion (point 2 of section 2.6 of the standard). For example, in a string like
“a,b,$X”, only the characters (if any) that result from the expansion of $X
should be scanned for IFS separators. Assume that X=c,d and IFS=,: then
field splitting of “a,b,$X” will produce two fields: “a,b,c” and “d”. As a
further example, the “ls,-l” string of Section 3.1 will not be split at all, since
no expansion is called for.

6

4.3 Privilege drop

There is also a more general line of defense, that is implemented in all modern
shells. If we try these attacks on a modern system, we will find that the result-
ing set-uid shell will not give us root access. For example, consider the PATH
attack above, where we tried to create a set-uid shell disguised as a normal
hello.c file. After successfully running the attack, we can confirm that the
set-uid flag is set on hello.c , but when we run it we do not get the root
prompt. If we run the id program we will see that our uid is still the unprivi-
leged one that we already had. When they start, many shells (including bash
and dash) call getuid() and geteuid() to get the real and the effective
uids of the process that is running them. If the two uids are different, the shells
will call seteuid() to reset the effective uid back to the real one. To imple-
ment this mitigation in our shell, we should add the following code to main(),
before the program does anything else:

seteuid(getuid());

(And similarly for the effective and real group).
We will see in a moment that this check is completely ineffective against

the PATH attack of Section 2. This mitigation only addresses the case of set-
uid programs calling system(). In fact, set-uid programs should never call
system(), because shells, especially the modern ones, are large and complex
programs with possibly many little-understood quirks and unexpected behavior.
Here are just a few examples:

1. up to version 4.2-208, bash function names allowed the “/” character in
them; an attacker could therefore easily redirect a system("/bin/cmd")
by defining a /bin/cmd function;

2. up to version 4.4, bash “xtrace” feature would expand PS4 before execut-
ing any command; xtrace can be set in SHELLOPTS and PS4 can execute
the attacker’s payload using command substitution.

If an external program is really needed, it is better to use one of the exec*()
functions without going through a shell. If a buggy set-uid program calls
system() anyway2, the shell will use the above mitigation to drop privileges
and prevent harm.

In the case of the PATH attack, on the other hand, the above mitigation
is just a minor inconvience for the attacker. Remember that the shell is not
magic, and the attacker can create her own shell, one that does not check the
uids. Better yet, we can note that sudo is able to give us a root prompt (sudo
-s or sudo -i), of course if the system configuration allows it. Remember that
even sudo is not magic: it is just set-uid root. So, when we run sudo our real
uid is different from the effective uid. However, sudo is apparently able to hide
this fact from any shell and avoid the privilege drop. How is this possible? The

2Or, as we will see later on, is forced to call system() by an attacker exploiting some bug.

7

solution is simple: if our effective uid is 0, we can call setuid() and set the real
uid to 0 as well. Now the two ids are no longer different, and the shell’s check
becomes ineffective. This is (essentially) what sudo does before running the
shell, and this is what we can do ourselves. We compile the following program:

#include <unistd.h>
int main()
{

setuid(0);
execl("/bin/sh", "/bin/sh", NULL);

}

and put it somewhere, say in /home/attacker/mysudo. Then we use the
following payload for the PATH attack:

chown root /home/attacker/mysudo
chmod u+s /home/attacker/mysudo

If root is caught in the PATH trap, she will turn our mysudo program into a
set-uid program that will give us a root prompt.

Because it is so easy to defeat the (e)uid check, some shells don’t even try
to protect themselves in the general case. In bash and dash, for example, you
can avoid going through the mysudo program above: create the set-uid root
shell and pass it the -p option. The shell will skip the check and give you the
root prompt. The system() use case should still be safe, however, since in
this case the attacker cannot control the options that are passed to the shell at
startup.

8

