
Format Strings

G. Lettieri

18 October 2023

1 Introduction

“Format strings” are the control strings that are passed to the printf() family
of functions and contain the output template for the functions. These functions
are vulnerable whenever the attacker can control the format string itself.

These vulnerabilities can be very powerful in the hands of a skilled attacker.
In the worst case, the attacker will be able to perform arbitrary memory reads
and even arbitrary memory writes. That is, the attacker can be able read words
from memory addresses chosen by the attacker, or overwrite memory locations
chosen by the attacker with values chosen by the attacker.

It should be clear how these powers allow an attacker to completely defeat
stack canaries, e.g., by reading the canary from memory, or by overwriting the
global canary, or by overwriting a return address without touching the canary.

2 Format string bugs

The attack vectors come from the way variadic functions are implemented in
C. Variadic functions are declared by ending the list of their arguments with
“...”. For example, printf() can be declared as

int printf(const char *fmt, ...);

Basically, the C compiler handles variadic functions by simply not checking the
number and types of the arguments that are passed to the function in the “...”
position. All the arguments found in the call site are put in their place in the
registers or on the stack. If the called function needs one of these arguments,
it reads the expected location for that argument. The function has no way of
knowing if the argument was actually passed by the caller, or if the argument
type was the correct one: it will read whatever the expected argument location
currently contains, and interpret it as a value of the expected type. Correct
functionality depends entirely on the conventions between the caller and the
called program. The programmer must follow these conventions, making sure
to pass all the arguments that are actually needed in each call.

In the printf() family of functions, the convention is that each format
specifier takes an additional argument. For example, in

1

printf("a is %d and b is %d\n", a, b);

the first “%d” will read the first argument (a) after the format string, interpret
it as an integer, and print its decimal value; the second “%d” will read the next
argument (b). On 32b systems, the first argument is on the stack, just below
the pointer to the format string; the second argument is below the first one,
and so on. On 64b systems the first 6 arguments (including the pointer to the
format string) are passed in registers, and any additional arguments are pushed
on the stack.

Now consider a call like this

printf("a is %d and b is %d\n", a);

where there are two “%d”s, but only one additional argument. This code will
compile. At runtime, the printf() function will read and print the value of
a correctly, but then it will also print whatever is stored under a on the stack
(32b), or the current contents of the rdx register (64b).1

Finally, consider a statement like this

printf(buf);

where the contents of buf are controlled by the attacker. The programmer
simply wanted to print a string, but printf() interprets every “%” character
inside buf as a format specifier. Each one of these format specifiers needs a
corresponding argument and printf() will read the registers or the memory lo-
cations where that argument should have been, under the attacker’s control (the
correct way to print a string is either puts(buf) or printf("%s", buf)).

3 Exploiting format string bugs

Now let us play the role of the attacker and assume that we can control a format
string used by a victim program.

Probably the best way to think about what we can do, is to think of
printf() as a new machine with its own programming language, see Fig-
ure 1. The format string (in gray) is the program and the instructions are
normal characters and format specifiers. The printf() machine has its own
instruction pointer, pointing to the next character/format specifier to “execute”.
This pointer moves only forward without jumps in either direction: there are
no loops and no conditional branches. The arguments are stored in “argument
slots” numbered sequentially from 1. In the 32 bit printf() machine, each
slot is 4 bytes and the first slot is the stack-line pointed by esp immediately
before the call that jumps to printf().

The instructions update the machine state which includes its instruction
pointer and:

1Modern compilers can be instructed to recognize “printf-like” functions and will issue
a warning if the conventions are not followed.

2

a=
%x,

b=%d
00

33221100
33000000

. . .

1
2
3

(esp)

Instruction Pointer

2

Argument Pointer

12

Output Counter

printf() machine

a=112233, b=

output

Figure 1: The printf() machine (32 bit version).

1. an argument pointer, containing slot number of the next argument;

2. an output counter, containing the number of characters that have been
output so far.

The machine also produces output—the characters sent to the standard output.
For example, any ordinary character, such as “a”, can be seen as an instruction
to print the character itself. As a side effect, the instruction pointer moves past
the character in the string and the output counter is incremented by one, while
the argument pointer doesn’t change. As another example, a “%d” specifier
reads the argument referenced by the argument pointer and moves the argument
pointer to the next slot, interprets and outputs the argument as an integer, and
increments the argument counter by the number of output characters; finally,
the instruction pointer moves past the “%d” in the string. In Figure 1, the
machine has already executed a=%x, b= and output 12 characters; instruction
%x has consumed the argument stored in slot 1 and now the argument pointer
points to slot 2; the next instruction, %d, will read the 0x00000033 argument
stored in slot 2, convert it to base ten and output the corresponding characters.

Surprisingly, the printf() machine can also write to memory: see the man
page for the little-known “%n” format specifier. The argument to this specifier
must be a pointer to an integer variable. printf() will execute it by writing
the current output counter into the variable. For example, assume that cnt1
and cn2 are two int variables; then, the following statement

printf("AAAAA%nBBB%nCCCC", &cnt1, &cnt2);

will assign 5 to cnt1 and 8 to cnt2.
The 64 bit printf() machine (Figure 2) is very similar, but the argument

slots span 8 bytes and the first 5 slots are the rsi, rdx, rcx, r8, and r9

3

a=%x,

b=%d00

3322110000000000
3300000000000000

1 rsi
2 rdx
3 rcx
4 r8
5 r9

6
7
8 . . .

(rsp)

Instruction Pointer

2

Argument Pointer

12

Output Counter

printf() machine

a=112233, b=

output

Figure 2: The printf() machine (64 bit version).

registers; slot 6 is the stack-line pointed to by rsp immediately before the
call printf instruction.

3.1 Stack reads

The simplest way to exploit a format string vulnerability is to leak information
from the stack of the process under attack. On 32b systems, a sequence of %x
specifiers will cause printf() to print successive lines from the stack. On
64b systems, the first 5 %lx will print the contents of the rsi, rdx, rcx, r8,
and r9, and any additional %lx will start printing successive stack lines. By
studying the binary, or simply by observing the output, the attacker may be
able to determine which of these lines contains the stack canary. On 32b systems
the canary can be read with %x, but on 64b you need %lx, because %x will only
read 4 bytes in both systems.

Exercises

3.1. Steal the canary and then the flag from challenge canary0.

3.2 Random access to arguments

The only real difficulty in the attack of Section 3.1 comes from space limitations
in the controlled buffer, since the argument pointer is only moved forward by
format specifiers, and each format specifier requires space in the format string.
Since any format specifier will move the argument pointer by at least one stack
line (which is 4 bytes in 32b systems and 8 bytes in 64b systems) the attacker

4

can use a format specifier which is as small as possibile: any of %d, %x, %c,
. . . will do, so the attacker needs to use at least two bytes of the buffer for each
stack line that she needs to skip: if the buffer size is s, the attacker can only
move the argument pointer by ⌊s/2⌋ lines, which may not be enough to reach
the canary’s position.

However, there is another little known fact about format string: arguments
can be accessed in random order using the “%n$” syntax, which selects the nth
argument directly. For example,

printf("%4$d %1$d %3$d %2$d\n", 10, 20, 30, 40);

will print “40 10 30 20”.
In some cases, this syntax can be used to easily overcome the space limita-

tions that we have mentioned above. If we know that the canary is n stack-
lines below the stack top, “%n$x” will print it directly on 32b systems, while
“%(n+ 5)$lx” will do the same on 64b ones.

This technique, however, relies on some implementation quirks of the C li-
brary. It was available in old versions of glibc, and in modern versions only
if some compile options are not enabled (see FORTIFY_SOURCE in Section 4).
According to the C standard, random access and (the normal) sequential argu-
ment access are mutually exclusive (i.e., the same format string cannot contain
both forms), and more importantly, once all the argument numbers have been
collected, there can be no gaps left. This means a that a format string like
“%n$x” with n > 1 is non-standard, since it references the nth argument with-
out also referencing all the arguments from the 1st to the (n − 1)th. We can
understand why the standard imposes this no-gaps requirement: to jump to
the nth argument, printf() must know how many stack lines (and registers)
are occupied by the arguments up to the (n − 1)th. However, arguments can
occupy a variable number of stack lines, depending on their type. For exam-
ple, long long occupies two lines on 32b systems, while long double takes
three lines on 32b systems and 2 lines on 64b systems. To implement random
access arguments, the printf() function should scan the format string a first
time, without producing any output, to collect all the argument types. Then
it should start the normal scan, using the types collected in the first scan to
compute the correct stack line of each argument. For this algorithm to work,
however, the first scan must eventually see all the arguments from the 1st to
the highest referenced number. This is how musl libc works, for example.

We can see that, if the no-gaps rule is enforced, random access arguments
cannot be used to overcome the space limitations in the buffer. When glibc
allows this behaviour, though, it simply assumes that all non-referenced argu-
ments occupy one stack-line each.

Even when the teqnique is available, there may be limits on the maximum
number of arguments, so the attacker will usually not be able to use this feature
to read memory very far down the stack, or especially at addresses lower than
the top of the stack.

5

for
mat
stri
ng00

. . .

1
2

o
o+ 1
o+ 2
o+ 3
o+ 4

(esp)

Instruction Pointer

o+ 1

Argument Pointer

Output Counter

printf() machine

Figure 3: Argument pointer inside the format string.

44332211
%c%c
%s00

AAA
44332211
%c%c
%c%s
00

1
2
3
4
5
6

(esp) 1
2
3
4
5
6
7

(esp)

Figure 4: Format strings that will read from memory, at address 0x11223344.

3.3 Arbitrary memory reads

The above limitations can be overcome if the attacker can control both the
printf() program (i.e., the format string) and at least some of its arguments.
This may be the case, for example, if the format string controlled by the attacker
is itself on the stack and can be accessed by the argument pointer.

Suppose that there are o stack-lines between the line pointed to by first
argument of printf() (included) and the first line of the copy of the format
string (excluded). In 32b systems, arguments number 1 to o will read from
these o stack-lines, while argument number o+ 1 will read from the first line of
the format string (see Figure 3). In 64b systems, arguments 1–5 will read from
the usual registers, arguments 6 to o + 5 will read from the o stack-lines, and
argument o + 6 will read from the first line of the format string. The attacker
can therefore put both the instructions and their arguments in the same format
string “program”.

This is rather useless for instructions like “%x”, but consider the “%s” in-
struction, instead. Normally, this prints a string, but when reinterpreted as in
instruction for our printf() machine, it prints the contents of memory start-
ing from the address specified by its argument and stopping at the first null
byte. If the attacker can choose the address that the instruction will use, it is
an arbitrary memory read instruction.

For example, suppose that o is 2, the victim program is a 32b one, and the

6

%c%c
%c%s
11220044

%3$s
11220044

1
2
3
4
5

(esp) 1
2
3
4
5

(esp)

Figure 5: Format strings with embedded null bytes.

buffer is stack-aligned. To read bytes from address 0x11223344 the attacker
can prepare the string “\x44\x33\x22\x11%c%c%s” (see Figure 4 on the
left). The purpose of the two “%c” instructions is to move the argument pointer
until it points to the beginning of the format string, so that the “%s” instruction
can take the 0x11223344 address as an argument. If the buffer is not stack-
line aligned you may need some padding bytes at the beginning before writing
the address. For example, the format string on the right of Figure 4 starts at
byte 1 of stack line 3, so we have added three garbage characters to properly
align the address. Now the the address is at argument 4 instead of 3, so we also
added a third %c before the %s.

A problem may arise if there are no null bytes to stop printf() before it
reaches some unreadable addresses, which may cause the process to be termi-
nated. We can easily overcome this limitation by using a “%.ms” instruction,
which will always read (and print) at most m bytes.

Null bytes in the address, however, can be a problem, since the null byte is a
halt instruction for printf(). For example, in the format string above a null
byte in the address would stop the printf() before it could even see the first
“%c” instruction. However, if null bytes are otherwise allowed in the format
string, this is not really a problem: the address can be placed after the instruc-
tions. For example, suppose we want to read address 0x44002211, the program
is 32b and that o is 1, with the format string stack-line aligned. Then, we can
send the string “%c%c%c%s\x11\x22\x00\x44” (Figure 5 on the left). Note
that we added an extra “%c” to move the argument pointer one step further.
If random access is available, this is even easier: %3$s\x11\x22\x00\x44”
(Figure 5 on the right). If null bytes are not allowed anywhere, but the address
only contains null bytes in the most significant positions, the attacker can still
succeed by placing the non-null bytes of the address at the very end of the
string and exploiting any null bytes that might accidentally follow the string in
memory.

3.4 Arbitrary memory writes

The ultimate power comes from the ability to overwrite arbitrary memory words
with arbitrary values. This can be accomplished by using the “%n” instruction,
taking the address from the format string itself, and by precisely controlling the
output counter.

Controlling the output counter is less difficult than it may seem, since an
instruction like “%mc” will always increment the output counter by exactly m.

7

If there are also other instructions in the format string, you must be careful to
control the number of bytes that they output. This can be done by adding width
specifiers to each one of them, but be aware of the exact semantics: “%ms” will
always output at least m bytes, while “%.ms” will always output at most m
bytes. If you want exactly m bytes, you need both: “%m.ms”.

Another possible difficulty comes from the fact that, if you want to write a
very large value (say, the address of a function), you may have to output an
impractical or impossibly large number of bytes. This difficulty can be overcome
by using the “%hn” instruction, which truncates the counter to a short (2 bytes),
or even “%hhn”, that truncates it to a char. If you use the latter instruction 4
times on consecutive addresses, for example, you can write any 32 bit value one
byte at a time, always incrementing the output counter by a maximum of 255
bytes. Note that, if the LSB of the counter is c and you need a value v < c, you
cannot subtract from the counter, but you can increment it by 256− c+ v bytes
and the LSB will become v.

As an example, suppose that you want to write the value 0x33225544 and
the LSB of the output counter starts at 32. You can send

"%36c%hhn%17c%hhn%205c%hhn%17c%hhn"

The first instruction sets the counter to 32 + 36 = 68 = (44)16 and the second
instruction writes it to memory; the third instruction sets the counter to 68 +
17 = 85 = (55)16; the fourth instruction writes the new counter to memory;
the fifth instruction sets the counter to 205 + 85 = 290 = (122)16 and the
sixth instruction writes its LSB—i.e., (22)16—to memory; finally, the seventh
instruction sets the counter to 290+17 = 307 = (133)16 and the eight instruction
writes the final (33)16.

Of course, the above format string is incomplete, since we need to provide
arguments for all of the “%hhn” instructions. Since we are moving the argument
pointer sequentially, we also need to provide a dummy argument to each “%mc”.
For example, suppose that o is zero, the format string is stack line aligned,
the system is 32b, and we want to write 0x33225544 to memory address
0x01020304. We can complete the above format string by prefixint it with
the following

"AAAA\x04\x03\x02\x01BBBB\x05\x03\x02\x01"
"CCCC\x06\x03\x02\x01DDDD\x07\x03\x02\x01"

The “AAAA”, “BBBB”, and so on, serve as dummy arguments for the c instruc-
tions and to re-align the next argument to the stack line. The other arguments
are the addresses of all the bytes of the target memory location, starting from
the least significant one.

Figure 6, on the left side, shows the complete format string on the stack.
Note that printf() will also process the initial part of the string as a program
before reaching the part that will reuse this same string for the arguments. In-
terpreted as a program, this part of the string only prints bytes, since it contains
no format specifications. However, it does increment the output counter, which

8

AAAA
04030201
BBBB
05030201
CCCC
06030201
DDDD
07030201
%36c
%hhn
%17c
%hhn
%205
c%hh
n%17
c%hh
n00

04030201
05030201
06030201
07030201
%52c
%1$h
hn%3
3c%2
$hhn
%205
c%3$
hhn%
17c%
4$hh
n00

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

(esp) 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(esp)

Figure 6: Format strings that overwrite memory (write 0x33225544 at address
0x01020304).

will end up being 32. For this reason we assumed an initial counter of 32 in the
calculations above.

Random access arguments (Section 3.2) can slightly simplify the creation of
such format strings, since we don’t have to provide dummy arguments for the
%mc specifiers. The resulting string is shown on the right of Figure 6.

Exercises

3.2. Skip the canary and overwrite the return address directly in challenge
canary1.

4 Mitigations

The gcc compiler and glibc library include a number of mitigations for this type
of attack. The mitigations are enabled when the _FORTIFY_SOURCE macro is
defined and the optimization level is at least one (-O or higher). The macro
can be set to either 1 or 2, with the latter enabling stricter checks that may
break some program. It is often the case that _FORTIFY_SOURCE has already
been defined for you, so you only need to enable optimizations to include these
mitigations in your programs.

This option enables several checks, both at compile time and at run time,
that try to limit or prevent the effects of cetrain types of bugs. As far as
format string bugs are concerned, these are the most relevant changes when
_FORTIFY_SOURCE is set to 2:

9

• glibc will abort the process if a format string with random access argu-
ments does not use all the arguments;

• glibc will abort the process if a format string containing a “%n” operator
is read from writeable memory.

You can see how the most advanced uses of format string bugs, and in particular
the arbitrary memory write exploits, are made much more difficult to exploit
when these checks are in place.

Modern compilers also issue warnings when they see printf()-family func-
tions being used in possibily unsecure ways. In gcc you can enable these warn-
ings with the -Wformat-security compile option.

10

