Heap exploitation

G. Lettieri

15 November 2023

1 Introduction

The heap is the area of a process’ memory from which the C library’smalloc ()
function and the C++ new operator allocate space. These functions/operators
return a pointer to the allocated memory, which the program can then use freely.
However, no bound checks are usually performed and the program may inad-
vertently write beyond the allocated memory. Such overflows in heap-allocated
data can overwrite other data and also heap metadata. An attacker can exploit
these bugs to execute arbitrary code, similar to stack overflows.

In addition, languages such as C and C++, where the programmer must also
remember to free () /delete the memory that she has allocated, also create
new opportunities for bugs. We will examine the following two categories of
bugs:

e double-free, where the programmer accidentally frees the same memory
twice;

e use-after-free, where the programmer frees a data object, but then acci-
dentally continues to access it.

2 Heap implementation

The kernel has only a very coarse view of a process’ heap: it only remembers
its boundaries. The heap typically grows from lower to higher addresses. The
lowest address is chosen by the kernel (if ASLR is not enabled, the kernel simply
chooses the first properly aligned address after the end of the .bss). The
highest address is chosen by the process itself, using the brk () system call or,
more likely, the sbrk () function, which internally calls brk (). The kernel will
allow memory accesses within the heap boundaries without any interference,
while accesses outside the boundaries (at addresses that are not mapped to
anything else) will cause a segmentation fault.

This heap region can be used by the process as it wishes. Typically, however,
programmers use an heap management library, such as the one included in the
C library, to allocate/dealloc memory from the heap region. The C malloc
libraries implement at least these two functions:

e void xmalloc(size_t sz): allocate a data object of size_t bytes;
e void free(void xp): free a previously allocated item.

There are many libraries that implement these functions, but the one imple-
mented in the GNU C library (glibc) is probably the most used on Linux sys-
tems, as it is the one available by default. This library was originally based on
Doug Lea’s malloc, also known as dlmalloc, a freely available, state-of-the-art
malloc implementation. Today, glibc’s malloc is still derived from Doug Lea’s
malloc, but with many enhancements. In the following we will only consider
dlmalloc, but most of what we say applies to glibc as well.

2.1 Doug Lea’s malloc

The purpose of any malloc library is to remember which parts of the heap have
been allocated and which parts are still unused. These parts are called chunks in
dlmalloc. When malloc () is called, the library should find a sufficiently large
free chunk and mark it as occupied. If the free chunk is larger than requested,
the library can also split the chunk, allocating the requested part and creating
a new free chunk to hold the rest. When free () is called, the library should
mark the chunk as free and possibly merge it with any adjacent free chunk
to create a larger free chunk. This process, called coalescing, is necessary to
reduce the risk of fragmentation, i.e., the creation of many small free chunks
that cannot be used to serve larger requests.

Doug Lea’s malloc implementation is based on the following ideas, as sug-
gested by Donald Knuth in The Art of Computer Programming:

e embedded metadata;
e boundary tags.

By “embedded metadata” we mean that the descriptors of the chunks are stored
in the same heap region as the chunks themselves. In particular, each chunk,
whether free or used, is preceded by a chunk header which stores information
about the chunk and, in particular, remembers its size. This design is almost
forced by the fact that the free () function only gets the pointer to the chunk
to free, but does not say what the size of the chunk is. The library must then
recover the size itself, and an easy way to do this is to store it in memory just
before the pointer. The pointer returned by malloc (), which the user should
then pass to free () is called the user pointer. The pointer to the header is
instead called the chunk pointer, and can be obtained from the user pointer by
subtracting the header size (8 bytes on 32 bitxs systems and 16 bytes in 64 bit
systems). The part of the chunk that the user should be able to access (i.e.,
the chunk memory minus the header) is called the user memory. The header
is not the only metadata stored in the heap. Free chunks are kept in a list
(actually one of several disjoint lists) and the chunk’s list pointers are stored in
the otherwise unused chunk’s user memory itself, right after the header. Note
that this means that dlmalloc will always allocate chunks of a size that can

«—— ¢1 chunk pointer

size(cy) | x = PREV_INUSE bit

l«——— ¢1 user pointer

€1 user mem

«—— c2 chunk pointer

¢ header
size(cg) | 1< PREV_INUSE bit

Figure 1: Memory layout for an in-use chunk ¢, followed by a chunk c;. Each
line is 4 bytes on 32b systems and 8 bytes on 64b systems. The header of c;
contains the size of ¢; and the PREV_INUSE bit with either x = 1 or 2 = 0
depending on whether the chunk before ¢; (not shown) is in use or free. The
PREV_INUSE bit in the header of ¢y is set to 1 because ¢; is in use. Note that
the user memory of ¢; extends to the first line of the header of co. Note also
that the chunk pointers always point to the beginnig of the header, even if the
first line of the header is part of the user memory of the previous chunk.

contain these pointers, even if you request a smaller size. The library needs
two pointers for each chunk, called £d for forward and bk for backward, to
implement a double-linked list, so the minimum size of a chunk is 16 bytes on
32 bit systems (4 + 4 for the two pointers, plus the 8 byte header) and 32 bytes
on 64 bit systems. For alignment reasons, dlmalloc also only creates chunks
that are multiples of 8 (32b) or 16 (64b) bytes.

By “boundary tags” we mean that each free chunk is bounded by two tags
that store its size: one before the user pointer (head) and one at the end of
the user memory (foot). In dlmalloc, these tags always store the total size of
the chunk (header plus user memory). The head tag is just the one stored in
the chunk header. The foot tag is useful when the chunk is free and the next
adjacent chunk is also free. Let us call the two adjacent chunks ¢; and ¢y, where
¢y already free. The free operation on cy should coalesce co with ¢1, but it
must first be able to find the header of ¢;. The foot tag of ¢; will then give the
offset that must be subtracted from the chunk pointer of ¢s to obtain the chunk
pointer of ¢;. In dlmalloc, the foot tag of ¢; is actually part of the header of
co. However, since the foot tag is only needed when c¢; is free, the tag memory
becomes part of the user memory of ¢; while ¢; is in use. The header of ¢,
contains a bit, the PREV_INUSE bit, which is set when ¢; is in use and reset
when it is free. Because of the alignment constraints, the lower bits of the chunk

! «—— c1 chunk pointer

c1 header
size(cr) | x
fd l« - - - - ¢1 user pointer
bk
size(cy) «—— ¢ chunk pointer
¢ header
size(ca) | 0

Figure 2: The same chunks as in Figure 1 after ¢; has been freed. The first
two lines of the user memory of ¢; have been reused to store the f£d and bk
pointers that put ¢; into a doubly-linked list of free chunks. The last line of ¢;
user memory now contains ¢;’s foot boundary tag, which is actually part of cs’s
header.

size are always zero and can be reused to store some flags. In particular, the
PREV_INUSE bit is stored in the least significant bit of the size field. Figure 1
shows the state of the chunks when ¢; is in use, while Figure 2 shows the same
chunks when ¢; is free.

2.2 Fastbins

The basic scheme described above is enhanced in a number of ways. We will
focus on just one of these: the fastbins. The fastbins are a cache of small chunks
that have been freed and can be recycled in their current form. When the
free () function receives a chunk whose size qualifies it for recycling, it doesn’t
free it (and therefore doesn’t merge it with any neighbouring free chunk), it
just puts it, as-is, into the fastbins. The fastbins are an array of singly linked
lists of reusable chunks. There is a separate list for each possible size, starting
with the minimum size and going up to a maximum size. For example, on 64b
systems there may be a list for 32 byte chunks, another for 32 + 16 = 48 byte
chunks, then 64 byte chunks and so on up to, say, 144 byte chunks. The head
pointers of these lists are stored in an array that is part of the main heap data
structure, called the arena. The arena itself is stored at a know address within
the library. Chunks with eligible sizes are pushed to the front of the appropriate
fastbin list. When malloc () needs to allocate a chunk of one of the fastbin
sizes, it first looks in the corresponding fastbin list. If the list is not empty it
pops the first element and returns it, otherwise it continues with the normal

search. Fastbins are important for performance because they skip all the chunk
splitting and merging operations, reducing malloc () and free () operations
to just a few instructions.

3 Metadata Exploitation

An overflow in the user memory of a chunk can overwrite the header of the next
chunk in the heap. Probably the first public exploit of this type of bug was
published by Solar Designer in 2000!. The idea was to abuse the unlink ()
macro in the dlmalloc free () function. This macro is called when free (a)
tries to merge the a chunk with the neighbouring free chunks. The macro
removes the free chunk from its doubly-linked list by writing to the £d and bk
pointers. In particular, if p is the pointer to the chunk to be extracted, the
macro performs the following two assignments:

p->fd->bk = p->bk;
p->bk->fd = p->fd;

Now, by overwriting the header of the chunk, we can create a fake previous
free chunk pointing to some memory controlled by the attacker. So the two
assignments above will use the p—>fd and p->bk pointers provided by the
attacker, let us call them = and y. The first assignment writes y to address =
plus the offset of bk in a chunk, call it o (three lines, see Figure 2), which gives
the attacker an arbitrary write primitive. The possible uses of this primitive are
actually limited by the second assignment, which also writes x to address y plus
the offset £d, calling it oy (two lines). So both z + 05 and y + oy must point to
writable memory. Solar Designer’s exploit makes z+ o0, point to one of the GNU
malloc hooks, such as _ free_hook and __malloc_hook. These hooks are
called by glibc malloc whenever free () ormalloc () is called, and can be used
by programmers to trace or extend malloc functionality. The exploit overwrites
one of these hook with a pointer y in memory controlled by the attacker, in
the heap itself, where some shellcode had previously been injected. The hook
would then be overwritten when the program called free () on the overwritten
chunk, and the shellcode would then be executed the next time the program
tried to call the hook (see the exercises for more details).
This attack doesn’t work on modern systems for a couple of reasons:

e writable memory is no longer executable, thanks to the NX bit, so there
is nothing useful to assign to either x + oy or y + oy;

e the current unlink () macro (now a function) does some integrity checks
on the pointers before using them.

This doesn’t mean that there are no other possible heap exploits. In fact, many
more have been found since then, and many other integrity checks have been

Thttps://www.openwall.com/articles/ JPEG-COM-Marker-Vulnerability

arena arena

I | I —
| header | | header |
| | ! |
fd — C fd
rest of list
(a) After first free (c). (b) After second free (c).

Figure 3: Loop in a fastbin list created by a double-free bug.

added to malloc implementations, often in response to a new type of attack?.
We examine just one example below.

3.1 Double-free and fastbins

Suppose a victim program contains a double-free bug on chunks whose size in
within the fastbin range. Suppose that c is such a chunk. The first free (c)
will push the chunk in front of its fastbin list. This is done by copying the
fastbin head into the fd field in the chunk, and copying the chunk pointer
into the fastbin head (Figure 3a). Now consider what happens when a second
free (c) is called: the fastbin head, now pointing to (the header of) c, is
copied into the £d field of ¢, and the chunk pointer of c is copied (again) into
the fastbin head (Figure 3b). This creates a loop in the fastbin list, whichk can
be exploited as follows

e let the victim program to allocate a new object from the fastbin; this
returns c;

e cause the victim program to write a pointer of the attacker’s choice into
the user memory of c; this overwrites £d;

e cause the victim program to allocate another object from the fastbin; this
returns c again, and copies the attacker’s pointer into the fastbin head,

e causing the victim program to allocate another object from the fastbin;
this returns the attacker’s pointer (plus the size of the header);

Now, any attacker-controlled write to the user memory of the last chunk will
write to the location chosen by the attacker. See the exercises for more details.

2 Also, counter-attacks to many of the integrity checks have been found, including the one
in unlink ().

4 Non-metadata exploitation

Let us now consider an example of how dynamic memory bugs can be exploited
even without touching or overwriting any heap metadata.

Probably the most common bug found in programs using dynamic memory is
the use-after-free bug: one part of the program frees an object, call it o, while
some other part of the program still holds a pointer to o;. This “dangling”
pointer may be used later assuming that it still points to o1, but 01’s memory
may actually have been recycled and now stores a completely unrelated object,
call it o0s.

This bug can be exploited in many ways, but a particularly favourable sce-
nario for attackers is the following:

e the 01 object contains a function pointer;
e the attacker controls a field of 05 that overlaps a function pointer in o;.

Now, when the victim program calls the function pointer in oy, it will transfer
control to the location chosen by the attacker (e.g., a one-gadget).

A scenario similar to the above can be easily observed in C++ programs.
C++ objects that define virtual functions (including a virtual destructor) con-
tain a vtable pointer in their first locations. The vtable pointer points to a
table of virtual function pointers, one for each virtual function defined in the
object’s class. When the C++ program needs to call a virtual function member
of the object, it actually makes an indirect call through one of the pointers in
this table. It should be clear that if the conditions of a use-after-free attack
are met, the attacker can overwrite the vtable of an object and make it point
to an injected virtual table with pointers to locations of the attacker’s choice.
Examples can be found in the exercises.

