
Kernel exploitation

G. Lettieri

1 December 2023

1 Introduction

So far, we have assumed that attackers have only a few limited ways to escalate
privileges: either by attacking a privileged process, or by attacking a setuid/set-
gid program. However, this assumes that we can trust the kernel. Unfortunately,
the kernel is another large and complex piece of software that can (and does!)
contain bugs, and some of these bugs can be exploited by malicious attackers.
Paradoxically, all the kernel extensions that attempt to add security features
to the kernel also increase the complexity of the kernel and may introduce new
bugs themselves.

In this lecture we will examine the most common ways that kernel bugs can
be exploited to escalate privileges, and some existing mitigation strategies.

2 Linux kernel and modules

We assume that you already have an understanding of how a kernel works in
general, so we will only provide a few concepts specific to Linux.

The Linux kernel is written in C and assembler and is built using the stan-
dard gcc suite, configured for the particular environment in which it is to run,
i.e., the bare machine with no other software runtime support available (ex-
cept for code possibly stored in ROMs). The kernel build system creates the
vmlinux binary, which uses the ELF format like everything else, and can be
examined with the standard ELF tools (readelf, objdump, . . . ). The binary
is usually packaged in a bzImage file, which contains a compressed version of
vmlinux and some initialization code that unzips the image and copies it to
its final location in memory. A boot loader (such as grub) is responsible for
loading the bzImage into memory and transferring control to the initialization
code. The boot loader may also pass “arguments” to the kernel, typically to
enable or disable some optional feature. The arguments are passed as a single
string of text, with spaces as argument separators. When the system is up,
this string can be inspected by reading the /proc/cmdline pseudo-file. The
kernel simply ignores any unknown arguments, so this mechanism can also be
used to let the boot loader pass arguments to userspace programs.

1



During normal operation, the kernel maps itself and all the data it needs
into the virtual memory of every process1. The address space limitations of 32b
systems, coupled with the large physical memories available today, make this
arrangement rather problematic, and Linux has to resort to complex dynamic
mapping techniques. For this reason we will limit our discussion to 64b systems,
which are much simpler in this regard: the kernel simply divides the available
address space into two halves, reserving the upper half (the one where the most
significant bits are 1s) for itself.

The kernel is entered whenever a process makes a system call, when the CPU
raises an exception, or when an external device requests an interrupt. Modern
processors implement several ways to issue a system call in an attempt to im-
prove the speed of the traditional int instruction, which stores a lot of state
in memory and accesses many in-memory system data structures to understand
where to jump and switch to the kernel stack. The AMD64 syscall instruc-
tion is an alternative, much faster way to enter the kernel, since it stores very
little state in some registers, jumps to a fixed address (selectable once and for all
in an internal CPU register) and doesn’t switch the stack. This is the preferred
way for Linux to implement system calls. On entry, the rax register must con-
tain the system call number the user wants to call, and the other registers must
contain the system call arguments.

Inside the kernel, normal C library functions are not available, but some
of the most common functions (such as string functions) have been reimple-
mented. In particular, the replacement for the printf() function is called
printk(), and uses the same syntax with some extensions. However, this
function desn’t send output to “stdout” (which is an abstraction created by
the kernel itself), but to an in-kernel ring buffer, which can be examined from
userspace using the dmesg command. System daemons, such as ksyslog or
systemd, also extract messages from this buffer and copy them to log files such
as /var/log/syslog, /var/log/messages or others, depending on their
configuration. The kernel can also optionally send the messages to the “system
console”, which today is just a (pseudo)terminal selected for this purpose.

2.1 A minimal kernel module

The Linux kernel can also dynamically load kernel modules that extend its
functionality at runtime. These are used to implement device drivers, new
filesystem types, firewalls, security extensions (such as AppArmor) and so on.
Already loaded modules can be listed with the lsmod utility, new modules
can be loaded with the insmod and modprobe commands, and unloaded with
rmmod. Of course, loading and unloading modules requires root privileges, since
modules run with full kernel power.

The easiest way to experiment with exploiting kernel bugs is to introduce
the bugs in a kernel module, which can be made very small and focused To

1This may not be true today because of Meltdown, but that is not relevant to the current
discussion.

2



1 #include <linux/module.h>
2
3 MODULE_LICENSE("Dual BSD/GPL");
4
5 static int m1_init(void) {
6 printk("Hello from m1\n");
7 return 0;
8 }
9
10 static void m1_exit(void) {
11 printk("Goodbye from m1\n");
12 }
13
14 module_init(m1_init);
15 module_exit(m1_exit);

Figure 1: The m1.c source code for the minimal m1 module.

1 obj-m := m1.o

Figure 2: A Kbuild file for the example m1 module. This is read by the Linux
makefiles to understand which object files need to be created in the current
directory, and thus which source files need to be compiled.

understand the exercises we will now show how to build and use a minimal
kernel module. Figure 1 shows the source code of a kernel module that prints
a log message when it is loaded and another log message when it is unloaded.
We need to include the linux/module.h file (line 1) which defines the macros
used at lines 3 and 14–15. Eachj module must declare its license (line 3), since
non-GPL modules have (legal) access to only a subset of the functions exported
by the kernel. Line 14 selects the m1_init() function as the initialization
function and the m1_exit() function as the exit function. These are the
functions that the kernel will call when the module is loaded and unloaded,
respectively. In this example the two functions only call printk() to write a
message to the kernel log. Note that printk() is defined in the kernel and the
module only knows its symbol name: when the module is loaded, it is linked to
the running kernel and the symbol is resolved. Modules also use ELF format,
and their linking requirements are encoded in standard relocation entries in the
binary module file.

To build the module, create the m1.c, as shown in Figure 1, in an otherwise
empty directory, name it d. In the same d directory create two additional files:
the Kbuild file shown in Figure 2 and the Makefile file shown in Figure 3.
Then cd to d and run make. This will create several files in d, including m1.ko,

3



1 KERNEL ?= /lib/modules/$(shell uname -r)/build
2
3 all:
4 make -C $(KERNEL) M=$$(pwd) modules

Figure 3: A generic Makefile for external modules. It delegates everything
to the makefiles included in the Linux sources, passing them the necessary ar-
guments. In particular, the M=$$(pwd) argument is used to tell the Linux
makefiles that you want to compile a module in the current directory.

which is the final loadable module. Since this is an ELF file, it can be inspected
with readelf, objdump, and so on.

The module can be loaded into the running kernel with

sudo insmod m1.ko

The sudo dmesg command should now show the message “Hello from m1”
(among all other kernel messages). The module can be removed with

sudo rmmod m1

and now the sudo dmesg command should also show the message “Goodbye
from m1”.

2.2 An example character device driver

We will now write a simple module that creates a new character device. Char-
acter devices are special files that can be read and/or written like any other
file, but that implement these operations in a special way. Typical examples are
the /dev/tty* files, where read operations return the key codes typed on the
terminal keyboard and write operations produce output on the terminal display,
but also the /dev/null file, where read() always returns 0 and write()s
are discarded.

For example, consider the /dev/null device file:

crw-rw-rw- 1 root root 1, 3 dic 2 07:53 /dev/null

The important values are 1 and 3, the major and minor device numbers. In
particular, the major number identifies the kernel driver responsible for im-
plementing the file operations (such as read() and write()) on the device.
Whenever a process opens /dev/null, the kernel looks up driver number 1
and delegates the handling of the subsequent operations on the file descriptor
to it. The meaning of the minor number is entirely up to the driver, which
typically uses it to distinguish between multiple instances of the same type of
device.

4



Note that the existence of a device file does not imply that the corresponding
driver exists: the kernel will simply return an error when opening such orphaned
device files. Conversely, loading a driver into the kernel does not automatically
create the corresponding device file(s) in the file system. The mknod command
should be used to create them2. The name of the device file, or its position
in the file system, is not important: only the major and minor numbers are
important.

Figure 4 shows the code of our simple module. When the module is loaded,
we register the driver with the kernel (line 34). Here we tell the kernel that
there is a new character device driver with major number 65, internal name m2
and “file operations” as defined in the m2_fops structure. This is a structure
containining multiple function pointers, one for each possible operation on the
device. The kernel will call the appropriate function when the corresponding
event is triggered. For example, our m2_read function will be called whenever
a user process calls read() on our devices. The function takes the buf and
count arguments passed by the user to read() (lines 12 and 14) and is re-
sponsible for writing at most count bytes into the user’s buf. The idea is that
each device should implement a “stream of bytes” abstraction, and subsequent
read()s from the device should return more bytes from that stream, or zero
if the stream has ended. For this purpose, the function also receives a pointer
f_pos (line 14) to the “file pointer” that indicates where the user is in the byte
stream. The function also is also responsible for updating the file pointer (line
25).

Our simple device contains a fixed string (lines 16–18) and implements
read() by successively returning bytes from this string. For simplicity, we
always write only one byte, regardless of how many bytes the user requested
(lines 22–24), unless we have reached the end of the string, in which case we
write nothing (lines 20–21). Note that we have to return how many bytes we
have copied, just like read() (lines 21 and 26). Also note that to write into
the user buffer, we must use the copy_to_user function (line 22). This is
because user memory may be swapped out or otherwise inaccessible (if the user
has passed us a rogue pointer), and we cannot cause faults while we are in the
kernel. The copy_to_user function takes care of these special cases. The
function returns the number of bytes it was not able to copy. If if returns any-
thing other than zero, it means that the user’s buffer is invalid and we must
return with an error (line 23).

There is no need to implement all the functions defined in file_operations,
as the kernel provides sensible defaults for all of them. In our example, we only
implement read(). Write operations on our devices will fail with a permission
error.

When the module is unloaded, we should tell the kernel to unregister the
device (line 38), so that it will not call us if a device with major number 65 is
opened again.

To compile the module, do the same as for m1, but replace m1.o with m2.o

2Modern systems come with utilities such as udevd that can create devices automatically.

5



1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/kernel.h>
4 #include <linux/fs.h>
5 #include <linux/errno.h>
6 #include <linux/uaccess.h>
7
8 MODULE_LICENSE("Dual BSD/GPL");
9
10 static ssize_t m2_read(
11 struct file *filp,
12 char *buf,
13 size_t count,
14 loff_t *f_pos)
15 {
16 static const char *msg =
17 "this is the data contained"
18 " in the m2 device\n";
19
20 if (*f_pos >= strlen(msg))
21 return 0;
22 if (copy_to_user(buf, &msg[*f_pos], 1)) {
23 return -EFAULT;
24 }
25 (*f_pos)++;
26 return 1;
27 }
28
29 static struct file_operations m2_fops = {
30 .read = m2_read,
31 };
32
33 static int m2_init(void) {
34 return register_chrdev(65, "m2", &m2_fops);
35 }
36
37 static void m2_exit(void) {
38 unregister_chrdev(65, "m2");
39 }
40
41 module_init(m2_init);
42 module_exit(m2_exit);

Figure 4: The m2.c source code of the m2 module that creates a character
device.

6



in the Kbuild file. When you run make, you will get the m2.ko file, which
you can load into the kernel with insmod. To create a device managed by our
driver, use the command

sudo mknod /dev/m2 c 65 0

which will create a character device file with a major number of 64 and a minor
number of 0 (we did not use the minor numbers in our driver, so the minor
number can actually be anything). Now you can use /dev/m2 like any other
(read-only) file. In particular,

cat /dev/m2

will print the string defined on lines 17–18 of Figure 4.

3 Exploiting kernel bugs

Kernel code can contain all the bugs we have already examined for userspace
applications. Since the kernel is written in C and compiled with standard com-
pilers, it uses the same conventions for function calls and stack usage. This
means that buffer overflows on the kernel stack have the same kind of conse-
quences, where attackers may be able to hijack the execution control flow. The
kernel also uses a heap to allocate memory for its own purposes, and while the
heap data structures may be different from those used in userspace, heap buffer
overflows can be exploited using similar techniques. Double-free and use-after-
free bugs are also possible. Function pointers (like the one in Figure 4, line
32) are used extensively and lead to the same kind of exploits we have already
examined.

So let us assume that an attacker can hijack the control flow of a kernel
codepath. For simplicity, let us focus only on kernel bugs in system calls, and
assume that the bug can be triggered by an attacker process by calling one
or more system calls with specially crafted parameters, so that the kernel will
jump to locations chosen by the attacker. Where should the attacker redirect
the control flow? There is a possible confusion here that we should clear up. In
userspace, we were attacking other processes to steal their privileges. In that
context, the attacker’s goal was to replace the program that the victim process
was running with a program of the attacker’s choosing, typically a shell. In
the kind of kernel bugs we are now investigating, however, things work differ-
ently: the attacker already owns a process and can make it run any program
she wants. However, the process is running with the unprivileged attacker’s cre-
dentials, and the attacker’s goal is now to upgrade the credentials of the process.
It makes no sense to simply redirect kernel execution to, say, the code that
implements the execve() system call to spawn /bin/sh: the shell would
still be running with the attacker’s credentials! This would do no more than
just calling system("/bin/sh") in a normal program. In other words, we
should not confuse “kernel privilege” with “root privilege”. Kernel privilege is

7



an hardware-defined state that allows software to access all the hardware re-
sources, including all registers, all memory, and all I/O devices. Root privilege,
on the other hand, is a kernel-defined state that allows processes to access all
kernel-defined resources, such as files, processes, and network interfaces. Even
though kernel privilege is potentially much more powerful than root privilege,
an attacker will usually want to obtain the latter, which is much easier to use.
Therefore, a more reasonable approach is that once an attacker has gained ker-
nel privileges, she can use them to arbitrarily modify kernel data structures,
for example to gain root privileges. For example, to gain root privileges, the
attacker could use her kernel privileges to modify the process descriptor of one
of her processe,true and assign it a uid of zero. Such a “promoted” process
could then spawn a shell that would run as root.

3.1 Return to userspace

To implement the above plan, the attacker must be able to redirect kernel
execution to code that changes the credentials of one of her processes. Let us
focus on the simplest scenario: assume that the bug can be triggered while the
vulnerable system call is still running in the context of the process that called
it. Then the goal is simply to change the credentials of the running process. In
Linux this can be accomplished by calling the following kernel functions:

struct cred *c = prepare_kernel_cred(NULL);
commit_creds(c);

The first statement creates a cred structure, which is the data structure used
by the Linux kernel to store user credentials (user and group ids). If NULL is
passed, it creates a cred structure with root credentials. The second statement
assigns these credentials to the current process, replacing the previous ones.

To execute the above “shellcode”, the attacker has the usual options, such
as injecting it somewhere in kernel memory or using ROP. However, there is
another possibility: just put the shellcode in the userspace process memory and
let the kernel jump there. This is possible because the userspace process mem-
ory is still available when the kernel is running in the context of the attacker’s
process. This technique, called return to userspace (memory), is very attractive
because the attacker doesn’t have to worry about space limitations, bad charac-
ters or non-executable memory: the shellcode is just part of her own program,
but executed with kernel privileges. The only annoyance is that the shellcode
may need to call kernel functions without being linked to the kernel, so the
addresses of these functions have to be placed “by hand” in the shellcode.

After successfully returning to userspace memory and executing the credential-
elevating shellcode, the best strategy is to also return to userspace privilege as
well, since kernel-level programming is very hard. To return to userspace priv-
ileges, the shellcode can simply execute an iretq instruction on a specially
crafted stack. See the exercises for more details.

8



3.2 SMEP and SMAP

Injecting shellcode into the kernel is now prevented using the same NX bit that
already prevents shellcode injection in userspace. Returning to userspace mem-
ory is also made more difficult by the introduction of some new hardware protec-
tions in the Intel processors: Supervisor Mode Execution Prevention (SMEP)
and Supervisor Mode Access Prevention (SMAP). With SMEP enabled, the
processor will refuse to fetch instructions from user memory while running in
supervisor (i.e., kernel) mode3

SMEP is disabled by default and must be enabled by setting the 20th bit in
the privileged cr4 register. The exercises explore possible ways to defeat this
protection, but note that ROP attacks are in no way affected by SMEP.

SMAP also prevents supervisor access to userspace data, and it is not in-
tended to be always enabled (otherwise it would be impossible to implement
read() and write()). The kernel should only enable it when accessing data
that should always be stored in kernel memory during normal operation.

3Note that higher-privilege execution of lower-privilege code was already forbidden in the
segmentation architecture introduced by Intel in the 80286 processor of 1982, but it was
somehow neglected in the paging architecture added in the 80386 of 1985, until the “invention”
of SMEP around 2011.

9


