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1 Introduction

Once an attacker has obtained an arbitrary-memory-write primitive, she usually
looks for function pointers to overwrite, in order to redirect control flow to, say,
a one gadget. We now examine some mitigations that have been developed to
try to block the pointer-overwriting part of this type of attack.

2 Partial/Full RELRO

The first mitigation is implemented in the linker and dynamic loader tools. The
idea is to mark the contents of the GOT and the ini and fini arrays ad read-only,
using the protection bits available in the MMU.

Note that these arrays are created by the linker and filled by the dynamic
loader, which must be able to write to them. Since the dynamic loader runs
in the same process as the user program, the MMU cannot ditinguish between
legitimate accesses from the loader and illegitimate accesses from the user pro-
gram. The only way to implement the mitigation is to tell the dynamic loader
itself to mark the pages containing the pointers as read-only after it has finished
updating them. This technique is called Relocation Read-Only, or RELRO for
short. It can be enabled in gcc by passing the —z relro option at link time.
The linker will place all the relevant pointers into the same pages of memory,
then create a GNU_RELRO program segment containing these pages. The seg-
ment’s protection flags are used to require that these pages be marked read-only.
However, these pages are also part of other writable segments. The GNU_RELRO
segment is ignored at first, and only obeyed by the dynamic loader when it has
finished processing all the relocations. “Obeying” the segment just means that
the loader will call the mprotect () system call on the segment pages, asking
the kernel to mark them as read-only in the MMU page tables.

This works well for the ini and fini array, which are filled before the user
program starts and don’t need to be updated afterwards. The lazy update of
the GOT/PLT, on the other hand, creates a problem because the loader should
temporarily unprotect the segment pages whenever a new function is resolved,
in order to write the function pointer to the GOT entry. This is an expensive
operation, since it usually involves flushing the MMU caches (TLBs), and it also



creates time windows during which the pointers are writable: attackers could
exploit these windows in a multi-threaded program. The actual implementation
is the result of a series of compromises: the GOT/PLT is write-protected only if
all functions are resolved at load time, thus behaving like the ini and fini arrays.
Load time resolution can be requested with a link-time option, but of course
this can be very expensive, especially for a library. So RELRO comes in two
forms:

e Partial RELRO, where the protection only applies to the ini/fini arrays
and those parts of the GOT that are not involved in lazy binding (e.g.,
pointers to global variables instead of pointers to functions);

e Full RELRO, which protects everything already protected by Partial RELRO,
and also asks the dynamic loader to resolve all bindings at load time and
then protect the entire GOT.

In gcc, the —z relro option gives you only Partial RELRO. To get the full
version you must also pass the —z now option, which tells the loader to resolve
all symbols at load time. If these options are enabled by default, you can disable
the first one by passing -z norelro, and the second one by passing -z lazy.
Note that the —z now option is actually independent of RELRO, since you may
want to resolve all functions at load time for other, unrelated reasons. The -z
now option works by setting a NOW flag in the flags entry of the dynamic section
of the executable/shared object. In addition, if RELRO is also enabled, the
entire GOT is placed inside the GNU_RELRO segment. The NOW flag instructs
the loader to resolve the entire PLT before starting the program, then the entire
GOT is write-protected during normal processing of the GNU_RELRO segment.
Typically, executables are now built with Full RELRO, while dynamic li-
braries are only built with Partial RELRO. The idea is that a program that
contains a call to a library function will most likely use it, so it is reasonable
to pay the symbol resolution cost unconditionally. However, this cannot be as-
sumed for libraries, since programs typically use only a small part of them, and
resolving all library symbols at load time can end up wasting a lot of work.

Exercises

2.1. The myheaplb binary' contains a double-free bug that can be exploited
to overwrite memory, but it is protected with full RELRO. How can we
drop a shell from it? (Hint: man malloc_hook).

3 Pointer Guard

RELRO is concerned with function pointers as defined by the ELF standard, but
other, equally overwritable pointers can be found in many other places. For ex-
ample, the C standard library implements the atexit () function, which can be

L Available here: https://lettieri.iet.unipi.it/hacking/heap.tar.gz.



used to register callbacks to be called on program exit. The GNU C library im-
plements this feature by internally allocating a list of exit_function_list
structures. Each structure can contain 32 function pointers and several struc-
tures can be linked in a list. The first structure of the list is statically allocated
in the variable initial, and a pointer to it can be found in the variable
__exit_funcs. Other structures are allocated on the heap. Obviously, an
attacker who has leaked the libc address, or perhaps a heap address, can poten-
tially access these structures and overwrite their pointers.

These pointers can be updated at any time during program execution, and
they are not isolated in their own pages. It is therefore impractical to use the
same solution as RELRO to protect them. The GNU libc instead protects these
pointers by “encrypting” them. In particular, the PTR_MANGLE () macro, used
when saving a new pointer, encrypts a pointer by XORing it with a secret
key and then rotating it. The PTR_DEMANGLE () macro restores the original
pointer before using it. This feature is called “Pointer Guard” in the library
documentation and can only be disabled by recompiling the library.

The secret key is obtained at program startup in much the same way as the
secret canary. We know that the kernel stores a random number on the new
process stack during exec (), and signals its presence and location using the
AT_RANDOM entry of the auxiliary vector. The kernel-supplied random number
is 16 bytes wide: the first 8 bytes are used to generate the canary; the other 8
bytes become the Pointer Guard secret key. The key is also stored in the same
place as the canary, i.e., in the Thread Control Block, accessible via the fs
segment selector register. Of course, since it is stored in several places in the
process memory, leaks are always possible.

4 Removing the malloc hooks

The malloc hooks are a set of function pointers implemented by GNU malloc
as part of the C library. For example, the _ _malloc_hook, if not null, is
called instead of the actual malloc, with the same arguments, and similarly
for _ free_hook. The programmer can make these hooks point to her own
functions by simply assigning a function pointer to them. The purpose is to
extend the malloc functionality for debugging, accounting and so on.

Neither RELRO nor Pointer Guard can protect these hooks. RELRO is out
of the question, for the same reasons as above (these pointers can be updated
during program execution, and they are not segregated in memory), but Pointer
Guard cannot be used either: the programmer expects to be able to directly
values to these pointers directly, without going through some library function
like atexit (). If a legacy program uses these hooks, a call to PTR_MANGLE ()
cannot be inserted by just updating the C library. Instead, the program’s source,
if available, must be modified and recompiled.

Note that these hooks are rarely used in normal programs. Nevertheless, ev-
ery program linked with the GNU C library has them, and the GNU malloc ()
and free () functions will duly call them if they are not null. The safest thing



struct B { wvirtual void f() = 0; };
struct D1: B { void f() {} };
struct D2: B { void f() {} };
struct D3: B { wvoid f() {} };

int main(int argc, char xargv[])

{
B xb;
if (argc > 1) b = new D1(); else b = new D2();
b->f();

Figure 1: An example C++ program whose translation contains an indirect
jump.

to do, in this case, seems to be to simply remove the hooks from the library. The
hooks have been deprecated (for unrelated reasons) for many years, and were
finally removed in the 2.34 glibc release. New programs will have to do without
this functionality, but it will make life a little more difficult for attackers.

Exercises

4.1. The objects1? binary contains exploitable heap-related bugs, but all
malloc hooks have been removed. Nevertheless, we can still drop a shell
from it (hint: think of C++ vtables).

5 Control-Flow Integrity

The above mitigations attempt to protect function pointers that are known to
exist in the runtime support of the C language. However, this leaves out any
function pointers defined by user programs themselves, or by implementations
of some features of other languages (such as the C++ vtables that can be
exploited in Exercise 4.1). Control Flow Integrity refers to a class of techniques
that attempt to mitigate the exploitation of allindirect jumps, regardless of their
purpose. This includes all indirect jumps/calls through a register or memory,
covering all kinds of exploitable function pointers. The definition also includes
the so-called backward indirect jumps, as exemplified by the ret instruction in
the Intel architecture, and thus CFI is also an attempt to combat ROP. The
idea common to all CFI techniques is to extract a Control Flow Graph (CFG
for short) from the program, and then check at runtime that the indirect jumps
only take paths allowed by the CFG.

2Available here: https://lettieri.iet.unipi.it/hacking/heap.tar.gz.



Figure 2: The CFG of the program in Figure 1.

For example, consider the C++ program in Figure 1. The corresponding
CFG is in Figure 2. The thick node, containing the virtual function call, is
implemented as an indirect forward jump (a call in this case). The idea is
that, in all legitimate executions, this jump should always land on either the
entry point of D1: : £ () or the entry point of D2:: £ ().

The set of legitimate targets of an indirect jump is called its equivalence class,
so the equivalence class of the b—>f () statement is {D1::£(), D2::£() }.
Any jump to a target outside the equivalence class of the jump should cause the
process to terminate. This can be implemented in the compiler as follows:

e the compiler assigns a unique numeric label to each equivalence class;

e it stores the label before the first instruction of each target in the equiva-
lence class;

e each indirect jump is translated into a sequence of instructions that ex-
ecute the jump only if the target contains the expected label, and abort
otherwise.

The CFG is usually obtained by static analysis of the program. Typically, a
static analysis will only give an over-approximation of the equivalence classes,
since the exact dynamic properties of a program are either uncomputable or too
expensive to compute. For example, a simple analysis that looks only at the
declared types might conclude that D3::f () also belongs to the equivalence
class of b—>f (), even though this function can never be called in the program
of Figure 1. This is unfortunate, since any additional path can be useful to
an attacker, and so we would want our equivalence classes to be as precise
as possible. This is especially bad for backward jumps, since the equivalence
class of a ret statement at the end of a function is usually the set of all the
function’s callpoints. Researchers have shown that such large equivalence classes
are usually sufficient for attackers to find all the ROP gadgets they need. For



this reason, CFI techniques tend to treat ret instructions specially. The most
effective technique is to implement a shadow stack, which works like this:

e every call (either direct or indirect) pushes the return address on both
the normal stack and the shadow stack;

e every ret pops the return address from both stacks and aborts if they
differ;

e the shadow stack is otherwise inaccessible (but see below);

This last requirement is of course an important part of the mitigation, but needs
to be relaxed a bit to allow for common constructs like exceptions and thread
switching.

5.1 Intel CET

Intel has added a Control-flow Enforcement Technology (CET for short) to its
processors starting from the 11th generation. CET is a type of CFI implemented
in hardware. It consists of two mechanisms, that can be enabled independently
of each other:

e Indirect Branch Tracking (IBT), which protects forward indirect jumps;
e a shadow stack, which protects backward indirect jumps.

With IBT enabled, all forward indirect jump instructions (i.e., indirect jmp
and call instructions) cause the processor to raise an exception if the next
instruction is not endbr64. To support this mechanism, the compiler must
place an endbr64 instruction at the beginning of each function that can be
called indirectly. The gcc compiler will (conservatively) put it at the beginning
of each function when the —-fcf-protection=branch option is passed. The
endbr64 encoding is interpreted as nop by old processors where IBT is not
implemented, or by new processors where IBT is disabled. In essence, IBT
implements a single equivalence class for all forward indirect jumps. For this
reason, many researchers consider it a very weak mitigation.

Much more interesting is the shadow stack mechanism, which implements
the above idea in hardware. The shadow stack must be allocated by the OS
kernel and marked as such in the page tables. The MMU will prevent normal
write access to this page, thus protecting the shadow stack from tampering. A
set of new instructions can be used to manipulate the shadow stack in special
ways, to implement exceptions, thread switching and so on. Most programs can
run with the shadow stack without modification.

Note that even though most Linux distributions have been shipping pro-
grams compiled with —fcf-protection=branch for years, the Linux kernel
doesn’t support the IBT part of Intel CET for userspace applications (IBT
is supported for kernel code since v5.18). Starting with Windows 10 19H1,
Windows has added support for the shadow stacks, as an opt-in feature for pro-
cesses. Microsoft however, has decided not to support IBT, preferring its own



alternative CFI technology (Control Flow Guard). Userspace shadow stacks are
supported in Linux only starting from kernel v6.6.



