
Notes on “On the Security of UNIX” by

D. M. Ritchie

G. Lettieri

21 September 2023

“On the Security of UNIX”1 is a short paper by D. M. Ritchie, first pub-
lished in the 6th edition of “The UNIX Programmer’s Manual” (1975) and then
adapted for the 7th edition (1979). The main message of the paper is that

UNIX was not developed with security [. . . ] in mind.

The paper lists several examples to support the above statement. Most of what
Ritchie says is still true today, in some form.

The first two examples deal with denial of service problems caused by overuse
of system resources. The first example shows a four-line script that attempts
to create an arbitrarily deep directory structure, and will only stop when either
the i-node table is full or all disk blocks have been used2. The second example
exhausts system resources (either swap space or process table slots) by creating
an excessive amount of background processes (the syntax used is the same as
today). The V6 UNIX would either panic (i.e., crash) or become unusable in
such circumstances. V7 UNIX introduced limits on the number of processes
that a user can create, and modern Unix and Unix-like systems can do the
same; Ritchie, however, duly notes that this is not sufficient and the system can
still become essentially unusable, or even crash, if these processes use too many
resources.

Ritchie then goes on to explain file permissions. There are a few problems
he sees in this area: i) permission checks are skipped for the root user; ii)
default permissions are too liberal; iii) the permissions on directories are not
intuitive. Problem ii) can mostly be fixed by following Ritchie’s advice, or by

1http://www.tom-yam.or.jp/2238/ref/secur.pdf
2Modern readers may not recognize the syntax of the V6 script: pre-v7 UNIX still used

Ken Thompson’s minimalist shell. This shell could only run scripts by redirecting its standard
input from a file. The “goto label ” statement was actually an external command that used
seek() on its own standard input file pointer, looking for a line starting with a colon and the
string label. Since the file pointer is shared between the shell and its children, after goto the
shell would go back and read the command that followed the “: label ” statement. The colon
itself was another external command that did nothing. The goto command has disappeared,
but the colon has remained (as a built-in command) in modern shells, where it is used either
as a fast “true”, or when you are only interested in expanding its arguments. The V7 version
of the paper uses the more familiar Bourne Shell syntax.

1

http://www.tom-yam.or.jp/2238/ref/secur.pdf


remembering to set the umask that was introduced in V7, but problems i) and
iii) still exist, and i) has gotten worse: the root user has acquired a bewildering
set of capabilities that go far beyond the ability to skip filesystem checks. This
is a problem when we are forced to run a program as root because the program
needs one of these capabilities. For example, to give a web server the right to
open port 80, we must also give it the right to wipe out the entire filesystem.

Ritchie then moves on to the topic of passwords. He says that here UNIX
behaves better than most other systems of the time, since passwords are always
stored in encrypted form3 This allowed the passwd file to be world-readable, so
that it could also be used as a database mapping usernames to uids (replacing
an older uids file). This database is used, e.g., by ls, ps, chown and so on.
However, Ritchie points out that a world-readable passwd file opens the door to
brute-force/dictionary attacks, so users must choose strong passwords. This is
even more true today, of course. However, to help prevent brute-force and dic-
tionary attacks the encrypted passwords have now been removed from passwd,
which must remain world-readable for compatibility, and are now stored in the
shadow file, which is readable only by root.

Ritchie also mentions an old trick that works on UNIX too: run a fake “login”
program on a terminal, and wait for an unsuspecting user to come in and type
in their password. The fake program can now store the password somewhere
(or mail it to the attacker) and then perform the normal login. This is still
true today, and it’s not much of a problem only because we no longer log into
our systems from public-access terminals. Windows NT is safer in this regard:
the Ctrl+Alt+Del key combination cannot be intercepted by user programs and
provides a “trusted path” from the user to Windows itself.

Then Ritchie’s touches on the very important topic of set-UID/set-GID pro-
grams (his own invention, and the only UNIX patent). First, he notes that
set-UID/set-GID programs must not be writable by attackers (a problem re-
lated to permissions, as above). This is a general note: the permissions of a file
(including the set-UID and set-GID flags) are stored in its i-node: they don’t
change when you write into the file. More importantly, he notes that these
programs must be “sufficiently careful of what is fed into them”. This is still
extremely important, and we will spend some time on the attacks that target
this very feature of UNIX(-like) systems. The exact example Ritchie gives is
no longer directly applicable, since it is based on an ancient version of mail4,

3The encrypted-passwords idea was suggested by M. V. Wilkes in ’68, but come to Unix via
Multics, where it was developed in the aftermath of a funny incident in CTSS (the precursor
of Multics). CTSS stored passwords in plain text, in a file readable only by administrators,
like early versions of Unix. One day, two administrators at MIT were editing the message-
of-the-day file and the password file, without knowing about each other. Since the editor
program always used the same name for temporary files, the two files were accidentally mixed
up. Until the system was stopped (by exploiting another bug to force it to crash) all users
logging into the system were greeted with everyone’s passwords in clear text.

4You can find the sixth edition of the Unix Programmer’s Manual online, and read the
man page of mail: the program allowed the user to append a message to the .mail file in
the recipient’s home directory or any other directory. Interestingly, the v6 mail command
is vulnerable to the integrity attack, but apparently not to the privacy attack described by
Ritchie, since it always sends only its standard input. The v5 mail command, instead, also

2



but the attacks use techniques that are still valid today: misuse of program ar-
guments and filesystem links. Moreover, V7 actually exacerbated the problem
with set-UID/set-GID programs with the introduction of environment variables,
as we will see. The V7 version of Ritchie’s paper doesn’t show any awareness
of this fact yet.

The final mount-related problems also apply, in some form, to modern sys-
tems. The mount operation has finally become privileged5 but personal com-
puter users still need a way to do this, if they want to use their pen-drives or
virtual disks and so on. Much care must be taken, before trusting the contents
of these file systems.

accepts the name of a file to send, and was therefore vulnerable to both attacks. On the other
hand, v5 mail used a different name for the target mailbox, instead of .mail. Ritchie seems
to be referring to an interim version of mail that was never officially released. As Ritchie says
in the V7 version of the paper, the V7 mail command is very different from the older ones,
and it is not vulnerable to either attack.

5The first revisions of the Programmer’s Manual included the phrase “This call should be
restricted to the super-user” in the BUGS sections of the mount and umount entries.

3


