
How a Unix shell works

G. Lettieri

26 September 2023

Hackers know very well how things really work (the real ones, at least).
We need to acquire a similar level of knowledge, and we start with the most
important Unix tool: the shell.

The shell is used to run other programs and define their parameters, envi-
ronment and open files. It is also a parser, interpreting and rewriting what we
type at the command line in various complex ways.

We will try to understand what a shell does by incrementally building a
simple one. A note of caution, however: while we will try to mimic the behaviour
of a real POSIX shell as closely as possible, we will not try to be complete,
efficient, or even compatible with the standard, much less with any existing
shell.

We will use the code that can be downloaded from here:

https://lettieri.iet.unipi.it/hacking/esh.zip

The code has been organized as a git repository, with each commit adding
a single new feature. Once you have unziped the file, you can enter the esh
directory and run

git log --oneline

to see a list of all the commits. Each commit has been tagged for ease of
reference. You can easily see the changes introduced by each commit using git.
E.g., to show the changes introduced by 2-path, you can run

git show 2-path --

This shows the differences between the 2-path shell and its immediate prede-
cessor. You can look at the full source of any version of the shell by adding
:esh.c after the tag. E.g., to obtain the sources of the 7-env shell, just run:

git show 7-env:esh.c

If you run

make revisions

1

1 #include <sys/wait.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <unistd.h>
5
6 #define MAX_LINE 1024
7
8 int main()
9 {
10 char buf[MAX_LINE];
11 int n;
12
13 while ((n = read(0, buf, MAX_LINE)) > 0) {
14 buf[n - 1] = ’\0’;
15
16 if (fork()) {
17 wait(0);
18 } else {
19 execl(buf, buf, NULL);
20 perror(buf);
21 exit(1);
22 }
23 }
24 return 0;
25 }

Figure 1: The simplest shell.

you will obtain the sources and the corresponding executable for each revision
of the shell as separate files in the current directory.

1 The simplest shell (tag: 1-basic)

Figure 1 shows the simplest shell imaginable. It is a program that cyclically
reads a line of text from its standard input (file descriptor 0) and tries to execute
a program with that name. The program is executed in a new process, while
the parent process, which is still running the shell, waits for its termination.

If this is the login shell, file descriptor 0 will still point to the teletype device
node opened by getty and inherited first by login and then by the shell.
Therefore, the user will be able to type commands on the terminal where she
has logged into. The commands executed by the shell will also inherit the files
opened by getty, and will therefore accept input from, and write output and
errors to, the same terminal.

2

The shell has also inherited its uids and gids, this time from login. The
real ids will also be inherited by the shell’s children. The effective ids will be
inherited too, unless a child execve()s a program that has the set-uid and/or
set-gid flags set. In the normal case these flags are not set, and therefore the
command will be executed with the credentials of the current user. The same
reasoning applies recursively to any other process that the command itself might
create.

Note that read() will also give us the newline character that ends the line
typed by our user1. We replace it with the null character, to get a C string.

Now let us focus on the function we use to execute the program. We are
not calling the execve() system call directly. Instead, we use execl(), a C
library function that is a little easier to use. The function does some additional
processing and then calls the system call (we know it has to call it: there is
no other way to run a program). The first argument of execl() is exactly
the same as in execve(), and in fact execl() will pass it as-is. The execl
function is variadic, i.e., it takes a variable number of arguments, which in this
case are C strings2. The function collects these strings, starting with the second
argument until it finds NULL. It builds an array of pointers to these strings.
This array will then become the second argument of execve(), and then the
argv of the new program. We follow the convention that the first element of
argv must be the program name, so we pass buf twice. Remember, however,
that only the first is interpreted by the kernel as a path, while the second is just
copied into the process memory and made available via argv[0].

As for the last execve() argument, the array pointing to the environment
variables, execl() will simply pass the one from the calling process. The new
process, therefore, will see the same environment variables as the shell (this
latter part is actually done by execv(), see lib/execv.c in myUnix).

Now let’s go to our home directory and start our minimal shell, then type
/bin/ls and press enter. We should see the contents of the directory. We can
type the full path of other commands, such as /bin/ps, or press Ctrl+D to
send an EOF and cause our mini-shell to terminate (since read() will return 0).

Now remember how execve() interprets its first argument, the path of
the new program to execute, and try to guess what will happen if we start our
minimal shell and then type ls (followed by Enter) assuming that the current
directory is still our home.

Did you guess right? execve() fails and we get a “no such file” error. This
is because the PATH variable is not used, execve() gets the string “ls” as
its first argument, and this represents a relative path starting from the current
directory (since it does not start with /). The current directory will (probably)
not contain an executable file called ls, and therefore the kernel will not be
able to find it. To confirm this, we can exit from our mini-shell (Ctrl-D), copy
the ls program to our current directory (to avoid confusion, let’s call it myls):

cp /bin/ls myls

1Assuming she types less than MAX_LINE characters, but we’ll ignore that for now.
2You can take a look at lib/execl.c in myUnix to see how this works.

3

Then run our mini-shell again. This time, typing myls will work.

Exercises

1.1. Note that, while in 1-basic, you can edit the command line before hitting
enter: you can delete the last character, the last word (Ctrl+W) or the
whole line (Ctrl+U). Where is this feature implemented?

1.2. The wc command stands for Word Count: if run without arguments, it
prints the number of lines, words and characters received from its standard
input. What happens if you type /usr/bin/wc immediately followed by
Ctrl+D? Why would this happen?

1.3. Close 1-basic and create a script text file containing any shell com-
mand, make it executable (chmod +x script), restart 1-basic and
try to run the script. What happens? Why?

1.4. Do as in Exercise 1.3, but add a line with #!/bin/sh at the very top of
the script file. What happens now? Why?

1.5. If you try to use more advanced editing keys than those mentioned in
Exercise 1.1, such as the arrow keys, you get only strange characters in
response. What are these characters? Why don’t the keys work as ex-
pected?

2 Using PATH (tag: 2-path)

Now let’s add the PATH variable into the picture. All we have to do is replace
execl with execlp in Figure 1.

The execlp() function works much like execl(), and it must call execve()
to ask the kernel to run a new program (there is no other way, remember).
Therefore, it needs a path to the new executable, to pass it as the first argument
to execve(). As a convenience, the function is able to search for a program
in the set of directories listed in the PATH variable (separated by colons). This
way the user is not forced to always type the full path of each command. More
specifically, it works like this: to get the path of the executable, the function ap-
pends its first argument to each one of the paths listed in PATH in turn (adding
a “/” in between, if necessary) until it finds an existing executable file with the
resulting path. If the list of directories is exhausted and no executable file is
found, the function returns with an error3.

However, there are occasions when the user wants to execute a program that
is not in any of the directories listed in PATH. To accommodate for this use case,
the function introduces a distinction between commands and paths: if its first

3Check lib/execlp.c in myUnix for the full story.

4

argument contains no slashes, then it is a command; otherwise, it is a path.
Only commands need to be converted to paths using PATH, while paths are
passed directly to execve() without any further processing.

Now let’s start our modified mini-shell in our home directory and let’s type
/bin/ls (a path) and then ls (a command) as before. This time both strings
work: the first one is passed as-is to execve() and the kernel interprets it as
an absolute path that successfully leads to the ls program. The latter one also
works because the PATH variable most likely contains the /bin directory, and
therefore execlp() will succeed in finding the ls program when it tries the
/bin/ls path.

Now, assuming that myls is still in our current directory, let us type myls
and, before hitting enter, let us try to guess whether it will work or not.

This time we get an error. And why is that? Because the myls string is
classified as a command, since it contains no slashes, and therefore execlp()
will look for it in the directories listed in PATH, and only there. The current
directory is, most likely, not listed in PATH, and therefore execlp() will not
be able to find our program.

Note that the above behaviour is caused by a corner case in the classification
operated by execlp(): strings without slashes are legitimate paths according
to the kernel (they are relative paths), but they are commands according to
execlp(). Since execlp() runs first, its interpretation wins.

If we want to use PATH and still be able to run a program that lives in the
current directory we have a few options:

• use a path that leads to our program and contains a “/”;

• add the current directory to PATH.

The first method causes execlp() not to recognize the string as a command
and pass it directly to the execve() system call. A common trick is to type
./myls—a redundant path that has the required slash and is completely equiv-
alent to “myls” as far as the kernel is concerned.

The latter can be done in many ways. Of course you can add the absolute
path of any directory to PATH, but you can also add relative paths to it. Adding
the “.” path will cause the execlp() function to also look for files in the
current directory (essentially recreating the “./myls” path by itself).

Perhaps little known, but implicit in the above description, is the fact that
execlp() will look in the current directory even if PATH contains an empty
path: it will not concatenate anything to the input path, will not add a / since
there is nothing to separate, and therefore will get the same path as before.
If PATH contains an empty path and we type myls, execlp() will also try
to pass myls to execve(), which will find it. An empty path exists if PATH
starts or ends with a colon, or if it contains at least two colons with nothing in
between.

5

Exercises

2.1. Assume that the current directory contains a subdirectory called utils
that contains an executable called exe. Now we type

utils/exe

into 2-path. Will it work? Does it depend on the contents of PATH?

2.2. Do as in Exercise 1.3, but using 2-path instead of 1-basic. What
happens now? Why?

3 Splitting the command line (tag: 3-words)

Now let us use 2-path and try to type “ls -l”. Will it work?
No, the kernel will look for a program called “ls -l”, which most likely

does not exist (but it could have existed: remember that spaces are allowed in
file names).

The splitting of what we typed into the name of the command and its argu-
ments will not happen by magic. Go through what we have said until now, and
try to find the place where we said that something splits a string into words:
you will not find it, because it does not exist.

Splitting the command line into words is one of the main tasks of the shell.
The first word becomes the first argument to execve(), possibly after PATH
processing. All the words (including the first one) are assembled into the ar-
ray passed as the second argument. Figure 2 shows the main function of the
3-words shell, which implements the processing we have just described. If you
compare it with the shell in Figure 1 you will see that we have added a couple
of function calls between the input of the command line and the creation of the
new process. The first function is getwords(), that splits the line into words
using whitespace characters as separators. For each word found, the function
fills an element of the words array of word_t descriptors; then, it returns the
number of words it found. If there are no words (the line consisted only of
whitespace) we can continue with the next line of input; otherwise, we build
the c_argv vector from the array of words, using the buildargv() func-
tion. The getwords() and buildargv() functions are defined at the boot
of the esh.c file in the repository, and just contain some strings and pointers
manipulations4.

The first element of c_argv (c_argv[0]) and a pointer to c_argv itself
are then passed to execvp(). This is another “exec” variant that invokes
the execve() system call under the hoods. Like execlp(), it uses PATH
on its first argument and copies the parent environment to the child. Unlike

4Rather than having two distinct functions, one for word-splitting and the other to build
c_argv, we could have done everything in a single step. However, we will see in a moment
(Section 5) that some input words are not passed to the command, so it is cleaner to keep the
two tasks apart.

6

1 #include <sys/wait.h>
2 #include <ctype.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5 #include <unistd.h>
6
7 #define MAX_LINE 1024
8 #define MAX_WORDS 10
9 #define MAX_ARGS 10

10
11 typedef struct {
12 char *w;
13 } word_t;
14
15 int getwords(char *buf, word_t words[]);
16 int buildargv(char *argv[], word_t words[], int nwords);
17
18 int main()
19 {
20 char buf[MAX_LINE];
21 int n;
22 word_t words[MAX_WORDS];
23 char *c_argv[MAX_ARGS + 1];
24 int nwords;
25
26 while ((n = read(0, buf, MAX_LINE)) > 0) {
27 buf[n - 1] = ’\0’;
28
29 nwords = getwords(buf, words);
30 if (!nwords)
31 continue;
32 buildargv(c_argv, words, nwords);
33
34 if (fork()) {
35 wait(0);
36 } else {
37 execvp(c_argv[0], c_argv);
38 perror(c_argv[0]);
39 exit(1);
40 }
41 }
42 return 0;
43 }

Figure 2: A shell that splits the command line into words.

7

execlp(), though, it does not build the argv vector by itself and just uses its
second argument as-is.

Now, if we run our new shell and type ls -l, we will see the long listing
of the current directory. We can pass any number of arguments (well, up to
MAX_ARGS) to any command, and everything will (mostly) work.

Note how the shell only splits the line, but the meaning of the resulting words
(besides the first one) is entirely up to the commands. They receive them in the
argv parameter of their main function and they can do whatever they want
with them. It is only by convention that many programs (but by no means all
of them) understand arguments starting with “-” as an option, or a single “-”
as the standard input file, and so on. One needs to check the documentation
of each command to learn these details when needed. Since many commands
where invented while the conventions had not yet been fixed, and others were
invented by different groups of people in the long history of Unix, you will find
a lot of inconsistencies.

Exercises

3.1. Exit from 3-words and create a file called “-” (a single dash):

echo hello > -

Now restart 3-words and try to run cat -. What happens? How can
you invoke cat from 3-words to see the contents of that file?

4 Shell builtins (tag: 4-builtin)

These peculiarities are inexorably imposed
upon the shell by the basic structure of
the UNIX process control system. It is a
rewarding exercise to work out why.

K. Thompson, D. Ritchie, Unix manual
V2

Now that we can pass arguments to commands, let’s try to use cd to change
the working directory. Assume that the current directory contains a subdir
subdirectory (create it if it doesn’t). Let us start 3-words and type

cd subdir

Will it work?
No, 3-words will look for a cd binary to execute, but there is no such

binary in the file system. Such a program would have to call the chdir()
system call, but this system call only changes the current working directory of
the process calling it. That is, it would change the current working directory of

8

the child process that the shell would have created to run cd. The shell itself
would continue to use its old working directory, and we would have accomplished
nothing.

If you guessed wrong, it might make you feel better to know that Ritchie and
Thompson made the same mistake when they added multiprocessing support
to Unix. Before that, there was a cd command (it was actually called chdir).
The command stopped working when they implemented fork(), and they were
confused by it, at least for a while5.

For cd to work, the shell must call the chdir() system call by itself. The
4-builtin shell does it, and you can see the necessary differences with git
diff 4-builtin!̂. The only difference with 3-words is that after the call to
buildargv() the first element of c_argv is compared to the “cd” string. If
the strings match, 4-builtin calls chdir() without creating a new process;
otherwise, it continues as before.

The commands that are executed directly by the shell are called “shell
builtins”. Whenever a command needs to affect the environment of the shell
itself, so that it can be inherited by all later commands, we need a shell builtin.
Other common builtins are umask and ulimit. Over time, shells have acquired
other builtins that were not necessarily needed, because it is more efficient to
run something in the shell than to spawn a new process each time. For example,
the simple echo utility is a builtin in most shells. For another example, the “:”
nop become a shell builtin very early (the V4 shell already had it). Another
reason for adding a builtin is to take advantage of the greater knowledge that
the shell may have about the current state. For example, pwd (print working
directory) is also implemented as a builtin in many shells because, unlike the ex-
ternal command, the shell can remember when it has traversed a symbolic link
and can display it in the path. If you want the external program instead, you can
always invoke it by typing its full path (e.g., /bin/echo or /bin/pwd). More
precisely, it is the presence of a slash in the string that disables the builtins, as
well as PATH and aliases (which we will not discuss).

Exercises

4.1. Implement the umask builtin (help umask) and compare it with the
one in 4-builtin.2. You can limit yourself to the octal output and
input syntax.

5 I/O redirection (tag: 5-redir)

Input and output redirection is one the first shell features implemented by
Thompson: it had been available for many months even before V1 come out.
The design of the Unix basic system calls make it very simple to implement:
assume you want, say, ls to write its output in a file, instead of printing it

5See page 6 of the paper on Unix evolution on Dennis Ritchie’s home page (https://
www.bell-labs.com/usr/dmr/www/.)

9

on the terminal; then, in the child process created by the shell, before call-
ing execvp(), you close(0) and open() the file: the kernel will pick the
first unused file descriptor, which will be the 0 we have just closed, essentially
replacing the standard output file of the process. Since execvp() will then
replace the program, but not the process, ls will write into the file, without
even knowing about it. Note how the mechanism will work with all the pro-
grams that honor the stardard input/standard output convention, and we have
achieved this without adding any new system call.

We implement this idea in our next shell, 5-redir. We adopt a simplified
syntax, similar to the one used in the earliest versions of the Thompson shell:
input redirection is obtained by writing a word like <file and output redirection
with a word like >file. These must be words, i.e., they should not contain any
space (not even between the < and > operators and the filename) and must be
separated by whitespace from the other words. The implementation is then very
simple. First, we add a field type to the word descriptor. Then, in the main
process:

1. getwords() first assignes the “normal” type to each word it finds;

2. we then call a new getredirs() function that scans the words array
and changes the type to “redirection” for the words that start with either
< or >;

3. buildargv() now picks only the words that still have a “normal” type.

In the child process, a new function redirect() searches the array of words for
those of type “redirection”, and performs the necessary close() and open()
system calls before the call to execvp().

Note that to implement the >file redirection when file doesn’t exist, the
shell must be able to create a new file given only the path. This is only possible
because of the radically simple notion of files introduced by Unix: all files are
just sequences of bytes, so we don’t need to specify the type; the size grows
automatically as we write to it, so we don’t need to specify it beforehand;
owner and group are implicitly obtained from the creating process. However,
there is still some information that the shell doesn’t have: in particular, the
open() system call wants to know the initial read/write/execute permissions
for the owner, group, and other users. This is a situation common to most
Unix programs that need to create a file and are only given a path by the user;
historically, they have always preferred ease of use over security and have simply
given all relevant permissions to everyone. This is what we did in our shell—we
just removed “x” permissions, since we expect files created in this way to contain
data rather than code. This “liberal” default behaviour is the third problem
with Unix file permissions that Ritchie mentioned in his “On the Security of
UNIX” paper (see Section ??), and can be partially mitigated by setting the
umask to filter out some permissions from all open() system calls.

10

Exercises

5.1. The > operator clears the file if it already exists (option O_TRUNC). The
shell in V2 UNIX introduced the >> operator that appends output to the
file if it exists. Try to implement this feature and then compare your
solution with the one in 5-redir.26.

5.2. Assume that you have to write something in a file f where you have no
write access. You are listed among the sudoers, so you try

sudo echo something >f

buy you still get a permission denied error. Why? How can you solve your
problem?

6 Scripting (tag: 6-intr)

Buffered IO was, and still is, a necessary
evil.

M. D. McIlroy, A Research UNIX Reader

Since the shell is a program like any other, we can call it recursively. If we redi-
rect its standard input from a file in which we have placed some shell commands,
the new shell will execute them one by one without further intervention. This
gives us a (somewhat limited) scripting capability, without adding any new ad
hoc mechanisms to the system. This was also the way scripting was implemented
in the pre-V7, minimalist Thompson shell.

However, if we try this with the shells that we have built so far, it will not
work. The reason is that we have assumed that each read() call will always
return exactly one line. However, this is only true if we are reading from a
terminal configured for line processing (and the line fits into the input buffer).
This assumption fails especially if we call read() on a file: the system call will
just try to fill the buffer, without stopping at newlines. The shells that we have
written so far are not prepared for this.

To always get exactly one line from standard input, whether it points to a ter-
minal, a file, or something else, we can use the stdio library function fgets(),
which is what we do in our next shell, 6-intr. Unfortunately, there is a catch:
the stdio library does its own buffering in userspace, to reduce the number of
read() system calls and improve performance. This means that, if standard
input is a file, our shell will get one line at a time from fgets(), but fgets()
itself will still read blocks of bytes from the underlying file. This is a problem

6Today we implement these features by passing flags to open(), but Research UNIX
never introduced these flags: the shell just uses creat(), lseek(), and open() as needed.
However, the flags approach is not just for convenience: it ensures that these actions are
performed atomically.

11

when the shell spawns another command that also needs to read from standard
input: some of the bytes intended for the command may already have been
eaten up by fgets() by the time the command runs (see Exercise 6.1). The
simplest solution to this problem is to always read only one byte at a time from
standard input, either by calling read() directly, or by disabling buffering on
standard input: this is the purpose of the setbuf(stdin, NULL) call in the
6-intr sources.

6.1 Interactive vs non-interactive

Our shell can now be used either “interactively” or to run scripts. Shells actually
try to understand when they are being used interactively, and change their
behaviour slightly to be more human friendly. For example, shells print a prompt
when they are waiting for input in interactive mode. A simple strategy for
inferring that there might be a human being on the other end of stdin is to
check if it is attached to a terminal: this can be detected because there are
some ioctl() system calls that only apply to terminals, and will fail if used on
anything else. The library function isatty() uses this trick to determine if a
file descriptor points to a terminal. The 6-intr.2 shell revision uses this function
to set an interactive global flag, which is then checked by getcmd() to
decide whether a prompt is needed or not. Note that the prompt changes based
on the effective user id of the process running the shell: $ for normal users and
for root.

Interactive mode also differs from non-interactive mode in the way the shell
handles input errors, such as nonexistent commands or syntax errors. In inter-
active mode, a diagnostic is usually printed, but the error is otherwise ignored.
In non-interactive mode, however, the shell stops executing the script. The idea
is that the human user can correct the error and retry, while the script cannot.
The 6-intr.3 shell implements this behavior. Note that our shell doesn’t look
at the value returned by the commands it spawns, and therefore doesn’t handle
errors in their execution. This is also essentially true for real POSIX shells,
unless the user has explicitly set a shell flag (set -e).

Another difference between interactive and non-interactive mode is in the
way the shell handles terminal interrupts. If you type Ctrl+C in any of the
shells that we have developed so far, the shell will terminate. This is not the
expected behavior of an interactive shell: in fact, when running interactively,
shells should ignore SIGINT (the signal the kernel sends by default when we
type Ctrl+C) and SIGQUIT (sent by Ctrl+\). This behavior is implemented
in 6-intr.3. Note that the shell restores the handlers for these signals in the
child process, so we can abort a misbehaving command and return to the shell
prompt7.

7In place of this, BSD introduced a very complex and un-Unix “job control” feature in
the kernel and in the shell; this was later adopted by POSIX and is now implemented in all
modern shells.

12

Exercises

6.1. Remove the “setbuf(stdin, NULL);” line from the 6-intr sources and
recompile the 6-intr shell. Write a file script containing the following
lines:

cat
hello

Execute this first with a standard shell, e.g. by running bash <script,
then run ./6-intr <script and try to understand what is going on.
If you are feeling adventurous, try to repeat the experiment with more
“hello” lines at the bottom of the script.

7 Environment variables (tag: 7-env)

Now consider shell’s support for environment variables, such as PATH and HOME.
Environment variables where added in V7, when Steve Bourne rewrote Thomp-
son’s shell to make it more suitable for programming.

These variables can be used to personalize the user’s environment or to
remember values across program executions. From the kernel’s point of view,
environment variables are just another set of strings that execve() must copy
into the process’s memory. Everything else about them is just convention, from
their syntax to their meaning.

• Syntactically, these strings should be of the form variable=value, where
variable should look like an identifier, starting with a letter or underscore
and then containining only letters, numbers and underscores. However,
the kernel does not check that any of these rules are actually followed:
it just copies null-terminated strings, whatever they are. The C library
assumes that these conventions are followed, and provides some functions
to work with them: getenv() to get the value of a variable given its
name, setenv() to create a new variable or, optionally, overwrite an
existing one, and unsetenv(), to remove a variable completely.

• Semantically, some of these variables have meanings that are understood
by most Unix programs. PATH is an obvious example, since its meaning
is embedded in the C library functions that are used to run programs.
Another example is EDITOR, which users can set to their preferred editor.
Programs that need to spawn an editor should look at this variable and
start the user’s preferred editor. However, nothing in the system enforces
these rules, and each program is free to ignore any environment variable
or assign a different meaning to it.

The most important thing to remember, if you really want to understand
how environment variables work, is that they are local to each process, and that

13

they originally come from the parent of the process. Unix users often forget this
because environment variables look like a “global” thing. This illusion is created
by the fact that most programs simply pass to their children the environment
that they have received from their parent. This behaviour is encouraged by
the C library, where most exec* variants (including the ones that we have
used so far) copy the current environment under the hood (i.e., they pass the
current value of the environ pointer to execve()). This illusion breaks if
you want to change the value of a variable, or create a new one. This change is
only visible in the current process and in its future children: you cannot change
the environment of another process, since you cannot (normally) write to its
memory.

Shell support for environment variables comes in two forms:

1. the shell maintains an environment that can be passed to its children, and
provides some syntax for updating it;

2. the shell can “expand” the value of a variable as it parses the command
line.

The latter is a form of macro processing: some text is replaced by other text,
often without regard to the syntax of the resulting command line.

Supporting environment variables is the most complex addition to our shell.
We add it a bit at a time.

7.1 Updating the environment

The shell 7-env implements point 1 above, with the following syntax. To assign
a value to an environment variable, use

variable=value

Again, the whole assignment must be a word: it must be delimited by whitespace
and it cannot contain spaces (not even around the “=” operator)8. You can
have more than one assignment on a single command line, separated by spaces.
The assignments change the environment of the shell and of all subsequent
commands. As a special case, if you write a command on the same line as
the assignments, only the environment of that command is updated. To delete
one or more variables use the new builtin unset followed by the names of the
variables.

The implementation is simple: after getredirs(), and before buildargv(),
we call a new function getvars(). Just like getredirs(), the new func-
tion scans the array of words looking for the ones that match the above syntax
(an identifier immediately followed by =). It marks the matching words as

8Unlike the analogous limitations in Section 5, these ones apply also to modern shells, but
see Section 8.

14

“assignments”, so that buildargv() will skip them (since it only picks “nor-
mal” words). Unlike getredir(), it stops at the first non-matching word9.
The new function assignvars() rescans the array of words looking for those
with type “assignment” and performs the assignments using setenv(). The
buildargv() function now returns the number of elements it has put into
c_argv. If the array is empty, assignvars() is called in the main process,
otherwise it is called in the child process, to affect only the environment of the
spawned command. Note that there is no need to change the call to execvp(),
since this function will copy the current environment under the hoods.

POSIX shells behave a little differently than our own, distinguishing between
shell and environment variables. Assignments to non-existent variables, for
example, create only internal shell variables, which are not automatically copied
to the child environments. To add a shell variable to the environment passed
down to children, you have to export it, unless the -a flag is set, in which case
all variables are exported automatically. Our shell behaves as if -a had been
set.

In a real system the environment starts empty when init is run, but then
other programs can add variables to it. For example, login adds the HOME
variable set to the path of the home directory read from the /etc/passwd
file. The shell inherits this variable and uses it as the default path for chdir()
when you type cd without an argument (this is also implemented in our shell).

The shell itself can provide default values for the variables that are essential
to its operation (e.g., PATH, IFS, PS1, PS2, . . .).

7.2 Variable expansion

To expand the value of a variable, use $variable, followed by a space or a non-
alphanumeric character anywhere on the command line. The expansion replaces
the $variable string with the value of variable if it exists, and with nothing
otherwise.

The implementation is conceptually simple, but string manipulation in C
is cumbersome and error-prone, so we implement it in two substeps (7-env.2
and 7-env.3). Unlike all the manipulations that we have done so far, variable
expansion can increase the number of characters we have to store in the input
buffer, so we must be careful not to overflow it. In the first step we simply
ignore this problem, and in the second step, we fix it.

The 7-env.2 shell calls a new function expandall() after getvars()
and before calling buildargv(). The new function passes each word to
expandword() for possible expansion. The function expandword() pro-
duces the expanded version of the word: it scans each character in the word
string and copies it to a new buffer, unless the character is a $ followed by an
identifier: in that case, the function skips the identifier in the source string and
places the (possibly empty) value of the corresponding variable in the new buffer

9Bourne initially looked for assignments in all the words of the command line, but this
conflicted with some commands (like dd) that use the assignemnt syntax for their own argu-
ments.

15

(with the help of the functon expandvar()). Note that $ can be anywhere
in the word, not just at the beginning, and that you can have more than one
expansion in the same word. Expansion can also occur in words of the type
“redirection” or “assignment”. Also note that the output of the expansion is
not re-scanned for more expansions.

For simplicity, expandall() internally creates a new array of words (tmpwrd)
and a new buffer tmpbuf, and copies them over the original ones using the util-
ity function updatewords().

As unticipated, expandword() doesn’t check for possible overflows in the
dst buffer. The 6-env.3 shell fixes this by introducing a struct obuf
that contains a pointer to a buffer and a counter of the available space in it.
New characters must be added to the buffer only using the new oput() and
oputs() functions, that turn into NOPs if there is not enough room. The
avail field can be checked at any time: if we find it negative we can signal an
error to the user.

Exercises

7.1. Assuming that X doesn’t exist yet, try to guess the output of

X=aaa echo $X

8 Quoting (tag: 8-quote)

We have introduced a few characters that are used by the shell itself and are
not passed to the commands: whitespace separates words, with newline termi-
nating commands; “<” and “>” are used for redirection; “$”, when followed by
an identifier, is used for variable expansion; a “=” occurring in the name of a
command may be mistaken for a variable assignment. These are called shell
metacharacters. We may know from experience that we can pass these char-
acters to commands by quoting them, but where is the quoting implemented?
Create a file with a space in its name using your normal shell, e.g.:

touch "a space"

Then start our latest shell, 7-env.3, and try to run some command on the file
you just created, e.g.:

cat "a space"

We get errors from cat, which cannot find the “"a” and “space"” files. This
is because single and double quotes, as well as backslashes, are more metachar-
acters that are parsed by the shell, but our shell doesn’t know how to do it yet.
When we have issued the touch command, your normal shell has recognized
the quotes and has passed “a space”, as a single string and with the quotes
removed, to the touch program (in argv[1]). Our shell, on the other hand,

16

has treated the “"” characters as normal characters: it did not use them to
protect the space between “a” and “space” and it did not remove them from
the command line.

The quoting metacharacters are single (’) and double (") quotes and back-
slash (\). Backslash removes the special meaning of the following character10,
while single quotes remove the special meaning of all the characters up to the
first single quote. Double quotes are a bit more complex: they remove the spe-
cial meaning of all the following characters up to the first double quote, except
for backslash, but only if it is followed by one of a few special characters11.

Don’t think of quotes as defining “strings”, like in most programming lan-
guages: for the shell, everything is already a string by default. You need quotes
only when you have to stop the shell from interpreting some of its metachar-
acters. Moreover, you can have quotes even in in the middle of words. For
example, the word a"$"c becomes the single word a$c after quote process-
ing. Quoting characters that have no special meaning has no effect: the strings
"abc", a"bc", a"b"c or even ""abc and abc"" are all equivalent to abc.

Why three metacharacters for quoting? The backslash is convenient when
you need to protect just one metacharacter, while the quotes are convenient
when you need to protect several of them in a row. Moreover, since the quot-
ing characters are themselves metacharaters (interpreted by the shell and then
removed from the input), you need a way to quote them when needed. You
can quote the backslash whit another backslash. In the earliest shells backslash
had no special meaning inside quotes, so you could not use it to put quotes in-
side quotes. However, you could quote single quotes by putting them in double
quotes and vice versa. Over time the double quotes have acquired some special
behavior: now you can put a double quote within double quotes using backslash
("\"") but you cannot do the same with single quotes12.

The 8-quote shell implements the quoting mechanism. Immediately after
receiving a line of input from getcmd(), we pass the input buffer to the new
function quote(). The function allocates a new buffer tmp, then scans each
character of the input buffer, looking for quoting metacharaters. Non-quoting
characters are simply copied to the tmp buffer, while quoting metacharacters
are used to copy a “quoted” version of one or more characters, according to
the rules outlined above. To implement the “quoted” version of characters
we steal the idea from the original Thompson shell: we mark the characters
by setting their most significant bit (see the QUOTE constant that is or-ed to
characters). The quote() function then replaces the input buffer with the
tmp buffer. Now, quoted spaces, dollars, and so on, will be hidden from the
eys of getwords(), getredirs(), getvars(), and expandall(), and
will reach buildargv() untouched. Finally, before actually passing the argu-
ment vector to the commands (either builtin or external), we use the function

10Except when the character is newline, see Exercise 8.4.
11The full set includes another backslash, double quotes, dollar and newline; in the first

revision we will only consider other backslashes and double quotes.
12However, if you really need to put a single quote in a single-quotes string, you can do as

follows: ’don’"’"’t do this at home’.

17

unquoteall() to remove all the quote markings. The trick is nice and should
clarify what quoting means, but note that it only works in a pure ASCII world,
since otherwise the character’s most significant bit would not be available13.

With this modifications in place, our new minishell correctly understands
strings like “"a space"” and our previous example works.

Exercises

8.1. Explain the differences (if any) among these commands:

echo "Hello World"
echo Hello World
echo "Hello World"
echo Hello World

8.2. Now that we have quoting, can we solve the problem in Exercise 3.1 by
typing, e.g., cat ’-’? Explain.

8.3. Many groups at Bell Labs tried to extend the Thompson shell before
Ritchie and Bourne decided that UNIX needed an official new one that
could subsume them all. In particular, the PWB shell by John Mashey
allowed for expressions like $v to be expanded within double quotes. The
expansion is disabled if the dollar is preceded by backslash. Try to imple-
ment this feature and compare it with the solution contained in 8-env.2.

8.4. What if we hit enter before closing a single-quote string? A real shell will
wait for a continuation line, printing its secondary prompt (“>” by default
in the Bourne shell) if it is interactive. The same happens if we hit enter
immediately after a backslash, either within double quotes or not, but
with a difference: the backslash and the newline are removed from the
input buffer. Try to implement these features and compare your solution
with the one in 8-env.3.

8.5. The POSIX shell mandates some peculiar behavior for words that expand
to nothing, like $X when X is either undefined or null: the word should
not be included in the argument vector passed to commands. However, if
the original word contained any quoting character (in any position), then
the (empty) word should be retained. E.g., if we type

echo hello ’’ $NONEXISTENT $NONEXISTENT""

then echo should receive hello in argv[1], an empty string in argv[2]
(coming from the ’’ word) and another empty string in argv[3] (com-
ing from the last word). Try to implement this feature and compare your
solution with the one in 8-quote.4.

13In other words, our shell is not “8 bits clean”.

18

9 Other features

A real shell will have many other features. Some are easy to implement, while
others are much more complex. The 9-fields* shell implement some more
string processing and will be used in Chapter ??. Some other features are im-
plemented in the src/sh?.c files in myUnix. For example, it is the shell that
prints “Segmentation fault”, by looking at the status value returned by wait()
(src/sh1.c). “Background jobs”, i.e., processes that run in the background
while the shell accepts new commands, are easily implemented by skipping the
wait() if the user has terminated her command with a “&” (src/sh2.c).
A more general scripting facility is easily obtained by accepting a script name
from the command line and then using it as input instead of stdin (src/sh4.c).
The same shell also implements the “-c cmd” option, which allows the shell to
execute the commands contained in the “cmd” argument. It is the shell that ex-
pands filename wildcards such as “*” and “?” (src/sh5.c and src/sh6.c).
It is also the shell that creates pipelines of commands, using essentially the same
trick as in I/O redirection (src/sh7.c). A few more extensions are collected in
src/sh8.c (|| and && operators), src/sh9.c (subshells) and src/shA.c
(final touches).

Ex. 1.1

Since we have only called read(), it must be implemented by something that
is active during its execution. But read() is a system call, so line editing must
be implemented either in the kernel, or in the terminal (emulator) itself.

We cannot be more precise than this without adding a bit of history: old
terminals were very simple and did not provide any line-editing functionality,
so it had to be implemented in software. For a long chain of compatibility
requirements, this is still true today. In fact, this kind of line editing is imple-
mented in the TTY module in the kernel, attached to the driver that talks to
the (emulated) teletype device. The TTY module has a fairly complex set of
options, which can be inspected and set using the stty(1) utility (or, more
precisely, using a set of system calls also used by stty). You can print the list
of the current options with stty -a. Many options are devoted to the details
of the serial communication with the tty device and are mostly meaningless
today; some options specify the action to be taken when special ASCII values
are entered from the keyboard: some values cause a signal to be sent to the
terminal’s foreground process group, and others are used for line editing. The
erase action removes the last input character and should be mapped to the
“ˆ?” ASCII value. This syntax is used to display unprintable, or control, ASCII
values, i.e., the first 31 values and the last one (0x7f, DEL14). The idea is to
flip bit 0x40 to get a printable character, then prepend that character with “ˆ”,
which stands for “0x40 XOR . . .”. Since the ASCII code of “?” is 0x3f, “ˆ?”
is 0x40 XOR 0x3f = 0x7f, i.e., DEL.

14DEL is 0x7f because ASCII was designed for paper tape: to erase any character, you could
punch all seven holes.

19

Note that, for many keys, typing Ctrl+x will also toggle bit 0x40 of x15 so
you can also enter DEL by typing Ctrl+? instead of the key mapped to DEL in
your keyboard (probably backspace). This is also the way you can enter “ˆC”
(ASCII ETX, usually mapped to the SIGINT signal) and the other values which
are not otherwise available on the keyboard. For this reason the “ˆx” syntax is
often pronounced “control x”.

Ex. 1.2

If you try, you should see some strange output that mentions the uptime, login
and such. As soon as you entered Ctrl+D, sh0 woke up and processed the
/usr/bin/wc characters that you entered. This is because Ctrl+D is actually
used as an “end of input” by the TTY module: it is an order to pass the
characters accumulated so far to reading process. Ctrl+D works as an end of
file only when entered on an empty line: the process will receive 0 characters
and will interpret this as an EOF condition (look at the while condition in
sh0.c). In our case, sh0 received “/bin/usr/wc”, i.e., 11 characters with no
ending newline, it replaced the last one (“c”) with the string terminator, and
then tried to execute the resulting “/usr/bin/w”. This is an old command
that is meant to show the currently logged-in users and the programs that they
are running (it may not be able to actually show anything useful, depending on
how your system is configured).

Ex. 1.3

You obtain an Exec format error: the kernel doesn’t recognize your file as
something than can be executed. Indeed, it is just a text file that needs an
interpreter, and not something that can be simply loaded into memory and
then executed directly by the CPU.

Ex. 1.4

This time the script works: if the first two characters of the file are “#!” (some-
times called a shebang), then the rest of the line is the path of an interpreter for
the file, optionally followed by whitespace and then a single argument for the
interpreter. In this case, the kernel itself will actually load the interpreter, pass-
ing it the option (if present) and the full path of the original file. In our case,
assuming that the script file is in the /home/user1 directory, the kernel
will run

15This is reminiscent of how the Ctrl key was implemented in the Teletype ASR 33. In the
ASR 33, the Ctrl key always resets bit 7 instead of toggling it. The Shift key instead flipped
bit 0x10, so if you shifted ‘1’ (ASCII 0x31) you got ‘!’ (ASCII 0x21) and so on. Many of
the keytop pairs that we see on our modern keyboards come from old mechanical typewriters.
The ASCII committee deliberately chose codes that differed by only one bit (bit 5) for these
symbol pairs, precisely to allow for the implementation of the shift key as found on the ASR
33 device.

20

/bin/sh /home/user1/script

The shell will then open and interpret the script file.
Note that the new shell will see the first line of the script, which was meant

for the kernel. This works because “#” is the start-of-comment character for the
shell, so the line will be ignored. Other interpreters (like awk, perl, python
and many, many others) also use “#” as a comment character, so this feature
automatically works for them too.

Ex. 1.5

When terminals evolved more capabilities, like a bidimensional screen, they in-
troduced escape sequences to embed control commands in the stream of ASCII
characters exchanged with the computer. These sequences have been then stan-
dardized by ANSI16. ANSI escape sequences start with ESC (ASCII 0x1B) and
some variable sequence of printable characters, typically starting with “[”. For
example, if the computer sends “ESC[A” to the terminal, it will move the cursor
up one line.

New keys, like the arrow keys, also send escape sequences to the computer.
For example, the up-arrow key sends “ESC[A”, i.e., the same sequence that
moves the cursor up when received from the computer.

Now, if we start sh0 and hit the up-arrow, we see “ˆ[[A”. This is the echo
(sent by the TTY module in the kernel) of the escape sequence sent by the
terminal (emulator). By default, the TTY module echoes control characters in
the same way explained in the solution of Exercise 1.1: “ˆ[” stands for 0x40
XOR 0x5B = 0x1B, which is ESC17. Note that the program reading from the
terminal will receive the true sequence, not the one which is echoed. You can
check this if you run cat, hit the up-arrow a few times and then press enter.
Then cat will wake up and send the received characters back at the terminal
and the cursor will move up.

The libreadline userspace library, used by bash and many other inter-
active programs, sets the terminal in raw mode, disabling echo and line editing
in the kernel, then implements all the advanced eding functions (including com-
mand history) in userspace. We are not using libreadline, and this is why
our shells lack these functions.

Ex. 2.1

Yes it works and it does not depend on the contents of PATH. Follow the rules:
is there a slash in the string? Yes. So PATH is not used and the string is passed
as-is to execve(). The kernel will then interpret it as a relative path, correctly
leading to the exe file.

16https://en.wikipedia.org/wiki/ANSI_escape_code
17It should be clear, by now, that Ctrl+[is an alternative way to type ESC on the keyboard;

this is very useful in, e.g., vi.

21

Many people seem convinced that the “./” prefix is necessary whenever you
want to specifiy a relative path (e.g., some people may type something like cat
./file). This is not the case: “./” is needed only to trick the shell (or similar
programs) into not using PATH, and you only need it if you don’t already have
a slash in your path. Moreover, relative paths of files passed as arguments to
other programs need “./” only if the program itself is using some execlp()-
like logic to parse the paths, which is almost never the case. For example, cat
will simply pass the “file” string to open() (but see Exercises 3.1 and 8.2).

Ex. 2.2

This time the script is executed. This is another feature of execlp() and the
other exec*() functions with a p in their name: if the first execve(path,. . .)
fails, they try a second time with execve("/bin/sh",. . .) with path as an
argument. The shebang feature described in the solution of Exercise 1.4 can be
seen as a generalization of this behavior, implemented directly by the kernel.

Ex. 3.1

The cat command, like many others, interprets “-” as standard input, i.e., it
will start reading from file descriptor 0 instead of trying to open("-". . .) (see
src/cat3.c). The trick is that this behaviour is only triggered by the exact
“-” string, so any other equivalent path will work:

cat ./-

Ex 5.2

The redirection is performed by the shell, in the forked process, before executing
sudo. So, the process will try to open() the f file before the kernel has had
any chance to change the user id, and will therefore fail.

One trick is to use sudo to run some command that opens the file by itself
and then writes into it, so that the open() is performed after the execve().
The tee(1) command is good enough for this purpose: it copies its standard
input to standard output and to all the files passed as arguments:

echo something | sudo tee f

This has the annoying side effect of writing something to standard output
too. In a script we might prefer

echo something | sudo tee f >/dev/null

22

Ex 6.1

When we run “bash <script”, we see the “hello” output and then get our
prompt back18. To understand what is going on, it is important to remember
that a parent process shares not only the open files with its children, but also the
read and write pointers to those files. Therefore, bash reads the cat line from
its standard input and then spawns the child process that executes /bin/cat;
the child process continues reading where bash left off, consuming the hello
line and printing it. Since the script is now over, cat sees an EOF and exits;
bash wakes up and tries to read more lines from standard input, but since the
shared read pointer has reached the end of the script, bash sees an EOF and
also exists. This is the expected and correct behavior in these scenarios.

Now we try with “6-intr <script”. This time we get an error:

hello: No such file or directory

The error comes from 6-intr, and can be explained as follows: the mod-
ified 6-intr did not disable stdio buffering, and therefore the fgets() in
getcmd() internally read past the end of the first line, actually consuming the
entire script and copying it into the stdio input buffer. The 6-intr shell
then spawned the cat child, which terminated immediately (since stdin was
at EOF); 6-intr woke up from the wait() and called fgets() again; the
function extracted the hello line from the input buffer and finally 6-intr
tried to execute a non-exitent hello command.

If we add a second hello line to the script and repeat the experiment, we
see something strange:

hello: No such file or directory
hello: No such file or directory
hello: No such file or directory

The 6-intr shell has tried to execute hello three times instead of two. The
problem now is with the cleanup functions that stdio runs on exit(). When
we fork() a process, the child starts with a copy of the parent’s memory, which
contains the entire state of the stdio library, including its buffers and its reg-
istered cleanup functions. If the child execve()s another program, this state
is wiped out; if it doesn’t, the cleanup functions are called in the child: this is
what happened when the first child failed to execve() the nonexistent hello
command and therefore continued to use the copy of the 6-intr shell’s mem-
ory: at exit(), the stdio cleanup function saw that the input buffer contained
a line that had not been consumed (since the fork() was done when 6-intr
had only extracted the first hello line) and issued an lseek() to move the
read pointer back. Since the read pointer is shared with the parent process, the
6-intr shell saw the second hello line again!

18Note that we explicitly use bash instead of sh. This is because most versions of dash,
the shell used in Debian and its derivatives for /bin/sh, contain exactly the bug we are
discussing here and will behave incorrectly, just like the modified 6-intr shell.

23

If you add a third hello line to the script, “6-intr <script” will result
in an infinite loop: the first fgets() will cache the whole script, and the shell
will spawn a process for each hello line; at exit, the first child will move the
read pointer back to the beginning of the second hello line; the second child
will try to move it back to the beginning of the third hello line, but since it
uses a relative offset and the read pointer has already been moved by the first
child, it will move the pointer further back, to the beginning of the script. The
shell is then forced to start over, and this will repeat forever.

Ex. 7.1

The “$X” is expanded by the shell before interpreting the line, and in particular
before updating the environment with “X=aaa”. Therefore, “$X” expands to
nothing and echo prints an empty line. If the purpose is to print “aaa”, the
assignment must be performed in a previous line with an empty command, so
that the shell environment itself is updated:

X=aaa
echo $X

In a normal shell this would also work:

X=aaa; echo $X

It doesn’t work in 5-intr because the semicolon is not recognized as a com-
mand separator.

Ex 8.1

The first two commands produce exactly the same output, even if the first one
is psycologically nicer. The third one prints all the spaces between Hello and
World, while the last one prints only one space between them. Note that echo
never sees the unquoted spaces: they are parsed by the shell. The first and third
echo instances receive a single argument while the second and third instances
receive two arguments (not counting argv[0]).

Ex 8.2

No, this cannot solve the problem, since the quotes are only seen by the shell
and cat will still receive the unadorned “-” string.

24

