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1 Introduction

During the lectures we will mostly use Linux. Linux is based on Unix, which is
a completely different thing. It is important to set the record straight.

Unix was developed at AT&T Bell Labs in the late ’60s by Ken Thomp-
son, soon joined by Dennis Ritchie. It was a personal project that Thompson
started on a PDP-7, when Bell Labs pulled out of the MULTICS project. It
was then ported to a PDP-11 and enjoyed great success, first within the Bell
Labs themselves and then at many universities and companies. The versions
of Unix produced by Bell Labs are now called “Research Unix” and are num-
bered according to the version of their manual, starting with V1. The last well
know Research Unix version is V7 from 1979; after that, and until the late
’1990s, most people used a version of Unix that derived from either System V,
a commercial version of Unix developed by AT&T, or BSD (Berkeley Software
Distribution), a free version of Unix maintained by people at the University of
California Berkeley (UC Berkeley). Both were based on research Unix code, ex-
tended in incompatible ways. The POSIX standard is (one of several) standards
that try to define what every Unix system should look like.

A lawsuit was started in 1992 by AT&T against UC Berkeley, claiming that
the latter had no right to use Unix code. Meanwhile, two important things
happened: Richard Stallman had started the GNU (GNU’s Not Unix) project
in 1983, with the goal of rewriting Unix from the ground up to create a Unix-
like system free of all legal problems. The GNU project produced many of the
userspace commands, starting with the C compiler, but it never managed to
materialize the kernel. This very important missing piece was finally created
when Linus Torvalds announced his personal kernel project, which eventually
became Linux, in 1991. By putting together Linux, the GNU software and a
lot of other open source software (such as the Vim editor and the X Window
System), we can now have several complete and free Unix-like systems.

The BSD people finally succeded in rewriting their software and freeing it
from any dependence on Unix. The BSD system survives today in FreeBSD,
OpenBSD, NetBSD and some other variations.

Bell Labs did not stop at V7 Unix, producing other less well-know versions
up to V10, and developing “Plan 9 from Bell Labs” (a reference to the trash
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Figure 1: The structure of Unix.

sci-fi movie Plan 9 from Outer Space) and “Inferno”, where the Unix ideas were
developed without the need to maintain compatibility with ancient decisions.
Today, Linux also includes ideas from Plan 9, such as the clone() primitive,
which replaces the old fork().

2 The structure of Unix

You have probabily encountered Unix in other courses, so we will move very
quickly. For our purposes, one of the most important features to keep in mind
is that no program in Unix is magic, except the kernel. Only the kernel can do
things that the other programs cannot. In particular, the shell is not magic:
everything the shell does, you can do in your own programs, and you can even
replace the default shell with another one. Not even sudo is magic: it only
allows you to become root temporarily thanks to the set-uid feature. Moreover,
this feature is not specific to sudo: any executable can have the set-uid bit set
at the discretion of its owner (or the administrator).

The kernel implements a number of primitives. Programs such as the shell,
ls, cat, sudo, and so on, perform their tasks using these primitives. When you
reason about what is possible and what is not, you only have to think about
the primitives, not the programs: to read a file, cat must open() it, like any
other program that reads a file.

The original Unix was admired for its elegance, since the set of primitives
was very small (a modern Linux system, unfortunately, implements hundreds
of primitives). The system implements processes, which are the entities that
execute programs, and files, which are automatically expanded sequences of
bytes organized in a hierarchy of pathnames (the file system). Processes are
handled by the fork(), execve(), exit() and wait() primitives. Files are
handled with the open(), read(), write() and close() primitives.

The kernel keeps track of a number of properties for each process. Among
them are:

• the process identifier (a small number which is reused when a process
terminates);

• a real and an effective user identifier, and a real and effective group iden-
tifier1;

• a current working directory

• a table of open files.

1Later Unix-derived systems and modern Linux also implement a set of additional group
identifiers, so a process can belong to many groups.
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The kernel also remembers, stored in the file system inodes, a set of attributes
of each file and directory. Among them are:

• the file type (file, directory, symbolic link, device node)

• the ids of the file’s owner and group;

• the permission bits (read, write, execute permissions for the file’s owner,
for the file’s group, and for other users)

• the set-uid and set-gid flags.

2.1 Process primitives

The fork() primitive is the only way to create a new process. The child process
is a copy of its parent and, in particular, all of the process attributes mentioned
above are copied to the child process (except, of course, the process identifier).
In particular, the new process will have the same uid and gid as its parent, and
will share the same open files. The executed program is also the same: the
fork() primitive will return different values to the parent and the child, so the
program can take different branches and let the two processes perform different
actions.

The execve() primitive is the only way to execute a new program. The first
argument of the primitive is the path of a file, which must be executable by the
calling process (according to the file’s permissions and the process’s effective
uid and gid). The process remains the same: same id, same open files, same
current working directory, same real uid and gid (the effective ones may change
because of the set-uid and set-gid feature, see below). However, all its memory
is replaced by the contents of the file. Execution resumes at the file’s start

symbol. The execve() primitive takes two more arguments, which are two
arrays of C strings, with each array terminated by NULL. The code in start

(which comes from the standard C library) will use the first array to create the
argc and argv parameters of main, while the second array is used as the set
of the environment variables of the process, pointed to by the global environ
variable.

If the set-uid bit of the file is set, execve() changes the effective uid of the
process to the uid of the owner of the file. The same goes for the set-gid bit and
the effective gid. The real uid and gid do not change.

Processes terminate when they call the exit() primitive. A process can
wait for any of its children to exit by using the wait() primitive. A small
integer passed to exit(), can be received by wait() and used as a means for
the child process to communicate errors or special conditions to its parent. By
convention, a value of 0 means that all was well.

The uid and gid of a process can also be changed using the setuid() and
setgid() primitives which behave differently when called by the root user (uid
0) and normal users (uid different from 0). If the effective uid of the calling
process is 0, setuid() will accept any value and set both the real and effective
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uids to it (and similarly for setgid()). Normal users can only call these primi-
tives when they are essentially no-ops (setting the ids to the value they already
have).

2.2 File primitives

We will cover only the most important features, assuming that you are already
familiar with a Unix-like file system.

Files must be opened before they can be used. The open() primitive takes
a path as the first argument and a mode (read and/or write) as the second. It
checks if the calling process has the proper permissions to open the file in that
mode (again, using the effective uid/gid and the file permissions). If successful,
it finds the first free slot in the process open-file table, stores there a pointer
to an in-kernel data structure describing the open file, and returns the index of
the slot. This index (file descriptor) can be passed to the read() and write()

system calls to sequentially read and write bytes to and from the open file. The
process should close() the files when it is done with them, mostly because the
open-file table has a finite size, but the kernel will automatically close any open
files when the process terminates.

If so instructed, open() can also create the file if it does not exist. The
original design used a different primitive for this, creat(), which is still available
today.

Directories must be created and deleted using the mkdir() and rmdir()

primitives. Existing directories are opened and closed with open() and close(),
like regular files, but you cannot use write(), and you can (no longer) use
read(), since their content is system specific. The standard primitive to read
directories is getdents(), but directories are best accessed using library func-
tions (opendir(), readdir(), closedir()).

Finally, a process can change its own current working directory using the
chdir() primitive, passing the path of the new directory as an argument.

2.3 Interpreting paths

All of execve(), open() and chdir() always interpret their first argument—a
filesystem path—in the same way:

• if it begins with /, it is an absolute path starting from the root of the file
system;

• if it does not begin with /, it is a relative path starting in the current
working directory of the process.

Note, in particular, that no PATH variable is taken into account by execve():
PATH is handled in userspace before calling execve(), as we will see.

Any character can be part of a file or directory name, except 0 and /. This
includes whitespace, even newlines, and control characters like backspace.
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2.4 How things fit together

From a Unix access control point of view, you must always remember that what
matters is the effective uid and gid of the processes, as checked by the kernel
when they invoke primitives. The programs are not important: exactly the
same ls program is run by normal users and by root, but the set of directories
that can be listed depends on who is running ls. More specifically, it depends
on the effective uid and gid of the process that execve()’d the /bin/ls file.

So, how do processes get the effective uids and gids of users? When Unix
boots, the kernel creates a process with id 1, both real and effective uid and gid
set to 0 and no open files. The process executes the init command, which must
exist and be executable. Consider the original Unix setup, which is simpler: the
Unix system is running on a large computer somewhere, and there are several
terminals connected to it. The available terminals are listed, one per line, in
a /etc/ttys file created by the administrator (ttys stands for teletypes). For
each teletype mentioned in the file, init forks and executes the getty command,
passing the name of the teletype as an argument (via the second parameter of
execve()). It then waits endlessly for any of its children to exit. Whenever
a child exits, init wakes up and spawns a new getty for the corresponding
terminal.

The getty process thus starts with uid and gid set to zero and no file open.
It does whatever is necessary to put the teletype device into a usable state, then
it opens the corresponding device file three times, once in read-only mode and
twice in write-only mode. Since there were no open files before, and the open()
primitive always uses the first free slot in the file descriptor table, the device will
go into file descriptors 0, 1 and 2. From this point on, all other programs that
are run, and processes created directly or indirectly from this process, will start
with these file descriptors already open. By convention, these are the standard
input, standard output and standard error files for programs started from this
terminal. The getty program will then print “login:” to file descriptor 1 and
start reading from file descriptor 0. When a user comes to the terminal and
enters her name, getty will execve() the login program, passing the entered
username as an argument.

The login process still has its uids and gids set to zero, but the fds 0, 1
and 2 now point to the terminal. It prints “password:” to file descriptor 1,
then reads from file descriptor 0 (it has to issue some ioctl() first, so that the
terminal does not echo the password to the terminal printer, where it would
remain there for everyone to see). Once it gets the password, it opens and reads
the /etc/passwd file (prepared by the administrator), looking for a line starting
with the username. If it finds it, it checks the password, and if they match, it
reads the uid, gid, home directory and shell from the rest of the line, then
it calls

• setgid(gid);

• setuid(uid);

• chdir(working directory);

5



• execve(shell, argv, environ);

Since login is still running as root, the first two calls set both the real and
effective gids and uids of the process those of the logged-in user. When the
shell runs, it will still have file descriptors 0, 1 and 2 pointing to the terminal
opened by getty and the uids and gids set by login. From now on, all the
programs started by the shell will inherit this setting, and there will be no
way to arbitrarily change the uid and gid (unless they are still 0 because the
logged-in user is actually the administrator), since setuid() and setgid() are
no longer available. Only by execve()ing set-uid/set-gid programs can the uids
and gids be changed, but these programs will only perform safe actions (or so
the administrator hopes).

When the shell exits because the user logs out, init will wake up and
respawn getty on the terminal (the shell is still running in the child process
initially forked from init, since only execve() has been called since then).
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