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1 Introduction

Hackers know very well how things really work (the real ones, at least). We need
to acquire a similar level of knowledge, and we start with the most important
Unix tool: the shell.

The shell is used to run other programs and define their parameters, envi-
ronment and open files. It is also a parser, interpreting and rewriting what we
type at the command line in various complex ways.

We will try to understand what a shell does by incrementally building a
simple one. A note of caution, however: while we will try to mimic the behaviour
of a real POSIX shell as closely as possible, we will not try to be complete,
efficient, or even compatible with the standard, much less with any existing
shell.

We will use the code that can be downloaded from here:

https://lettieri.iet.unipi.it/hacking/myUnix-1.6.3.tar.gz

The names between the brackets in the section headings refer to the source
file of the shell discussed in that section. The shells can be tested either within
the myUnix environment, or by compiling and running them on your host ma-
chine (Linux or Mac) by going to the src directory and typing, for example,

make sh0

to build sh0 from sh0.c. Then you can run it with ./sh0.

2 The simplest shell [sh0.c]

Figure 1 shows the simplest shell imaginable. It is a program that cyclically
reads a line of text from its standard input (file descriptor 0) and tries to execute
a program with that name. The program is executed in a new process, while
the parent process, which is still running the shell, waits for its termination.

If this is the login shell, file descriptor 0 will still point to the teletype device
node opened by getty and inherited first by login and then by the shell.
Therefore, the user will be able to type commands on the terminal where she
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1 #include <sys/wait.h>
2 #include <stdlib.h>
3 #include <stdio.h> /* for perror() */
4 #include <unistd.h>
5
6 #define MAX_LINE 1024
7
8 /* minimal shell.
9 * shows fork/exec exit/wait
10 */
11
12 int main()
13 {
14 char buf[MAX_LINE];
15 int n;
16
17 while ( (n = read(0, buf, MAX_LINE)) > 1 ) {
18
19 buf[n - 1] = ’\0’;
20
21 if (fork()) {
22 wait(0);
23 } else {
24 execl(buf, buf, NULL);
25 perror(buf);
26 exit(1);
27 }
28 }
29 return 0;
30 }

Figure 1: The simplest shell.
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has logged into. The commands executed by the shell will also inherit the files
opened by getty, and will therefore accept input from, and write output and
errors to, the same terminal.

The shell has also inherited its uids and gids, this time from login. The
real ids will also be inherited by the shell’s children. The effective ids will be
inherited too, unless a child execve()s a program that has the set-uid and/or
set-gid flags set. In the normal case these flags are not set, and therefore the
command will be executed with the credentials of the current user. The same
reasoning applies recursively to any other process that the command itself might
create.

Note that read() will also give us the newline character that ends the line
typed by our user1. We replace it with the null character, to get a C string.

Now let us focus on the function we use to execute the program. We are
not calling the execve() system call directly. Instead, we use execl(), a C
library function that is a little easier to use. The function does some additional
processing and then calls the system call (we know it has to call it: there is
no other way to run a program). The first argument of execl() is exactly
the same as in execve(), and in fact execl() will pass it as-is. The execl
function is variadic, i.e., it takes a variable number of arguments, which in this
case are C strings. Take a look at lib/execl.c to see how this works. The
function collects these strings, starting with the second argument until it finds
NULL. It builds an array of pointers to these strings. This array will then
become the second argument of execve(), and then the argv of the new
program. We follow the convention that the first element of argv must be the
program name, so we pass buf twice. Remember, however, that only the first
is interpreted by the kernel as a path, while the second is just copied into the
process memory and made available via argv[0].

As for the last execve() argument, the array pointing to the environment
variables, execl() will simply pass the one from the calling process. The new
process, therefore, will see the same environment variables as the shell (this
latter part is actually done by execv(), see lib/execv.c).

Now let’s go to our home directory and start our minimal shell, then type
/bin/ls and press enter. We should see the contents of the directory. We can
type the full path of other commands, such as /bin/ps, or press Ctrl+D to
send an EOF and cause our mini-shell to terminate (since read() will return 0).

Now remember how execve() interprets its first argument, the path of
the new program to execute, and try to guess what will happen if we start our
minimal shell and then type ls (followed by Enter) assuming that the current
directory is still our home.

Did you guess right? execve() fails and we get a “no such file” error. This
is because the PATH variable is not used, execve() gets the string “ls” as
its first argument, and this represents a relative path starting from the current
directory (since it does not start with /). The current directory will (probably)
not contain an executable file called ls, and therefore the kernel will not be

1Assuming she types less than MAX_LINE characters, but we’ll ignore that for now.
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able to find it. To confirm this, we can exit from our mini-shell (Ctrl-D), copy
the ls program to our current directory (to avoid confusion, let’s call it myls):

cp /bin/ls myls

Then run our mini-shell again. This time, typing myls will work.

Exercises

2.1. Note that, while in sh0, you can edit the command line before hitting
enter: you can delete the last character, the last word (Ctrl+W) or the
whole line (Ctrl+U). Where is this feature implemented?

2.2. What happens if you type /bin/ls immediately followed by Ctrl+D?
Why would this happen?

2.3. Close sh0 and create a script text file containing any shell command,
make it executable (chmod +x script), restart sh0 and try to run the
script. What happens? Why?

2.4. Do as in Exercise 2.3, but add a line with #!/bin/sh at the very top of
the script file. What happens now? Why?

2.5. If you try to use more advanced editing keys than those mentioned in
Exercise 2.1, such as the arrow keys, you get only strange characters in
response. What are these characters? Why don’t the keys work as ex-
pected?

3 Using PATH [sh1.c]

Now let’s add the PATH variable into the picture. All we have to do is replace
execl with execlp in Figure 1.

The execlp() function works much like execl(), and it must call execve()
to ask the kernel to run a new program (there is no other way, remember).
Therefore, it needs a path to the new executable, to pass it as the first argument
to execve(). As a convenience, the function is able to search for a program
in the set of directories listed in the PATH variable (separated by colons). This
way the user is not forced to always type the full path of each command. More
specifically, it works like this: to get the path of the executable, the function ap-
pends its first argument to each one of the paths listed in PATH in turn (adding
a “/” in between, if necessary) until it finds an existing executable file with the
resulting path. If the list of directories is exhausted and no executable file is
found, the function returns with an error.

However, there are occasions when the user wants to execute a program
that is not in any of the directories listed in PATH. To accommodate for this
use case, the function introduces a distinction between commands and paths: if
its first argument contains no slashes, then it is a command; otherwise, it is a
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path. Only commands need to be converted to paths using PATH, while paths
are passed directly to execve() without any further processing.

Now let’s start our modified mini-shell in our home directory and let’s type
/bin/ls (a path) and then ls (a command) as before. This time both strings
work: the first one is passed as-is to execve() and the kernel interprets it as
an absolute path that successfully leads to the ls program. The latter one also
works because the PATH variable most likely contains the /bin directory, and
therefore execlp() will succeed in finding the ls program when it tries the
/bin/ls path.

Now, assuming that myls is still in our current directory, let us type myls
and, before hitting enter, let us try to guess whether it will work or not.

This time we get an error. And why is that? Because the myls string is
classified as a command, since it contains no slashes, and therefore execlp()
will look for it in the directories listed in PATH, and only there. The current
directory is, most likely, not listed in PATH, and therefore execlp() will not
be able to find our program.

Note that the above behaviour is caused by a corner case in the classification
operated by execlp(): strings without slashes are legitimate paths according
to the kernel (they are relative paths), but they are commands according to
execlp(). Since execlp() runs first, its interpretation wins.

If we want to use PATH and still be able to run a program that lives in the
current directory we have a few options:

• use a path that leads to our program and contains a “/”;

• add the current directory to PATH.

The first method causes execlp() not to recognize the string as a command
and pass it directly to the execve() system call. A common trick is to type
./myls—a redundant path that has the required slash and is completely equiv-
alent to “myls” as far as the kernel is concerned.

The latter can be done in many ways. Of course you can add the absolute
path of any directory to PATH, but you can also add relative paths to it. Adding
the “.” path will cause the execlp() function to also look for files in the
current directory (essentially recreating the “./myls” path by itself).

Perhaps little known, but implicit in the above description, is the fact that
execlp() will look in the current directory even if PATH contains an empty
path: it will not concatenate anything to the input path, will not add a / since
there is nothing to separate, and therefore will get the same path as before.
If PATH contains an empty path and we type myls, execlp() will also try
to pass myls to execve(), which will find it. An empty path exists if PATH
starts or ends with a colon, or if it contains at least two colons with nothing in
between.

Exercises

3.1. Assume that the current directory contains a subdirectory called utils
that contains an executable called exe. Now we type
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utils/exe

into sh1. Will it work? Does it depend on the contents of PATH?

3.2. Do as in Exercise 2.3, but using sh1 instead of sh0. What happens now?
Why?

4 Splitting the command line [lsh.c]

Now let us use sh1 and try to type “ls -l”. Will it work?
No, the kernel will look for a program called “ls -l”, which most likely

does not exist (but it could have existed: remember that spaces are allowed in
file names).

The splitting of what we typed into the name of the command and its argu-
ments will not happen by magic. Go through what we have said until now, and
try to find the place where we said that something splits a string into words:
you will not find it, because it does not exist.

Splitting the command line into words is one of the main tasks of the shell.
The first word becomes the first argument to execve(), possibly after PATH
processing. All the words (including the first one) are assembled into the array
passed as the second argument. Figure 2 shows a very simple implementation
of the idea.

The new lines 22–30 scan the input buffer, looking for space characters.
They then replace the spaces with string terminators (’\0’) and collect the
starting addresses of the resulting strings in the c_argv array. When all the
line has been scanned, the array is NULL terminated (line 30).

The first array element (c_argv[0]) and a pointer to c_argv are then
passed to execvp() at line 35. This is another exec variant that invokes
the execve() system call under the hoods. Like execlp(), it uses PATH
on its first argument and copies the parent environment to the child. Unlike
execlp(), though, it does not build the argv vector by itself and just uses its
second argument as-is.

Now, if we run our new shell and type ls -l, we will see the long listing
of the current directory. We can pass any number of arguments (well, up to
MAX_ARGS) to any command, and everything will (mostly) work.

Note how the shell only splits the line, but the meaning of the resulting words
(besides the first one) is entirely up to the commands. They receive them in the
argv parameter of their main function and they can do whatever they want
with them. It is only by convention that many programs (but by no means all
of them) understand arguments starting with “-” as an option, or a single “-”
as the standard input file, and so on. One needs to check the documentation of
each command to learn these details when needed.
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1 #include <sys/wait.h>
2 #include <stdlib.h>
3 #include <stdio.h> /* for perror() */
4 #include <unistd.h>
5
6 #define MAX_LINE 1024
7 #define MAX_ARGS 10
8
9 /* shell that splits lines into words */

10
11 int main()
12 {
13 char buf[MAX_LINE];
14 int i, n;
15 int c_argc;
16 char *c_argv[MAX_ARGS + 1];
17
18 while ( (n = read(0, buf, MAX_LINE)) > 1 ) {
19
20 buf[n - 1] = ’\0’;
21
22 c_argv[0] = buf;
23 c_argc = 1;
24 for (i = 0; i < n && c_argc < MAX_ARGS; i++) {
25 if (buf[i] == ’ ’) {
26 buf[i] = ’\0’;
27 c_argv[c_argc++] = &buf[i + 1];
28 }
29 }
30 c_argv[c_argc] = NULL;
31
32 if (fork()) {
33 wait(0);
34 } else {
35 execvp(buf, c_argv);
36 perror(buf);
37 exit(1);
38 }
39 }
40 return 0;
41 }

Figure 2: A shell that splits the command line into words.
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Exercises

4.1. Exit from lsh and create a file called “-” (a single dash):

echo hello > -

Now restart lsh and try to run cat -. What happens? How can you
invoke cat from lsh to see the contents of that file?

5 Parsing [sh2.c]

Since the shell is a program like any other, we can call it recursively. If we redi-
rect its standard input from a file in which we have placed some shell commands,
the new shell will execute them one by one without further intervention. This
gives us a (somewhat limited) scripting capability, without adding any new ad
hoc mechanisms to the system.

However, if we try this with the shells that we have built so far, it will not
work. The reason is that we have assumed that each read() call will always
return exactly one line. However, this is only true if we are reading from a
terminal configured for line processing (and the line fits into the input buffer).
This assumption fails especially if we call read() on a file: the system call will
just try to fill the buffer, without stopping at newlines. The shells that we have
written so far are not prepared for this.

Another flaw of the shell in Figure 2 is that the parsing of the input line is
far too simple: what happens if the line starts with spaces, or if there is more
than one space between two words, or if the user wants to continue an input
line with the standard “<backslash><newline>” sequence? None of this works
as expected.

We can remedy these shortcomings by implementing a less näıve parser—
one that examines input characters one at a time and builds tokens from them.
Since programs are startting to get too big to include here, we will now refer di-
rectly to the files in myUnix-1.6.3.tar.gz. The src/sh2.c shell provides
essentially the same functionality as the one shown in Figure 2 (i.e., splitting
lines into words), but it does so using a slightly more sophisticated parser. The
parser will also simplify the implementation of the other features that we will
consider later.

The input processing is done in three stages:

1. the functions in the input.h file take care of reading the input one byte at
a time, prompting the user if necessary, and processing the “⟨backslash⟩⟨newline⟩”
sequence;

2. the token() function recognizes tokens in the resulting string and returns
the type of the next token to process;

3. the main program repeatedly calls token() and decides what to do with
the resulting tokens.
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Stage 1 uses a struct input data structure, which must be initialized with
the input file descriptor (0 in our case, for standard input). Then, nextcmd()
must be called to start the processing of a new command, prompting the user
and loading the first input character into the ibuf field of the structure. When
the processing of ibuf is finished, the next character can be loaded by calling
inext(). The data structure also provides some space to store the token
values as they are found (the obuf). A new token value is started by calling
newtoken(), then characters can be added to it by calling oput(). The last
token value can be retrieved by calling lasttoken().

Stage 2 is implemented in the token() function. It first skips any leading
whitespace from the current position in the input stream, and then decides what
to do based on the current input character. For now we only recognize two types
of tokens separated by whitespace: words (type 1) and newline (type ’\n’).
Word tokens are any sequence of non-whitespace characters; the newline token
terminates a command.

In stage 3, the main program accumulates words in the c_argv vector and
terminates it with a NULL pointer when it receives the newline token. It then
proceeds to execute the requested command exactly as in Figure 2.

This new shell behaves correctly if its standard input is redirected from a
file, and it correctly parses sequences of whitespace characters, long lines and
line continuations. It also prints a prompt when the input file is a terminal.

Exercises

5.1. Start sh2, type
l⟨backslash⟩⟨newline⟩s⟨newline⟩

and try to guess what is going to happen before you hit each ⟨newline⟩.

6 Quoting [sh3.c]

Now create a file with a space in its name using your normal shell, e.g.:

touch "a space"

Then start sh2 an try to run some command on the file just created, e.g.:

cat "a space"

We get errors from cat, which cannot find the “"a” and “space"” files. This is
because single and double quotes, as well as backslashes, are normally parsed by
the shell and not by the commands, but sh2 doesn’t know how to do it. When
we have issued the touch command, your normal shell has recognized the quotes
and has passed “a space”, as a single string and with the quotes removed, to
the touch program (in argv[1]). Our sh2 shell, instead, has treated the
“"” characters as normal characters: it has not used them to protect the space
between “a” and “space” and has not removed them from the command line.
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A shell that parses backslashes and single/double quotes can be found in
src/sh3.c. With respect to sh2 we have added a few functions and expanded
the word() function. While examining the characters of a word in the word()
function, we start special processing whenever we see a “"”, “’” or “\”. A
backslash is removed and the next character is added to the current token value.
The quotes (double or single) are removed and all characters are appended to the
current token value, until the matching quote is found (see the collect_sq()
and collect_dq() functions). While collecting the characters within double
quotes (in collect_dq()) we need to take special care whenever we see a
backslash, which may or may not quote the next character, depending on what
the next character is. The detailed quoting rules can be read, for example, in
the man page of the dash shell. Don’t think of quotes as defining “strings”,
like in most programming languages: quotes in the shell can be found in the
middle of words. For example, the sequence a"b"c becomes abc after quote
processing. Think of them as markers that remove the special meaning from
some or all of the enclosed characters.

To implement this “removal of special meaning” we steal the idea from
the original Unix shell from Ken Thompson: we mark the quoted characters
by setting their most significant bit (see the QUOTE constant that is or-ed to
characters), so that their original code is no longer recognized. Then we re-
move all markings before passing the final strings to the commands (see the
remove_quotes() function). Note that this is only possible in a pure ASCII
world, since otherwise the character’s most significant bit would not be avail-
able2.

With this modifications in place, our new minishell correctly understands
sequences like “"a space"” and our previous example works. This is be-
cause the quotes are removed and the space is added to the token value by
the collect_dq() function. Note that the QUOTE markings don’t play any
special role yet, but they will become important when our shell will be able to
recognized more token types.

Exercises

6.1. Explain the differences (if any) among these commands:

echo "Hello World"
echo Hello World
echo "Hello World"
echo Hello World

6.2. Now that we have quoting, can we solve the problem in Exercise 4.1 by
typing, e.g., cat ’-’? Explain.

6.3. Try to guess what happens when you enter

2In other words, our shell is not “8 bits clean”.
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echo ’⟨backslash⟩⟨newline⟩’

and

echo "⟨backslash⟩⟨newline⟩"

7 Shell builtins [sh4.c]

Let us try something else. Assume that the current directory contains a Movies
subdirectory (create it if it doesn’t). Let us start sh3 and type

cd Movies

Will it work?
No, sh3 will look for a cd binary to execute, but there is no such binary in

the file system. Such a program would have to call the chdir() system call, but
this system call only changes the current working directory of the process calling
it. That is, it would change the current working directory of the child process
that the shell would have created to run cd. The shell itself would continue to
use its old working directory, and we would have accomplished nothing.

If you guessed wrong, it might make you feel better to know that Ritchie and
Thompson made the same mistake when they added multiprocessing support
to Unix. Before that, there was a cd command (it was actually called chdir).
The command stopped working when they implemented fork(), and they were
confused by it, at least for a while3.

For cd to work, the shell must call the chdir() system call by itself. A
shell that understands cd can be found in src/sh4.c. The only difference
with sh3 is that after the words are collected, the first word is compared to the
“cd” string. If the strings match, sh4 calls chdir() without creating a new
process; otherwise, it continues as before.

The commands that are executed directly by the shell are called “shell
builtins”. Whenever a command needs to affect the environment of the shell
itself, so that it can be inherited by all later commands, we need a shell builtin.
Other common builtins are umask and ulimit. Over time, shells have acquired
other builtins that were not necessarily needed, because it is more efficient to
run something in the shell than to spawn a new process each time. For example,
the simple echo utility is a builtin in most shells. Another reason for adding
a builtin is to take advantage of the greater knowledge that the shell may have
about the current state. For example, pwd (print working directory) is also
implemented as a builtin in many shells because, unlike the external command,
the shell can remember when it has traversed a symbolic link and can display it
in the path. If you want the external program instead, you can always invoke

3See page 6 of the paper on Unix evolution on Dennis Ritchie’s home page (https://
www.bell-labs.com/usr/dmr/www/.)
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it by typing its full path (e.g., /bin/echo or /bin/pwd). More precisely, it is
the presence of a slash in the string that disables the builtins, as well as PATH
and aliases (which we will not discuss).

8 I/O redirection [sh5.c]

Standard input and output redirection is very easy to implement in Unix. You
can take a look at src/sh5.c to see how it is done.

As far as the command line parsing is concerned, we now have a few more
tokens: one for the input redirection operator (<), one for the output redirection
operator (>) and a final one for the append operator (>>). We don’t implement
all the other redirection operators that most shells understand.

The redirection operators are only recognized if they are not quoted. Also,
they add to the set of word delimiters other than spaces. When the main
program scans the input tokens and finds one of these new types of tokens, it
skips any adjacent whitespace and expects to find a word token, representing a
pathname. Depending on the type of the redirection token, it remembers this
path in either the ifile or the ofile pointer. Then, in the child process,
before calling execvp(), if ifile was set, the shell closes file descriptor 0
and opens ifile. Since open() always uses the first unused file descriptor
number, it will assign file descriptor 0 to the newly opened file. Something
similar happens when ofile is set, but in this case the shell will also choose
between the O_TRUNC or O_APPEND open flags, depending on whether the
operator was > or >>. Now the program will start with its standard input
and/or standard output redirected to these files. Note that the program is
completely unaware of this, and this explains why the mechanism works for
all programs (that follow the stdin, stdout and stderr convention). All this is
achieved without adding any new system call.

Exercises

8.1. Assume that you have to write something in a file f where you have no
write access. You are listed among the sudoers, so you try

sudo echo something > f

buy you still get a permission denied error. Why? How can you solve your
problem?

9 Environment variables [sh6.c]

Now consider shell’s support for environment variables, such as PATH and HOME.
The purpose of these variables is to personalize the user’s environment or to

remember values across between program executions. From the kernel’s point of
view, environment variables are just another set of strings that execve() must
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copy into the process’s memory. Everything else about them is just convention,
from their syntax to their meaning.

• Syntactically, these strings should be of the form variable=value, where
variable should look like an identifier, starting with a letter or underscore
and then containining only letters, numbers and underscores. However,
the kernel does not check that any of these rules are actually followed:
it just copies null-terminated strings, whatever they are. The C library
assumes that these conventions are followed, and provided some functions
to work with them: getenv() to get the value of a variable given its
name, setenv() to create a new variable or, optionally, overwrite an
existing one, and unsetenv(), to remove a variable completely.

• Semantically, some of these variables have meanings that are understood
by most Unix programs. PATH is an obvious example, since its meaning
is embedded in the C library functions that are used to run programs.
Another example is EDITOR, which users can set to their preferred editor.
Programs that need to spawn an editor should look at this variable and
start the user’s preferred editor. However, nothing in the system enforces
these rules, and each program is free to ignore any environment variable
or assign a different meaning to it.

The most important thing to remember, if you really want to understand
how environment variables work, is that they are local to each process, and that
they originally come from the parent of the process. Unix users often forget this
because environment variables look like a “global” thing. This illusion is created
by the fact that most programs simply pass to their children the environment
that they have received from their parent. This behaviour is encouraged by
the C library, where most exec* variants (including the ones that we have
used so far) copy the current environment under the hood (i.e., they pass the
current value of the environ pointer to execve()). This illusion breaks if
you want to change the value of a variable, or create a new one. This change is
only visible in the current process and in its future children: you cannot change
the environment of another process, since you cannot (normally) write to its
memory.

Shell support for environment variables comes in two forms:

• the shell maintains an environment that can be passed to its children, and
provides some syntax for updating it;

• the shell can “expand” the value of a variable as it parses the command
line.

The latter is a form of macro processing: some text is replaced by other text,
often without regard to the syntax of the resulting command line.

For our shell (src/sh6.c) we use the following syntax. To assign a value
to an environment variable, use

variable=value
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No spaces are allowed anywhere (but you can use single or double quotes to
enclose spaces in the value part). You can have more than one assignment
on a single command line, separated by spaces. The assignments change the
environment of the shell and of all subsequent commands. As a special case, if
you write a command on the same line as the assignments, only the environment
of that command is updated.

To expand the value of a variable, use $variable, followed by a space or a
non-alphanumeric character (including a backslash), anywhere on the command
line. The expansion replaces the $variable sequence with the value of variable
if it exists, and with nothing otherwise.

The implementation is conceptually simple, and is only made complex by the
nuances of how POSIX shells work. When a $variable expression is found on the
command line, the shell collects the variable name, looks for the variable in the
environment, then replaces the $variable string with the value fo the variable (or
with an empty string, if the variable is undefined). The resulting characters are
treated differently depending on where the $ was found: inside double quotes, or
inside an unquoted word. In the former case, all the characters of the expansion
are quoted, including the spaces; in the latter case, spaces are meaningful and
can be used later to split the variable expansion into fields. Our implementation
is in stages: in the first stage, the input is scanned, copying the (possibly quoted)
characters into the obuf buffer, as in the previous shell. During this phase,
variable expansions are recognized and specially marked in the obuf, so that
the variable name is delimited and it is possible to tell whether it was seen inside
double quotes or not. Then, the tokens are generated as before, but each word
token is passed to the expand() function, which replaces each variable in the
word with its value, quoting the resulting characters as needed (i.e., marking
them with QUOTE). The word is then passed to fields_split(), which splits
the word into one or more fields, using any unquoted whitespace as a delimiter4.
Each resulting field is then passed to remove_quotes() to remove the QUOTE
markers.

Assignments are recognized during the word token handling by looking for
strings that start with an identifier immediately followed by an “=” character.
The strings before and after the equal sign are then passed to setenv(). The
new unset builtin can be used to clear variables.

POSIX shells behave a little differently than our own, distinguishing between
shell and environment variables. Assignments to non-existent variables, for
example, create only internal shelli variables, which are not automatically copied
to the child environments. To add a shell variable to the environment passed
down to children, you have to export it, unless the -a flag is set, in which case
all variables are exported automatically.

In a real system the environment starts empty when init is run, but then
other programs can add variables to it. For example, login adds the HOME
variable set to the path of the home directory read from the /etc/passwd

4What is meant with “whitespace” here actually depends on the contents of the IFS
variable, as we will see in another lecture.
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file. The shell inherits this variable and uses it as the default path for chdir()
when you type cd without an argument (this is also implemented in our shell).

The shell itself can provide default values for the variables that are essential
to its operation (e.g., PATH, IFS, PS1, PS2, . . . ).

Exercises

9.1. Assuming that X doesn’t exist yet, try to guess the output of

X=aaa echo $X

10 Other features

A real shell will have many other features. Some are easy to implement, while
others are much more complex. You can look at some of them in the other
src/sh?.c files. For example, it is the shell that prints “Segmentation fault”,
by looking at the status value returned by wait() (src/sh7.c). “Back-
ground jobs”, i.e., processes that run in the background while the shell accepts
new commands, are easily implemented by skipping the wait() if the user has
terminated her command with a “&” (src/sh8.c). A more general scripting
facility is easily obtained by accepting a script name from the command line
and then using it as input instead of stdin (src/shA.c). The same shell also
implements the “-c cmd” option, which allows the shell to execute the com-
mands contained in the “cmd” argument. It is the shell that expands filename
wildcards such as “*” and “?” (src/shB.c and src/shC.c). It is also the
shell that creates pipelines of commands, using essentially the same trick as
in I/O redirection (src/shD.c). A few more extensions are collected in the
src/shE.c, src/shF.c and src/shG.c shells.

A Solutions to the exercises

Ex. 2.1

Since we have only called read(), it must be implemented by something that
is active during its execution. But read() is a system call, so line editing must
be implemented either in the kernel, or in the terminal (emulator) itself.

We cannot be more precise than this without adding a bit of history: old
terminals were very simple and did not provide any line-editing functionality,
so it had to be implemented in software. For a long chain of compatibility
requirements, this is still true today. In fact, this kind of line editing is imple-
mented in the TTY module in the kernel, attached to the driver that talks to
the (emulated) teletype device. The TTY module has a fairly complex set of
options, which can be inspected and set using the stty(1) utility (or, more
precisely, using a set of system calls also used by stty). You can print the list
of the current options with stty -a. Many options are devoted to the details
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of the serial communication with the tty device and are mostly meaningless
today; some options specify the action to be taken when special ASCII values
are entered from the keyboard: some values cause a signal to be sent to the
terminal’s foreground process group, and others are used for line editing. The
erase action removes the last input character and should be mapped to the
“ˆ?” ASCII value. This syntax is used to display unprintable, or control, ASCII
values, i.e., the first 31 values and the last one (0x7f, DEL5). The idea is to flip
bit 0x40 to get a printable character, then prepend that character with “ˆ”,
which stands for “0x40 XOR . . .”. Since the ASCII code of “?” is 0x3f, “ˆ?” is
0x40 XOR 0x3f = 0x7f, i.e., DEL.

Note that, for many keys, typing Ctrl+x will also toggle bit 0x40 of x6 so
you can also enter DEL by typing Ctrl+? instead of the key mapped to DEL in
your keyboard (probably backspace). This is also the way you can enter “ˆC”
(ASCII ETX, usually mapped to the SIGINT signal) and the other values which
are not otherwise available on the keyboard. For this reason the “ˆx” syntax is
often pronounced “control x”.

Ex. 2.2

If you try, you should see

/bin/ls/bin/l: No such file or directory

The inital /bin/ls is just the echo of what you typed. As soon as you entered
Ctrl+D, sh0 woke up and processed your characters. This is because Ctrl+D
is actually used as an “end of input” by the TTY module: it is an order to pass
the characters accumulated so far to reading process. Ctrl+D works as an end
of file only when entered on an empty line: the process will receive 0 characters
and will interpret this as an EOF condition (look at the while condition in
sh0.c). In our case, sh0 received “/bin/ls”, i.e., 7 characters with no ending
newline, it replaced the last one (“s”) with the string terminator, and then tried
to execute the resulting “/bin/l”.

Ex. 2.3

You obtain an Exec format error: the kernel doesn’t recognize your file as
something than can be executed. Indeed, it is just a text file that needs an
interpreter, and not something that can be simply loaded into memory and
then executed directly by the CPU.

5DEL is 0x7f because ASCII was designed for paper tape: to erase any character, you could
punch all seven holes.

6This is reminiscent of how the Ctrl key was implemented in the Teletype ASR 33. In the
ASR 33, the Ctrl key always resets bit 7 instead of toggling it. The Shift key instead flipped
bit 0x10, so if you shifted ‘1’ (ASCII 0x31) you got ‘!’ (ASCII 0x21) and so on. Many of
the keytop pairs that we see on our modern keyboards come from old mechanical typewriters.
The ASCII committee deliberately chose codes that differed by only one bit (bit 5) for these
symbol pairs, precisely to allow for the implementation of the shift key as found on the ASR
33 device.
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Ex. 2.4

This time the script works: if the first two characters of the file are “#!” (some-
times called a shebang), then the rest of the line is the path of an interpreter for
the file, optionally followed by whitespace and then a single argument for the
interpreter. In this case, the kernel itself will actually load the interpreter, pass-
ing it the option (if present) and the full path of the original file. In our case,
assuming that the script file is in the /home/user1 directory, the kernel
will run

/bin/sh /home/user1/script

The shell will then open and interpret the script file.
Note that the new shell will see the first line of the script, which was meant

for the kernel. This works because “#” is the start-of-comment character for the
shell, so the line will be ignored. Other interpreters (like awk, perl, python
and many, many others) also use “#” as a comment character, so this feature
automatically works for them too.

Ex. 2.5

When terminals evolved more capabilities, like a bidimensional screen, they in-
troduced escape sequences to embed control commands in the stream of ASCII
characters exchanged with the computer. These sequences have been then stan-
dardized by ANSI7. ANSI escape sequences start with ESC (ASCII 0x1B) and
some variable sequence of printable characters, typically starting with “[”. For
example, if the computer sends “ESC[A” to the terminal, it will move the cursor
up one line.

New keys, like the arrow keys, also send escape sequences to the computer.
For example, the up-arrow key sends “ESC[A”, i.e., the same sequence that
moves the cursor up when received from the computer.

Now, if we start sh0 and hit the up-arrow, we see “ˆ[[A”. This is the echo
(sent by the TTY module in the kernel) of the escape sequence sent by the
terminal (emulator). By default, the TTY module echoes control characters in
the same way explained in the solution of Exercise 2.1: “ˆ[” stands for 0x40
XOR 0x5B = 0x1B, which is ESC8. Note that the program reading from the
terminal will receive the true sequence, not the one which is echoed. You can
check this if you run cat, hit the up-arrow a few times and then press enter.
Then cat will wake up and send the received characters back at the terminal
and the cursor will move up.

The libreadline userspace library, used by bash and many other inter-
active programs, sets the terminal in raw mode, disabling echo and line editing
in the kernel, then implements all the advanced eding functions (including com-

7https://en.wikipedia.org/wiki/ANSI_escape_code
8It should be clear, by now, that Ctrl+[ is an alternative way to type ESC on the keyboard;

this is very useful in, e.g., vi.
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mand history) in userspace. We are not using libreadline, and this is why
our shells lack these functions.

Ex. 3.1

Yes it works and it does not depend on the contents of PATH. Follow the rules:
is there a slash in the string? Yes. So PATH is not used and the string is passed
as-is to execve(). The kernel will then interpret it as a relative path, correctly
leading to the exe file.

Many people seem convinced that the “./” prefix is necessary whenever
you want to specifiy a relative path (e.g., some people may type something like
cat ./file). This is not the case: “./” is needed only to trick the shell (or
similar programs) into not using PATH, and you only need it if you don’t already
have a slash in your path. Moreover, relative paths of files passed as arguments
to other programs need “./” only if the program itself is using some execlp()-
like logic to parse the paths, which is almost never the case. For example, cat
will simply pass the “file” string to open() (but see Exercises 4.1 and 6.2).

Ex. 3.2

This time the script is executed. This is another feature of execlp() and the
other exec*() functions with a p in their name: if the first execve(path,. . .)
fails, they try a second time with execve("/bin/sh",. . .) with path as an
argument. The shebang feature described in the solution of Exercise 2.4 can be
seen as a generalization of this behavior, implemented directly by the kernel.

Ex. 4.1

The cat command, like many others, interprets “-” as standard input, i.e., it
will start reading from file descriptor 0 instead of trying to open("-". . .) (see
src/cat3.c). The trick is that this behaviour is only triggered by the exact
“-” string, so any other equivalent path will work:

cat ./-

Ex. 5.1

After the first newline the shell prints the secondary prompt (“>” by default),
waiting for more input. This is because the newline has been quoted and is
not recognized as a command terminator, thus the shell is still waiting for the
end of the command. The second newline ends the command and the shell
tries to execute it. Perhaps surprisingly, the resulting command is ls: the
⟨backslash⟩⟨newline⟩ sequence is removed from the input, even if it occurs in
the middle of a word! (The original Bourne Shell retained the backslash, but
the behaviour implemented by sh2 is mandated by POSIX).
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Ex 6.1

The first two commands produce exactly the same output, even if the first one
is psycologically nicer. The third one prints all the spaces between Hello and
World, while the last one prints only one space between them. Note that echo
never sees the unquoted spaces: they are parsed by the shell. The first and third
echo instances receive a single argument while the second and third instances
receive two arguments (not counting argv[0]).

Ex 6.2

No, this cannot solve the problem, since the quotes are only seen by the shell
and cat will still receive the unadorned “-” string.

Ex 6.3

The first one prints the backslash, while the second one prints nothing. This is
because the backslash is always quoted within single quotes, but it is not quoted
within double quotes when followed by newline.

In our implementation, the ⟨backslash⟩⟨newline⟩ sequence is processed at
the lowest level, in input.c, to simplify the implementation of the behaviour
described in the solution of Exercise 5.1. The second argument to inext() is 1
when the processing of this sequence must be disabled (because we are collecting
characters between single quotes).

Ex 8.1

The redirection is performed by the shell, in the forked process, before executing
sudo. So, the process will try to open() the f file before the kernel has had
any chance to change the user id, and will therefore fail.

One trick is to use sudo to run some command that opens the file by itself
and then writes into it, so that the open() is performed after the execve().
The tee(1) command is good enough for this purpose: it copies its standard
input to standard output and to all the files passed as arguments:

echo something | sudo tee f

This has the annoying side effect of writing something to standard output
too. In a script we might prefer

echo something | sudo tee f > /dev/null

Ex 9.1

The “$X” is expanded by the shell before interpreting the line, and in particular
before updating the environment with “X=aaa”. Therefore, “$X” expands to
nothing and echo prints an empty line. If the purpose is to print “aaa”, the
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assignment must be performed in a previous line with an empty command, so
that the shell environment itself is updated:

X=aaa
echo $X

In a normal shell this would also work:

X=aaa; echo $X

It doesn’t work in sh6 because the semicolon is not recognized as a command
separator. This syntax is recognized starting with sh8.
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