
Symbolic link vulnerabilities

G. Lettieri

28 September 2023

1 Introduction

Symbolic links, or “soft” links, were introduced in the BSD system to over-
come some of the limitations of classic Unix links, now renamed “hard” links to
distinguish them from the new ones:

• hard links cannot point to directories1;

• hard links cannot point to a file on another device.

Symbolic links (symlinks from now on) do not have these limitations, but they
have other problems of their own.

Hard links are created and removed using the link() and unlink() sys-
tem calls. These calls simply add or remove “(name, inode number)” pairs in
directories. The kernel keeps track of all the hard links pointing to an inode and
only frees the inode (and the disk space allocated for its data) if there are no
hard links (and no open file descriptors) pointing to it2. There is no way to free
an inode, other than removing all the hard links pointing to it. In particular,
the rm command uses the unlink() system call.

A symlink is not just an entry in a directory. Instead, it is a special kind of file
with its own inode. The content of the symlink are a filesystem path, pointing
to a file or directory (or anything else) which is called the target of the symlink.
There is no “hard” relationship between the symlink and its target, which is
in no way affected by the creation of the symlink. In particular, symlinks to
the same target are not reference-counted, and the target of a symlink does not
even have to exist.

Most of the system calls that take a path as an argument (e.g., open(),
execve(), chdir() and so on) will “follow” a symlink when parsing the path.
That is, if one component of the path turns out to be a symlink, they will first
follow the path to the symlink target and then continue with the rest of the
original path. Note that this can be repeated recursively if they find more

1Earlier versions of Unix allowed hard links to directories, but this could be used to create
loops that easily confused many userspace utilities. The only hard links to directories allowed
now are the “.” and “..” entries contained in each directory.

2You can see the number of existing hard links to any file or directory in the second column
of the long listing output of ls.

1



symlinks in the target path, up to a maximum “nesting level” which is a system
constant. Exceptions are link() and unlink(), which do not follow symlinks
in the last component of their paths. This is especially important in the case
of unlink(), which will then remove the symlink itself instead of the symlink
target.

2 Exploiting symlinks

A few properties of links and open() are particularly interesting from an at-
tacker’s point of view.

• Both hard links and symlinks can be created by any user to any file (or
directory, in the case of symlinks). The link creator only needs the usual
permissions in the directory where she creates the link, but she needs no
special permissions on the target. The idea is that permissions to read,
write or execute the target file are still determined by the target inode,
and so the user creating the link is not gaining any new permissions.

• Programs that want to create a file usually pass the O_CREAT flag to
open(). This flag tells open() to create the file if it does not exist.
However, if the file already exists, no error is returned and the existing file
is opened. In particular, this is the behaviour of the fopen() function in
the stdio C library, when using the "w" or "a" open modes.

• The behavior of open() with O_CREATE on symlinks with non-existent
targets may be surprising. The system call transforms the path, by follow-
ing the symlink, before doing anything else. Once it has the transformed
path, now pointing to the target, it checks whether the file exists and
creates it if necessary. So the system call will create the missing target!

The combination of these features can create attack vectors when privileged
programs create files in directories writable by less privileged users. A typical
example is temporary files created in the /tmp directory, which is writable by
everyone. If the privileged program creates temporary files with predictable
names, without checking that they don’t already exist, it may unintentionally
open a symlink created by an attacker. The effect is that the privileged program
will operate on the target of the symlink, which could be anything the attacker
wants. Due to the open() behavior on symlinks with non-existent targets, the
program may even create files of the attacker’s choosing.

This type of bug is very common. A search for the keyworkd “symlink”
on https://www.cve.org/ returns more than 1420 entries, starting in 1999
and ending in 2023. Figure 1 shows the number of symlink advisories per year.

In many cases, the symlink attack can be used to cause a denial of service,
by writing garbage into an important system file. In some cases, however, it can
be used to escalate privileges. Let us consider some examples from the CVE
list.

2

https://www.cve.org/


 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023

symlink-related CVEs per year

Figure 1: The graph was obtained by searching for “symlink” in the CVE
database. Advisories marked as DISPUTED have been omitted.

2.1 CVE-1999-1187

Details about this bug can be found here:

https://marc.info/?l=bugtraq&m=87602167419803&w=2

The bug is in a version of PINE3, an old mail reader. The program creates a
temporary file in /tmp with a random name, but always the same for the same
user. It also creates the file with write permissions for everyone. The idea is
to trick PINE into creating a strategic file that belongs to a victim user and is
writable by the attacker.

The attacker can learn the temporary file names of the other users (by look-
ing at /tmp), create a symlink with the same name while the victim is not using
PINE, and wait. When the victim opens PINE again, the program will open
the attacker’s symlink with the victim’s credentials.

In the proof of concept shown in the link above, the attacker creates a sym-
link to a non-existent .rhosts file in the victim’s home directory. This file was
used in the old (pre ssh) system for remote access between networked Unix ma-
chines. It essentially played the role of the modern “authorized keys”, but
without the keys: hosts listed in .rhosts are allowed access without pass-
words. When the victim opens PINE, a world-writable .rhosts file is created
in the victim’s home directory. The attacker can later write whatever she wants
to the file and gain access to the victim’s account.

3The name stands for Pine Is Not Elm, a play on an older mailreader called ELM, for
Electronic Mail.

3

https://marc.info/?l=bugtraq&m=87602167419803&w=2


2.2 CVE-1999-1091

This is a similar problem in the tin newsreader. The attack in this case is even
easier because this program creates a word-writable log file in /tmp with a fixed
name. More specifically, it “created” a /tmp/.tin log file without checking
that it did not already exist, and then changed its permission to 0666 (read-
write permissions for everyone). The attacker can exploit this vulnerability in
much the same way as the one above, but this time it can even be used to gain
write permission on existing .rhosts files.

2.3 CVE-2020-8019

Now let us look at a more recent one. Newer vulnerabilities tend to be harder
to exploit, but they still exist. This vulnerability can only be exploited by users
who can log in as the news user, or users who belong to the news group. The
bug is in the install script of the syslog-ng package, which tries to create
a /var/log/news/news.err file without checking that it doesn’t already
exist, and then changes the owner and group of the file to news:news. Since the
/var/log/news directory is writable by the news user and group, the attacker
can create a news.err symlink and wait for root to reinstall the package. The
installation script will change the owner and group of the file symlinked by
the attacker. The proof-of-concept suggests symlinking the /etc/shadow file,
which stores all the encrypted passwords and is normally only readable by root.
A write permission to this file allows the attacker to change the passwords of
other users, while a read permission can be used to start a dictionary attack
and learn any weak passwords contained therein.

2.4 CVE-2021-25321

Here is an example of an unfortunately not-so-rare occurrence: a vulnerability
introduced in an attemp to improve security. It is a bit unusual in that it
involves a chown() operation rather than a file creation, but it still involves
symlinks.

The arpwatch daemon can be used to monitor changes in the ARP tables
(relating MAC and IP addresses). It opens a network interface in raw mode to
monitor ARP messages, and maintains a database of current MAC-IP pairs in
a file (by default, /var/lib/arpwatch/arp.dat). Opening the interface in
raw mode requires root privileges, but once opened the privilege is no longer
needed. As a standard mitigation strategy, the daemon drops privileges (us-
ing setuid()) to another non-root user, call it runtime. The SUSE Linux
distribution of this daemon included code to also change the ownership of the
/var/lib/arpwatch directory and the arp.dat file within it, so that the
runtime user can access them. This leads to an easy exploit if anyone can
log in as runtime: once the ownership of /var/lib/arpwatch has changed,
remove the arp.dat file and create a link to, say, /etc/shadow in its place
. The next time time arpwatch is started, the daemon will go through the

4



change-owner code again, this time allowing runtime to become the owner of
/etc/shadow.

2.5 CVE-2022-35631

Classic bugs like predictable temporary file names are still beeing introduced
today. This CVE addresses a bug in Velociraptor, a forensics and incident
response tool that security professionals should use to monitor and inspect sys-
tems that may have been compromised by attackers. The systems being moni-
tored run Velociraptor clients (with high privileges) talking to a remote server.
Unfortunately, the client created a temporary file with a name written in its
configuration file, placing too much trust in the system it was supposed to be
monitoring.

3 Countermeasures

Programs should always check that the files they intend to create do not already
exist. However, code like this is not sufficient:

if (stat(file, &sb) < 0 && errno == ENOENT) {
open(file, O_CREAT ...);

}

The problem with the above code is that there is a race condition between the
stat() system call used to check that the file does not exist, and the subsequent
open() used to create it. An attacker could create the symlink in the window
between the two calls. The correct way to create the file is to use the O_EXCL
flag in addition to the O_CREAT flag. That way, open() will atomically check
that the file does not exist before creating it, and will return an error if it does
not. Note that it will also return an error if the path is actually a symlink, even
if the target of the symlink does not exist. Thus, this technique closes all known
attack vectors.

If you are trying to create a temporary file, you should use the mkstemp()
library function, which uses the above technique and also automatically choses
an hard-to-guess random name.

3.1 Linux-specific countermeasures

Linux implements a number of non-standard countermeasures against symlink
attacks.

The first is a kind of “safety net” for buggy programs that create temporary
files insecurely. It can be enabled by typing

echo 1 > /proc/sys/fs/protected_symlinks

as root (your distribution may have already enabled this for you). It works
like this: if the sticky bit is set on a world-writable directory (such as /tmp),

5



Linux will only allow a process to follow a symlink if either the process owns
the symlink, or the symlink and the directory have the same owner (which is
usually root for /tmp). This way, even if the attacker has installed a symlink,
the victim process will not be able to follow it and will receive an error. This
turns a potential privilege escalation attack into a more benign denial of service
for that particular process. There is also an option to protect hardlinks, but
it works differently: if protected_hardlinks is 1, users can only create
hardlinks to files they own, or to files to which they have both read and write
access. The restriction is more severe in this case because hardlinks cannot
be detected once they have been created, and also because hardlinks can be
used to prevent files from being deleted (think of a superuser trying to remove a
vulnerable suid program: an attacker can create a hardlink to the program, thus
keeping a copy around). Modern kernels also have options to protect FIFOs and
regular files in world-writable sticky directories.

The second countermeasure Linux implements is the O_TMPFILE flag for
the open() primitive. This flag causes open() to create a file with no links
in the file system, i.e. it just allocates an inode without giving it a name. The
primitive is guaranteed to always allocate a new inode, so symlink attacks are
impossible. It also saves the programmer the trouble of inventing a unique
name for the temporary file. Finally, since the inode has a link count of 0, the
temporary file is automatically removed when all its open file descriptors are
closed. In the normal case this happens automatically when the process exits,
even if it does not exit cleanly (e.g., because it is killed). If you are writing an
application that needs to run only on Linux, you should consider using this flag
whenever you create a temporary file.

4 Exercises on links

To run the following exercises you must disable the protected links on your host
machine (outside the myUnix system). To do this, become root and type

echo 0 > /proc/sys/fs/protected_symlinks
echo 0 > /proc/sys/fs/protected_hardlinks

Now start the myUnix environment, login as root, type rshd (followed by
Enter) and log out. The rshd command is a simplified version of the remote
shell service mentioned in Sections 2.1 and 2.2. Once the server is running,
you can connect from the outside by running the util/rsh command. The
server will ask for your username and password, and give you a shell if they
match. You can create a .rhosts file in your home directory that contains IP
addresses, one per line: if the source address of your connection is in the file,
the server will give you access without asking for a password. As a special case,
a line containing only “+” will allow passwordless access to all IP addresses.

Assume that you are a normal user of the myUnix system, with no root
privileges. The root user uses a password that you cannot guess and she hasn’t
created any .rhosts file.

6



Exercises

4.1. Try to exploit the set-uid root binaries bad[4-6]suid (sources in /usr/src/)
to gain root access when connecting with util/rsh.

4.2. Assume that the super-user has found the vulnerabilities in the bad?suid
binaries and decides to remove them from the system. Can you prevent
this?

Now restore Linux link protection on your host, i.e. become root and type

echo 1 > /proc/sys/fs/protected_symlinks
echo 1 > /proc/sys/fs/protected_hardlinks

Exercises

4.3. Rerun your solutions for Ex. 4.1. What happens now? Explain.

4.4. Try to exploit the bad0suid binary by creating a mkdir symlink instead
of a mkdir script. Is the solution affected by the protected links settings?
Explain.

7


	Introduction
	Exploiting symlinks
	CVE-1999-1187
	CVE-1999-1091
	CVE-2020-8019
	CVE-2021-25321
	CVE-2022-35631

	Countermeasures
	Linux-specific countermeasures

	Exercises on links

