
Binary Translation — 1

G. Lettieri

22 Oct. 2014

1 Introduction

The idea of binary translation is to first translate the guest code into the equiv-
alent host code for the virtual machine, and then jump at the translated code.
If the translated code is kept in a cache and reused whenever the the guest is
trying to execute it again, the cost of decoding the guest instructions is thus
amortized. Moreover, the translated code can be optimized during the transla-
tion, since our emulator now looks at more than a single guest instruction at a
time. This strategy generally brings great speedups w.r.t. the simpler emula-
tion we have already seen, where each guest instruction is fetched, decoded and
emulated in isolation, and this is done every time the guest tries to execute it.
Apart from this, our emulator is again a normal, unprivileged program running
on the host system, relying on the host operating system for the management of
its resources. What we are doing is simply to replace the CPU loop with a more
sophisticated one. In particular, the considerations about I/O, virtual memory
and multi-threading are essentially the same as before.

Typically, the translation of guest code is not performed all at once, but in
smaller units called dynamic basic blocks, or translation blocks (TB). A dynamic
basic block starts with an instruction which is the target of a jump (including
the jump to the entry point of the program) and includes all the instructions
that follow, stopping immediately after the first branch or jump instruction.
One reason for using dynamic basic blocks is that it is otherwise very difficult
to identify all the code in the guest memory, since code looks just like data.
Dynamic basic blocks start at instructions that the emulated CPU is actually
trying to fetch after a jump, and therefore we rest assured that the corresponding
bytes in the emulated memory must be interpreted as an instruction. Moreover,
as long as the fetched instruction is not a jump (and we don’t need to execute the
instruction to know this), we are sure that it is followed by another instruction,
and so on, until we found a branch or a jump. At unconditional jumps we stop,
because we don’t know whether the bytes that follow them are for code or for
data (the emulated CPU is not going to execute them, for what we now). At
branches (conditional jumps) we also stop, because it is possible that one of the
two branches may never be taken, and we don’t know if this is actually the case.
The bytes that live at a dead branch may not be code at all. Dynamic basic

1

blocks allow us to only translate code that the guest CPU is actually going to
execute.

A TB is identified by the guest address of the its first instruction so that,
after the execution of a TB, we can use the current value of the guest instruction
pointer to find the next TB to execute.

The CPU loop becomes something like

for (;;) {
tb = find in cache(CPU−>ip);
if (! tb) {

tb = translate(CPU−>ip);
add to cache(tb);

}
exec(tb, env);

}

Where CPU is the usual descriptor for the emulated CPU, env is some data
structure containing all the information on the state of the guest (including the
CPU, but also memory), and tb is a pointer to a translation block descriptor.

2 Examples

2.1 Executing code generated at run-time

To implement the translate () and exec() functions we need two solve two tech-
nical problems on the host system:

1. How to find/allocate an area of memory where we can write new executable
code;

2. how to jump to the code.

For problem 1, since code is just a sequence of bytes, we might think that a
simple array of chars is sufficient. However, the host operating system will
generally try to segregate code from data, for security reasons. Therefore, a
simple array allocated with the usual means (either statically, on stack, or with
new or malloc()) will not always work: the corresponding memory area might
be protected from execution. On Unix-like systems we can use the mmap()
system call as follows:

/∗ get some executable memory ∗/
void ∗exec area = mmap(

NULL, // preferred address: let the
// kernel choose

4096, // requested size (a page)
PROT WRITE|PROT READ|PROT EXEC, // protection bits : rwx
MAP PRIVATE|MAP ANON, // not backed by file , do not

// share with other processes
−1, 0 // file descriptor and offset :

2

// unused with MAP ANON
);
if (exec area == MAP FAILED) {

. . .
}

If the call succeeds, exec area points to an area of memory that can be used for
executable code, because of the PROT EXEC flag.

Assume, now, that we have stored some machine code in the memory pointed
to by exec area. To actually execute the code, we have at least two options:

1. Cast the pointer obtained from mmap() to a function pointer, then call
the function;

2. use an intermediate function written in assembler.

Now let us consider an example. Assume we want to execute the machine code
corresponding to the following C++ function:

int sum(int a, int b)
{

return a + b;
}

We can obtain the corresponding machine code by compiling the above source
and using a disassembler on the executable file (e.g., “objdump --disassemble”).
In this example, the machine code is the following (stored for convenience in a
byte array):

char code[] = {
0x55, // pushl %ebp
0x89, 0xe5, // movl %esp, %ebp
0x8b, 0x45, 0x0c, // movl 12(%ebp), %eax
0x8b, 0x55, 0x08, // movl 8(%ebp), %edx
0x01, 0xd0, // addl %edx, %eax
0xc9, // leave
0xc3 // ret
};

As long as we don’t try to execute it, the code is just data, so we can simply
copy it in the executable area:

copy(code, code + sizeof(code), static cast<char∗>(exec area));

(here we are using STL’s copy() function, but there is nothing special about
it: we are just copying bytes from the code array to the memory pointed to by
exec area).

Now we have to actually execute the machine code. As we said earlier, an
option is to cast exec area into a function pointer. In this case, it must be a

3

pointer to a function that takes two integers and returns an integer. We can
program this as follows:

/∗ sum t is a pointer to a function that takes two
∗ integers and returns another integer
∗/
typedef int (∗sum t)(int, int);
. . .

/∗ convert the start address to a function pointer ∗/
sum t sum = reinterpret cast<sum t>(exec area);

/∗ call the function ∗/
int r = sum(2, 3);

For the second option, we can define an intermediate exec() function in
assembler. For this example, we need to pass three parameters to this function:
the address of the entry point and the two integers to sum. We can program
this function as follows:

exec:
/∗ standard C++ prologue ∗/
pushl %ebp
movl %esp, %ebp
pushl %ebx
/∗ call the sum function ∗/
pushl 12(%ebp) // first integer
pushl 16(%ebp) // second integer
movl 8(%ebp), %ebx // entry point
call ∗%ebx // indirect jump through register
addl $8, %esp
popl %ebx
/∗ standard C++ epilogue ∗/
leave
ret

We can call the above function from our C++ source as follows:

extern ”C” int exec(void ∗entry point, int a, int b);
. . .
int r = exec(exec area, 2, 3);

2.2 Translating code

Our emulator has to tranlate the guest code into the corresponding host code
and then execute the latter. In the previous example we have omitted this
translation step. Now, assume that the code from the sum() function is actually

4

guest code. The registers mentioned in the code are not the real registers in
the host CPU, but the registers in the target machine. These registers are
represented by some data structure in the host. This is also true for all accesses
to memory: when the guest code pushes something on the stack, this is the
target stack, which is implemented as some data structure in our emulator.

For example, we can define the following data structures to implement the
CPU and the memory of the target system (assume the target system has no
MMU):

// guest CPU
struct CPU des {

uint32 t EAX;
uint32 t ECX;
uint32 t EDX;
uint32 t EBX;
uint32 t ESP;
uint32 t EBP;
uint32 t ESI;
uint32 t EDI;
uint32 t EIP;
uint32 t EFLAGS;

} CPU;

// guest memory
const int MEM SIZE = 65536; // 64 KiB
uint8 t Mem[MEM SIZE];

For convenience, we also define an env dev structure to tie CPU and memory
together:

// the guest environment, containing pointers to the
// guest CPU and guest memory
struct env des {

CPU des ∗CPU;
uint8 t ∗MEM;

};

Now assume our guest wants to execute the sum() function of the previous
example. Our emulator will have to translate that code into something like the
following:

. set EAX, 0

. set ECX, 4

. set EDX, 8

. set EBX, 12

. set ESP, 16

. set EBP, 20

5

. set ESI, 24

. set EDI, 28

. set EIP, 32

. set EFLAGS, 36

// we assume
// %esi −> address of emulated CPU
// %edi −> address of emulated memory

tr code:
// PROLOGUE

pushl %eax
pushl %ecx

// PUSHL %EBP
subl $4, ESP(%esi)
movl EBP(%esi), %eax
movl ESP(%esi), %ecx
movl %eax, (%edi, %ecx)

// MOVL %ESP, %EBP
movl ESP(%esi), %eax
movl %eax, EBP(%esi)

// MOVL 12(%EBP), %EAX
movl EBP(%esi), %ecx
addl $12, %ecx
movl (%edi, %ecx), %eax
movl %eax, EAX(%esi)

// MOVL 8(%EBP), %EDX
movl EBP(%esi), %ecx
addl $8, %ecx
movl (%edi, %ecx), %eax
movl %eax, EDX(%esi)

// ADDL %EDX, %EAX
movl EDX(%esi), %eax
addl %eax, EAX(%esi)
pushf
popl EFLAGS(%esi)

// LEAVE
movl EBP(%esi), %eax
movl %eax, ESP(%esi)
movl (%esi, %eax), %eax
movl %eax, EBP(%esi)
addl $4, ESP(%esi)

// RET
movl ESP(%esi), %ecx
movl (%edi, %ecx), %eax
movl %eax, EIP(%esi)

6

addl $4, ESP(%esi)
// EPILOGUE

popl %ecx
popl %eax
ret

Note that the emulator will actually have to create the host machine code that
corresponds to the assembler above.

In the above code we assume that two registers already point to the guest
CPU and memory data structures. We can easily setup these registers if we
jump to the translated code using an intermediate function, that we write in
assembler. For example, we can use the following function:

. set CPU, 0

. set MEM, 4

. globl exec
exec:

pushl %ebp
movl %esp, %ebp
pushl %ebx
pushl %esi
pushl %edi
movl 12(%ebp), %ebx
movl CPU(%ebx), %esi
movl MEM(%ebx), %edi
movl 8(%ebp), %ebx
call ∗%ebx
popl %edi
popl %esi
popl %ebx
leave
ret

We can call the above function from our C++ source as follows:

extern ”C” void exec(void ∗entry point, env des ∗e);
. . .

env des env = { &CPU, Mem };
exec(exec area, &env);

The complete example can be found at
http://lettieri.iet.unipi.it/virtualization/dynex.tar.gz.

7

http://lettieri.iet.unipi.it/virtualization/dynex.tar.gz

2.3 Dynamic vs Static Basic Blocks

Dynamic basic blocks differ from (static) basic blocks used by compilers (typ-
ically in their optimization phase). A basic block is defined as a sequence of
instructions with only one entry point and only one exit point. An entry point
is the target of a jump anywhere in the program: compilers have the complete
list of these jumps, since they have created them in the first place. Instead,
our emulator is not aware of instructions that it has not yet seen, and that
may jump in the middle of a previously identified dynamic basic block. The
result is that dynamic basic blocks are typically larger than static basic blocks;
moreover, it may happen that the same instruction belongs to several dynamic
basic blocks. All of this can be shown with a simple example:

1 movl $0, %ecx
2 loop: cmpl $8, %ecx
3 jge end
4 incl %eax
5 jmp loop
6 end: movl %eax, %ebx

The static basic blocks are: {1}, {2, 3}, {4, 5}, {6}. The dynamic basic blocks
(assuming a first jump to instruction 1) are: {1, 2, 3}, {4, 5}, {2, 3}, {6}.

8

	Introduction
	Examples
	Executing code generated at run-time
	Translating code
	Dynamic vs Static Basic Blocks

