
Hardware passthrough

G. Lettieri

11 Nov. 2015

1 Introduction

I/O emulation poses the biggest performance challenge in virtual machines. In
all the virtualization techniques that we have seen so far, the Virtual Machine
Monitor (VMM) has to participate in all the interactions between the guest soft-
ware and the I/O peripherals. In hardware assisted virtualization, this causes
a lot of expensive Virtual Machine exits.

One way to overcame these problems is to give a VM direct access to an host
peripheral. We say that the peripheral is passed through to the VM. In terms of
our model, the target machine contains a device which is the same as a device
in the host machine, and the virtual machine maps the target device directly
onto the host device. Note that the device is now dedicated to that particular
VM, and it cannot be used by either other VMs or the host.

This is an expensive solution, since we are essentially giving up all the ben-
efits of virtualization for the passed-through peripheral: we cannot share it,
we have removed the software layer that gave us more flexibility, and we also
have to face a security problem, since we must now guarantee that the VM is
only able to access that peripheral and nothing else. Nonetheless, passthrough
may be a cost effective solution, especially when coupled with other hardware
techniques like PCI SR-IOV1. This technique is often used for network cards,
to establish a fast data path between VMs and the network, and it is very im-
portant for Cloud service providers, which offer their customers VM access over
the Internet.

To implement passthrough in hardware assisted virtualization we need, again,
help from hardware. This is because the VMM software is not running, in gen-
eral, when the interactions between the guest and the peripheral take place,
and therefore the VMM needs help from the hardware to guarantee that these
interactions are properly handled.

The interactions involve three mechanisms: reads and writes to I/O registers,
DMA and interrupts. Let’s examine each of these in turn.

1This is a feature of some PCI devices that may offer several virtual instances of themselves.
The instances may be used independently, even if they internally share some hardware.

1



2 I/O registers

Assume we want to passthrough a device D to a VM M . For reads/writes
to/from the registers of D, we want the hardware to complete the operation
without VMM intervention, accessing the real registers of D. For all other
I/O reads and writes, we want the hardware to intercept the accesses as usual,
yielding control back to the VMM.

This is easy to implement using Intel VMX for registers that live in the
I/O address space. The Virtual Machine Control Structure (VMCS) contains
a pointer to an I/O bitmap, with one bit for each possible I/O address (there
are 65536 I/O addresses, therefore the size of the bitmap is just 8 KiB). While
in non-root mode, the CPU will check the bitmap for all the addresses used by
all in and out instructions. The CPU will either complete the instruction or
cause a VM exit, according to the value of the corresponding bit. The VMM
may prepare the bitmap for the M VM by setting all the bits that correspond
to registers of the D device, and resetting all the other ones.

For memory mapped I/O registers, the VMM must use the host MMU to
map some guest physical addresses to the host physical addresses where the
registers reside. Since the mapping is per-page, it is imperative that each page
only contains registers from at most one device. It is not necessary that the
guest and host physical addresses are the same, but there is usually no reason
for them to differ.

3 DMA

Assume that the passed-through device is DMA-capable, i.e., it is able to per-
form read and write operations on the system memory by itself. Of course,
the DMA operations must be programmed by software and, in particular, the
software must tell the device the memory addresses to read and/or write, e.g.,
by writing the addresses into some device registers.

Consider now the target machine in Fig 1. The software, running in the
target CPU, writes address F into the register of the target device as part of
the programming of a DMA operation. At a later time, the device will access
memory at address F . This is the expected behaviour of the DMA operation
that we need to reproduce if we want to run the same software inside a virtual
machine. But, if we use only the mechanisms that we have seen so far, we
run into a problem. Recall that, before the execution of each instruction, the
target and virtual state are equivalent and, in particular, each guest visible
CPU register and each location of the virtual machine physical memory contain
the same value as the corresponding element in the target machine. Moreover,
according to the previous section, when we pass through a device D, we let the
host CPU directly execute all write operations into the registers of D. Therefore,
if we consider the state when both the target machine and the virtual machine
are about to execute the write of F into the device register, we can see that,
at the end of the operation, also the host device register will contain F (since

2



Target CPU

F

Target Device

Target
Phys. Mem.

Target Machine

Host
Phys. Mem.

H
F

F ′ Host
MMU

Host
CPU

F

Host Device

F

Figure 1: Mismatch between guest and physical addresses in device passthrough
DMA.

the initial target and virtual states are the same, the instruction is the same
and the processor is the same). The problem, of course, is that F is a guest
physical address, but the host device will use it as a host physical address. In
fact, guest physical addresses are translated into host physical addresses by the
host MMU (see mapping H in Fig. 1) but I/O devices are not connected to the
MMU. Therefore, very different things are going to happen when the target and
host devices will both try to access address F in memory. To match the target
machine behaviour, the virtual machine should access host physical address F ′,
not F .

Note that the above is not only an error in the simulation, but also a security
problem. In fact, a malicious guest may write whatever it wants into the host
device register, and therefore gain indirect access to parts of the host memory
that the VMM had not assigned to it. These may include the emulated physical
memory of other virtual machines, or the reserved memory of the VMM itself.

Note also that the problem is caused by the fact that we have granted the
VM direct access to the device registers. If, instead, the write operation to the
above device register causes a VM exit, the VMM may regain control, see that
the guest was about to write address F , translate it through H to obtain F ′ and
write the latter value into the device register. This would solve the problem,
but it again would require a VM exit for every read and write operation to the
device registers, at least those that contain memory addresses.

One may think to solve the problem in hardware by letting all addresses
go through the host MMU, not only the addresses coming from the CPU, but
also those coming from I/O peripherals. However, this does not work and it is

3



important to understand why.
Consider Fig. 2, where we have done two things: we have let the address

generated by the host device go through the host MMU, but we have also
added a second virtual machine to the system. Each virtual machine use its
own subset of the host physical memory to implement the corresponding target
physical memory. Two guest-host address translations are available: H1 for
the first virtual machine and H2 for the second. Since there is only one host
CPU, only one virtual machine at a time will be running. When host CPU is
used by virtual machine #1, the host MMU must point to translation H1 and,
similarly, when the host CPU is used by virtual machine #2, the host MMU
must use translation H2. The VMM will take care of switching between the two
translations whenever it orders a switch from one VM to the other.

Now assume, again, that we pass through an host device to VM #1 and
that the guest software running inside it writes the guest #1 physical address F
into the device register. For correct operation, this address must be translated
to F ′ when the device later tries to access the host memory. This would be
the case if, at that time, the MMU were using translation H1. The problem
is, however, that the we have no guarantee that this is indeed the case, since
the device operates asynchronously with the rest of the system. It may well be
the case that, when the device is ready to access host memory, the VMM has
scheduled VM #2 and, therefore, the current active translation is now H2, as
shown in the Figure. Address F would thus translate to F ′′, an address inside
the emulated memory of VM #2.

What we need is another kind of MMU, that is used only by I/O devices,
is capable of operating several possible translations, and chooses the correct
translation depending on the I/O device which has issued the memory access
request. This is called IOMMU and is now available on most machines based
on Intel and AMD processors (for PCs you may need to enable it in the BIOS).

Fig. 3 illustrates the idea. In the Figure we have two virtual machines, one
emulating Target Machine #1 and another emulating Target Machine #2. Host
Device A as been assigned to VM #1 (the one that emulates Target Machine
#1) and Host Device B has been assigned to VM #2 (emulating Target Machine
#2). The IOMMU translates all addresses coming from all devices. In order to
perform the translation it uses a data structure (in the Host Physical Memory)
that maps each device to a set of page tables. The IOMMU is an additional
device and does not replace the MMU. The MMU continues to be attached to
the Host CPU. In the Figure, the Host CPU is running VM #1, and therefore
the MMU points to translation H1. The IOMMU, however, is always able to
perform both translations. To allow the IOMMU to choose the right translation,
the host devices must identify themselves in each memory operation they issue
on the bus. This is automatically done in PCI express systems, since each
transaction contains the bus/device/function triple that uniquely identifies the
transaction originator in the system. Since Host Device A is assigned to VM
#1 (to implement Target Device #1), the IOMMU data structure maps it to
translation H1. Similarly, Host Device B is mapped to translation H2. All
the VMM has to do when it needs to passthrough a device to a VM is to add

4



Target CPU #1

F

Target Device

Target Phys.
Mem. #1

Target Machine #1

Target CPU #2

Target Phys.
Mem. #2

Target Machine #2

Host
Phys. Mem.

H1
F

F ′

H2
F

F ′′

Host
MMU

Host
CPU

F

Host Device

F

Figure 2: Using the host MMU is not sufficient for DMA operation in
passthrough.

5



Target CPU #1

F1

Target Device #1

Target Phys.
Mem. #1

Target Machine #1

Target CPU #2

Target Phys.
Mem. #2

F2

Target Device #2

Target Machine #2

Host
Phys. Mem.

H1
F1

F ′
1

H2 F2

F ′
2

Host
IOMMU

A

B

F1

Host Device A

F2

Host Device B

Host
MMU

Host
CPU

Figure 3: Two virtual machines, each one with a passed-through device, served
by an IOMMU.

6



Running

Ready

Halted

hlt

INTR

Figure 4: Running states of a Virtual Machine CPU.

an entry for the device in the IOMMU data structure. (Devices that have no
entry in the data structure are assumed to belong to the host, and therefore the
IOMMU lets their address to reach memory untranslated).

Intel and AMD IOMMUs are also capable of issuing page faults by inter-
rupting the Host CPU if they find some unset present bit during the translation.
Therefore, there is no need for the guest physical memory to be always resident
in host physical memory. Translations can be cached inside the IOMMU, and
there is also the support for TLBs that reside inside the devices themselves, to
improve the caching scalability.

The IOMMU is a general device which may be used not only by VMMs, but
also by ordinary multiprogrammed systems that use virtual memory for their
processes. In much the same way as we have just seen, they can use the IOMMU
to program DMA accesses between devices and swappable userspace buffers.

4 Interrupts

Until now, we have seen only two options for the management of interrupts
coming while the processor is in non-root mode: either each external interrupt
causes a VM exit (i.e., they are handled by the VMM), or none of them does
(i.e., they are handled by the VM).

For passthrough, we would like the VM to handle the interrupts coming from
the passed-through device and the VMM to handle all the other ones. Moreover,
we need to take care of the fact that the passed-through interrupt may come
while the VM is not running on the CPU. Indeed, a VM CPU may be in one
of several running states, much like a process. Fig. 4 shows the possible states
of a VM CPU. In the “Running” state the VM CPU is actually using the host
CPU (either in root or non-root mode). In the “Ready” state the VM CPU is
stopped because the host CPU is currently being used by some other VM (or

7



host process, in the systems that run VMs alongside normal processes). A VM
CPU may switch between the Running and Ready states for scheduling decisions
operated by the VMM. When the VM is Ready, the VMM will schedule it at
some future time. While in the Running state, the guest software running inside
the VM may execute the hlt instruction, thus halting the VM CPU. Typically,
the VMM will intercept the instruction, put the VM CPU into the “Halted”
state and schedule something else. A VM CPU may exit from the Halted state
only if it receives an interrupt. Note that here we refer to an interrupt directed
to the VM CPU. This is, typically, a virtual interrupt generated by the front
end of a software emulated device.

Now let’s assume that a device D that has been passed through to VM M
generates an (host) interrupt. This is what we would like to happen:

1. if the M CPU is Running, we want the interrupt to be handled by the
processor, jumping to the guest interrupt handler, without any VM exit
(and, therefore, without any intervention of the VMM);

2. if the M CPU is Ready, the host CPU is currently running something else,
e.g., another VM CPU; in this case we want to store the interrupt request
somewhere, so that the M CPU may handle it at the later time when the
M VM is scheduled and becomes Running;

3. if the M CPU is Halted, we need to store the interrupt request, as above,
and also make the M CPU become Ready.

Note that we still want the VMM to handle all the interrupts that do not come
from the passed-through device.

The posted interrupt mechanism, available in very recent CPUs, allows us
to implement this idea. The mechanism is able to avoid any VMM intervention
also in case 2, besides case 1. For case 3, instead, we still need the VMM to
intercept the interrupt.

4.1 Posted interrupts

The posted interrupt feature must be supported by both the processor and the
interrupt controller, that now uses an Interrupt Remapping Table (IRT). The
idea is to keep a Posted Interrupt Descriptor (PID) in system memory for each
VM. The running status of the VM is stored in the PID. When the interrupt
controller needs to deliver the interrupt to the VM, it reads the running status
of the VM in the PID and either interrupts the processor, or it just stores (posts)
the interrupt request in the PID itself.

The PID is a 64 byte data structure that contains several fields. The most
important ones are the following:

• Posted Interrupt Request (PIR): a 256 bits field (just like the IRR and
ISR registers of the APIC), one bit for each possible interrupt vector; this
is where the interrupts are posted;

8



• Suppress Notification (SN): one bit that determines whether the controller
must deliver the interrupt (SN=0) or just post it in the PIR (SN=1); this
bit is used to encode the running state of the VM;

• Notification Vector (NV): this is used for the actual delivery of the inter-
rupt and is explained below.

The IRT has an entry for each possible interrupt request, mapping requests
to interrupt vectors and, optionally to a PID. Whenever the controller has to
deliver an interrupt that is mapped to a PID, it behaves as follows:

1. it sets the proper vector bit in the PIR;

2. if SN is 0, it does nothing else;

3. otherwise, it interrupts the processor using interrupt vector NV.

Note that the interrupt vector of the incoming request is always stored in the
PIR, and the actual vector that the processor sees is always the one stored in
NV.

The PID is only used by the processor in non-root mode, and a pointer to
the PID must be stored in the currently active VMCS. The VMCS execution
control section must specify that external interrupts should cause VM exits
(note that interrupts delivered through a PID may still not cause a VM exit,
see below). The VMCS exit control section must specify that, on receiving an
external interrupt, the processor must obtain the interrupt vector before exiting.

For simplicity, assume that interrupts are always disabled when the processor
is in root mode (i.e., the VMM runs with interrupts disabled). While in non-
root mode, the processor looks into the PID only when it receives an interrupt
with a special vector, called the Active Notification Vector (ANV); otherwise,
the processor continues to handle interrupts as always (i.e., with a VM exit in
this case). If the ANV is received, instead, the processor automatically (i.e.,
via a microprogram) looks at the PIR and handles the interrupt vectors that it
finds set, without leaving non-root mode.

Now let us see how the VMM may setup the PID to implement the desired
behaviour for interrupt passthrough. Assume that interrupt I has to be passed
through to VM M with vector V . The VMM creates a PID and writes its
address in the VMCS of M . Moreover, it fills the entry for I in the IRT with
the vector V and the pointer to the PID. The VMM prepares an handler for a
vector WNV (Wakeup Notification Vector), which must be different from ANV.
Then, the VMM updates the PID as follows:

• when M goes into the Running state, the VMM sets SN=0 and NV=ANV;

• when M goes into the Ready state, the VMM sets SN=1;

• when M goes into the Halted state, the VMM sets SN=0 and NV=WNV.

9



Therefore, when VM M is Running, it will receive the passed-through interrupt
without any intervention of the VMM. If M is Ready, the interrupts will be
posted in the PIR, again without any intervention of the VMM. The VMM,
however, must be notified when the interrupt comes while M is halted. The
reason is that the VMM needs to know that M is now eligible for execution
and has to update its own data structures accordingly. At the very least, it
has to move the VM back into the list of the Ready VMs, so that it may be
scheduled for the Running state. For this reason, the VMM changes the value
of NV when it moves a VM to the Halted state: since NV is now different
from ANV, interrupts delivered through the PID will not trigger the posted
interrupt processing, but normal behaviour: a VM exit to the VMM, which can
then process the event.

There is also another action that the VMM must perform. When it chooses
a VM in the Ready state to make it Running, it must look at the PIR. If there
is any bit set, it must inject the ANV when entering the VM. In this way the
processor will look at the PIR and process the interrupts that were posted while
the VM was not Running.

Note that, in order to setup the IRT, the VMM must know the vector V ,
but this vector is determined by the guest. The VMM may discover V by
intercepting guest writes to the interrupt controller registers.

10


	Introduction
	I/O registers
	DMA
	Interrupts
	Posted interrupts


