
Emulation — 1

G. Lettieri

8 Oct. 2014

1 General strategy

Emulation is what we have done for the Manchester Baby example, but now
we have to do it for a much more complex system, which also includes the I/O
devices.

In emulation we implement the target CPU in software, and this gives us
complete control on everything. We also implement all other pieces also in
software: MMU, interrupts, I/O devices,

The general strategy for the implementation is as follows:

• write the emulator as a non-privileged program in the host system;

• define a data structure for each device (CPU, memory, MMU, each I/O
dev, . . .);

• write a CPU loop like the one in Fig. 1.

Since the emulator is a non-privileged program, it can only interact with the host
hardware through the operating system libraries and primitives. We assume a
Unix-like system with

• files, accessed through the open, close, read, write and fseek functions;

• processes and threads;

• the select system call.

In the Manchester Baby example we only had two devices: CPU and mem-
ory. Moreover, CPU only had two registers: the accumulator A and the instruc-
tion pointer CI .

1.1 Memory

To implement the Baby memory we defined an array of 32 int32_t entries.
An array, or a buffer, is a good candidate for the implementation of the main
memory also in the general case, but we have to consider some complications. In
particular, the Baby memory was only word-addressable: each address was the

1

memory mem;
cpu state cpu;

void cpu loop()
{

raw instr ri ;
decoded instr di ;

for (;;) {
ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);

}
}

void exec(decoded instr di)
{

switch(ri−>opcode) {
case . . .
case . . .
}

}

Figure 1: Emulated CPU pseudo-code.

2

address of a word, not of a byte (bytes did not even exist back then). Modern
systems typically are byte addressed, they may support words of different sizes,
and they may also allow misaligned reads and writes. The x86 architecture, in
particular, supports all of these cases. Therefore, a more fitting candidate data
structure for a modern main memory is an array of bytes.

1.2 CPU

The Baby emulator CPU state only consisted of two int32_t variables, one for
A and the other for CI . A modern CPU will have many more registers, which
we can put in a cpu_state data structure. Note that we already do something
similar when we implement processes in a multiprogrammed kernel, but there
is a difference: we now need to consider all the CPU registers available to the
programmer, even those registers that are only accessible to privileged software
(e.g., IDTR, CR0, CR2, . . . in x86). This is because our emulator will need to
run all of the software of the target system, including the system software.

A modern CPU will also have many more features that we need to emulate.
In particular: interrupts, exceptions and protection.

1.2.1 Interrupts

We can implement interrupts by allocating a flag for the interrupt request and
(if the target architecture needs it) a variable for the interrupt type. Then, the
CPU loop must check the interrupt flag after the execution of each instruction. If
the interrupt is set, we must load the interrupt handler address in the emulated
CPU instruction pointer, and then start fetching again:

. . .
bool interrupt ;
uint8 t int vector ;

void cpu loop()
{

. . .
for (;;) {

ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);
if (interrupt) {

. . .
/∗ obtain the new ip from
∗ the interrupt descriptor table
∗/

cpu−>ip = read idt(int vector);
}

}
}

3

We must also do all other things the target CPU does on interrupt acceptance.
For the x86, these include saving the current (emulated) EIP and EFLAGS regis-
ters on top of the stack (the emulated stack in the emulated memory, pointed to
by the emulated ESP register in the cpu_state), and many other things which
we should recall from other courses.

1.2.2 Exceptions

Exceptions (e.g., division by 0, general protection, page fault, . . .) are a bit
more complex, since they may occur anywhere during the fetch, decode and
execution of an instruction. If the language we are using supports it, we can
use the try . . . catch construct:

. . .
void cpu loop()
{

. . .
for (;;) {

try {
ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);
if (interrupt) {

. . .
}

} catch (exception e) {
. . .

cpu−>ip = read idt(e−>type);
}

}
}

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case DIV:
. . .

so = get 2nd operand(ri);
if (so == 0)
throw exception(DIVISION BY ZERO);

. . .
}

}

4

Figure 2: Emulation of exceptions in the CPU in the C language.

Note that, in x86, exceptions can also be raised by read_idt itself (gate not
present, protection, even page fault), so we need to account for that also (this
is left as an exercise for the reader).

The C language does not support exceptions. In this case we can use the
setjmp and longjmp functions from the C standard library as follows:

. . .
#include <setjmp.h>
. . .

jmp buf exc jbuf;
exception exc type;

void cpu loop()
{

. . .
for (;;) {

if (setjmp(&exc jbuf)) {
. . .

cpu−>ip = read idt(exc type);
}
ri = fetch(cpu−>ip);
di = decode(ri);
exec(di);
if (interrupt) {

. . .
}

}
}

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case DIV:
. . .

so = get 2nd operand(ri);
if (so == 0) {

. . .
exc type = DIVISION BY ZERO;
longjmp(&exc buf);
}
. . .

}

5

}

First, we need to define a variable with type jmp_buf (the type is defined in
the library). Then, we call setjmp with the address of our variable, which
is exc_jbuf in the Figure. The functions stores in exc_jbuf all the informa-
tion needed to jump at the current program point and returns 0 (which means
that the code in the if is skipped). Then, if/when we later call longjmp with
exc_jbuf, the program will jump to the corresponding setjmp. This time,
setjmp will return 1 and the code in the if will be executed. Note that we
need to pass all additional information (like the exception type in the Figure)
through global variables, since the stack is unwinded during the jump.

1.2.3 Protection

To emulate protection we simply need to implement in software all the checks
performed by the target CPU. For example, the SIDT x86 instruction changes
the CPU pointer to the interrupt descriptor table and it is, of course, a privileged
instruction that can only be executed when the CPU is at the system privilege
level. In our emulator we will need to do something like the following:

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case SIDT:
. . .
if (cpu−>privilege level < SYSTEM)
throw exception(GENERAL PROTECTION);

/∗ otherwise ∗/
cpu−>idtptr = . . .
. . .
}

}

1.3 I/O

I/O devices are connected to the rest of the system via interfaces. Interfaces
have a set of registers that are mapped in I/O or memory space. I/O registers
look like memory locations, but the crucial difference is that whenever we write
(or even read) from an I/O registers, actions take place, e.g., a character is
printed, a message is sent, and so on. Therefore, in our emulator, we need a
way to map I/O register accesses to functions, rather than simply to locations
in memory.

In x86, I/O space can only be accessed via the in and out instructions,
therefore we can emulate all accesses to I/O mapped interfaces with something
like (assuming all operand sizes are the same):

6

void exec(decoded instr di)
{

switch(ri−>opcode) {
. . .

case IN:
. . .

a = get io addr(di);
v = io input(a);
. . .

case OUT:
. . .

v = get 1st operand(di);
a = get io addr(di);
io output(v, a);
. . .

}
}

The io_input and io_output functions might be implemented with another
switch:

void io output(operand v, ioaddr a)
{

switch(a) {
. . .

case 0x40:
/∗ this is the timer ∗/
. . .

case 0x60:
/∗ this is the keyboard ∗/
. . .

}
}

However, such a solution would be very inflexible. The PC platform, for exam-
ple, can come with many different configurations of I/O devices and cannot be
easily captured by such a static mapping of addresses. A much better solution
is to have a data structure that maps I/O addresses to the data structures that
represent the I/O devices. Then, we can do something like:

iomap io;

void io output(operand v, ioaddr a)
{

iodevice ∗iodev = io.search(a);

7

if (iodev != NULL)
iodev−>set register(v, a);

}

But we also need to consider memory mapped interfaces, i.e., interfaces whose
registers are given memory addressed and then are accessed via any instruction
that can have memory operands. In this case we need to do something like
the following, whenever an instruction tries to write memory (and similarly for
reading):

memory mem;
mem map mm;

void mem output(operand v, addr a)
{

iodevice ∗iodev = mm.search(a);

if (iodev != NULL)
iodev−>set register(v, a);

else
mem[a] = v;

}

That is: first check whether the given address corresponds to an I/O interface,
and only if this is not the case do a normal write into the (emulated) memory.
The cost of this lookup can be mitigated if I/O is restricted to some fixed
region of memory, since in that case we can do a quick check on the address
value to understand if it corresponds to normal memory, without performing
the (possibly expensive) lookup into the mm data structure.

1.3.1 Asynchronous events

The biggest problem with I/O devices is that they introduce asynchronous
events in our emulation: “things” must happen in the devices while our program
is executing the CPU loop.

As a first example, let us assume that our emulated CPU writes a character
in the transmit buffer of an interface connected to a (very old) printer. The
printer will start printing the character and reset the “buffer empty” bit in its
status register, since now it cannot accept any other character. Concurrently,
the CPU will continue to fetch and execute other instructions and, if it tries to
read the printer status register, it will see the buffer empty bit at 0. At some
later time, the printer will finish printing the character and it will set the buffer
empty bit in the status register. If the CPU tries to read the status register now,
it will see the buffer empty bit at 1. Therefore, the result of the status register

8

read should depend on an event which is asynchronous with respect to what
our emulated CPU is doing. We can solve this particular problem by assuming
that the emulated printer is very fast, so fast that the CPU is never able to see
the buffer empty bit go to 0: the read from the status buffer can simply always
return 1 in the buffer empty bit. This is possible if the action that we have to
perform in response to the write to the transmit buffer can be implemented by
a (mostly) non-blocking operation in the host system. For example, this is the
case if we emulate the printer by simply writing the received characters in a file,
or by showing them on the terminal.

Assume now, as a second example, that the CPU tries to read from the
receive buffer register of the keyboard. We can emulate this by, e.g., reading
from the terminal with a read system call. Now we have a different problem:
the read system call may block the process waiting for the user to press a key on
the keyboard (actually, it normally waits until the user has entered a complete
line, but we can ignore this for now). But we cannot block our emulated CPU
waiting for input, since this is not how the real target system works: in the
target system, the read will complete in essentially constant time, returning
whatever is the current content of the receive buffer register, and then the CPU
will continue fetching and executing instructions. We can solve this particular
problem by using non blocking I/O in the host system. This is an option that
can be set on a file descriptor (including one connected to a terminal). If the
option is set, any read will return an error if no input is available, instead
of blocking. If the read returns error, we can complete the emulated input
instruction by returning the previously read character.

As a final example, assume the program running on our emulated CPU
is trying to read from the keyboard using interrupts. Now, we need to set
our emulated interrupt flag as soon as the emulated keyboard has a new key
available. But, again, our emulator only knows that the emulated keyboard
has a new key when the read system call returns (without error). We have
essentially two choices here:

• put the file descriptor corresponding to the emulated keyboard in non
blocking mode, then periodically (e.g., after the CPU loop has executed a
few instructions, or whenever it executes an HLT instruction) issue a read

to check whether something new has arrived;

• use multi-threading; we can use a thread for the CPU loop, and one or
more threads for the I/O devices.

(Actually we also have a third, less common one: use asynchronous I/O, if avail-
able.) If we have a separate thread for the emulated keyboard, we can simply
block it in the read and set the interrupt flag (in shared memory) whenever the
system call returns.

Most emulators, however, do not have a separate thread for each device.
Another solution is to have just one thread for all the I/O devices. This thread
is normally blocked on a select system call that checks all the file descriptors
corresponding to all the devices. Whenever any one of the file descriptors is

9

ready, the select returns, the thread uses some data structure that maps the
file descriptor number to an emulated I/O device, it performs the necessary
actions on the devices (possibly setting the interrupt flag), and then blocks in
the select again.

10

	General strategy
	Memory
	CPU
	Interrupts
	Exceptions
	Protection

	I/O
	Asynchronous events

